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1. INTRODUCTION

The cylindrical shell is one of the most com-
monly used structural elements when it comes to 
vessels under the influence of internal pressure. 
Awareness of the maximum load that the structure 
can accept without leaking or catastrophic failure is 
crucial for the designer and the user. It is necessary 
to guarantee the safety of the contents as well as the 
integrity of the cylindrical vessel.

A great challenge is certainly represented by 
different structural solutions when it comes to closed 
cylinders. There are different types of closures, from 
flat plates to torispherical, ellipsoidal, and hemi-
spherical cylinder heads. Ellipsoidal and hemispher-
ical cylinder heads are also called one-arc, while tor-
ispherical are defined by two meridional curves, and 
are therefore called two-arc vessel heads. The heads 
of cylindrical vessels under the influence of internal 
pressure can be treated as axisymmetric problems.

A significant number of papers have dealt with 
problems related to cylindrical vessels modelled using 
shell elements. The authors [1-3] paid special atten-
tion to the shell finite elements (FE). The fundamental 
theories related to thin-walled shells are discussed in 
cited researches. The burst pressures of thin-walled 
cylinders constructed of steel with a yield plateau were 
studied by experimental methods and finite element 
analysis in research [4]. Paper [5] has established the 
equations to calculate the burst pressure of thin-wall 
pipe under capped-end conditions and capped-open 
conditions. [6, 7] are devoted to shape optimisation 
of axisymmetric shells. In [8], the optimisation of the 
flat ends of closed cylinders is shown. The application 
of flat ends in pressure boilers is inevitably associat-
ed with the presence of stress concentration, which is 
observed in the vicinity of the junction of the cylinder 
and the closing flat plate. Paper discusses the effec-
tiveness of other designs for flat ends used in pressure 
vessels and suggests some modifications. [9] presents 
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the experimental and numerical analyses of the pres-
sure vessels with different flat ends. The behaviour 
under low and high pressures and the influence of the 
residual welding stresses, material properties, and ge-
ometrical tolerances on the level of plastic deforma-
tion in the flat end is discussed. [10] considers two op-
timisation problems regarding the search for optimal 
shapes and thicknesses of cylindrical closed vessels 
made of homogeneous and isotropic materials. The 
region of the junction of ellipsoidal and cylindrical 
shells is subject to stress concentration, so the subject 
of the research analysis [11] is a stress concentration 
problem in a circular cylindrical vessel with ellipsoi-
dal heads. Researches [12-15] deal with a similar top-
ic and proposals for the appropriate optimal types of 
closure are given through ellipsoidal and torispherical 
cylinder heads.

The subject of the work [16] is a typical 
ground-based horizontal  cylindrical tank. The opti-
mal ratios of the basic dimensions for an assumed 
family of tanks of given capacities were determined. 
The aim of paper [17] is to find the optimum size of 
a ground based cylindrical liquid storage tank that is 
supported at both ends and the design considerations 
are stability and strength constraints. [18] presents 
a short survey of the optimal design of the pressure 
vessel and its head using a trigonometric series. [19] 
discusses shape optimisation of axisymmetric pres-
sure vessels considering an integrated approach in 
which the entire pressure vessel model is used in 
conjunction with a multi-objective function that aims 

to minimize the Von Mises mechanical stress from 
nozzle to head. [20, 21, 22] are devoted to stresses 
and their minimization, and [23] analysed ellipsoidal 
vessels of maximum volume under cyclic pressure. 
Two design criteria are given for uniform meridian 
and hoop membrane stresses. Optimal shapes are de-
rived analytically. Paper [24] is a review paper on 
the strength, stability, and optimisation of horizontal 
pipes under pressure.

2. VESSEL HEAD OPTIMISATION

Elastic, thin-walled, axisymmetric problems 
are considered. Pressure vessels for storage and 
transport usually have a limited length, and at the 
same time, the aim is to maximize the capacity of the 
structure. Therefore, from a practical point of view, 
the cylinder heads should have the smallest depth, to 
maximize the length of the cylindrical part. On the 
other hand, it is necessary to choose certain forms of 
closure so that the cylinder heads with the adopted 
depth achieve their maximum capacity.

Using numerical methods, Kruzelecki and 
Proszowski [13, 15] gave suggestions for optimal 
meridian shapes that minimize the design, satisfy the 
conditions of depth and capacity, and refer to heads 
of constant thickness that fulfilled appropriate ge-
ometric conditions. The authors focused on defining 
such profiles for which the state of bending in the 
entire structure is eliminated or minimized. Figure 1 
shows a two-arc dome with the following markings:
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The previously mentioned conditions of depth 
and capacity will be expressed through the function-
al F, where it is important to find its minimum value:

The functional F contains the depth b and the capaci-
ty V of the vessel end closure, while α  and δ  repre-
sent the weight coefficients satisfying the following 
condition 1α δ+ = .
The following relations will be used in the paper:

The corresponding geometric conditions are 
given by expressions (3) and (4):

For 0z >  it is assumed that the investigation is 
about convex shells for which the following is valid 

2

2 0d R
dz
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In the case of one-arc domes, it is also nec-
essary to fulfil the condition that the tangent to the 
curve at the point of connection with the axis of the 
cylinder is perpendicular to the axis of the cylinder:

The strength condition indicates that the 
equivalent stress (Huber-Mises-Hencky) in the entire 
cylinder head must not exceed the equivalent stress 
in the cylinder body and is expressed by the follow-
ing relation:

2.1 Two-arc domes

The curve C1 will be modelled using Bezier 
polynomials of 3rd and 5th degrees. Curve C2 repre-
sents a circular arc of radius 0R , whose centre on the 
z-axis is defined by the 0z  coordinate:

The smoothness of the curves at the joining 
point is of great importance.

Two-arc domes: Bezier polynomial of the 3rd 
degree

The shape ( )r ξ  represents the dimensionless 
meridian of the dome and curve C1 is defined as fol-
lows:

Where 0 1 2 3, , ,r r r r  are the coordinates of the control 
points, and ξ  is the dimensionless coordinate that 
includes the dimensionless depth β  and is within the 
limits of 0 1ξ≤ ≤ .

By fulfilling the geometric conditions, we get 
0 1 2 1r r r= = =  and only the coordinate 3r  remains as 

a free parameter for optimisation.
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defined as follows:
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By fulfilling the geometric conditions, we get 
0 1 2 1r r r= = =  and coordinates 3 4,r r  and 5r  remain 

as free parameters for optimisation.
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0 5...f f and 0 5...g g  are the coordinates of the control points, and t is a parameter in the following limits 0 1t  . 
For 0,t R a= =  and in case 1, 0t R= = . 
By fulfilling the geometric conditions, we get 0 4 5 0 1 20, 1, 1, 1, 1, 1f f f g g g= = = = = =  and 5 0g = . 
Other coordinates represent free parameters for optimisation. 
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2.2 One-arc domes

One-arc domes will be defined in two ways, 
using the so-called generalized ellipse and using 
the Bezier polynomial of the 5th degree. Since the 
curve C2 vanishes, it follows that ( )0 00 0b β= =  
and Mb b= , so the dimensionless depth is obtained 
as /b aβ = .

One-arc domes: Generalized ellipse
The generalized ellipse takes the form of:

and it is defined by three parameters, the exponents n 
and m, and the dimensionless depth which enters the 
form of the dimensionless coordinate ξ .

One-arc domes: Bezier polynomial of the 5th 
degree

In this case, the one-arc meridian is defined 
parametrically:
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for optimisation.

3. SUGGESTIONS FOR OPTIMISATION

Kruzelecki and Proszowski [13, 15] proposed 
suitable parameters for the mentioned forms of clo-
sure, according to weight coefficients ( )1, 0.5α α= =
. The proposals are presented in Tables 1 and 2.
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3. SUGGESTIONS FOR OPTIMISATION 
 

Kruzelecki and Proszowski [13, 15] proposed suitable parameters for the mentioned forms of closure, 
according to weight coefficients ( )1, 0.5 = = . The proposals are presented in Tables 1 and 2. 

 
Table 1. Proposals for parameters of one-arc domes [13, 15] 
Weight coefficient 1 =  0.5 =  
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Table 2. Proposals for parameters of two-arc domes [13, 15] 
Weight coefficients 1 =  0.5 =  

Bezier polynomial of the 3rd 
degree 

3 0.6596r =  
0.5516 =  

0 0.1668 =  

0 0.7184 + =  
0.7184F =  

3 0.7007r =  
0.6724 =  

0 0.2333 =  

0 0.9057 + =  
0.0269F = −  

Bezier polynomial of the 5th 
degree 

3 0.8988r =  

4 0.8263r =  

5 0.5452r =  
0.5466 =  

0 0.1023 =  

0 0.6489 + =  
0.6489F =  

3 0.9010r =  

4 0.9004r =  

5 0.5370r =  
0.7707 =  

0 0.1092 =  

0 0.8799 + =  
0.0383F = −  

 
For the displayed values of the corresponding parameters, with the condition of a common point M and 

a unique tangent to the curves C1 and C2 at the point M, the remaining parameters key to defining curve C2 
can be obtained (Table 3). 
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in Figures 2 and 3. 
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Figure 3. Two-arc profiles

Based on Figures 2 and 3, it can be seen that 
for higher values of the weighting coefficients, small-
er dome depths are obtained.
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The 1/8 of the closed cylinder is modelled in 

detail with 27500 4-node shell finite elements and 
27851 nodes. The average length of the sides of ele-
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ing boundary conditions and detailed mesh quality is 
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Figure 4. FEA model with boundary conditions

5. CALCULATION RESULTS

Figure 5 shows the results for the equivalent 
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Figure 6 shows the equivalent stress on the lower sur-
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mation using a generalized ellipse ( )1α = . For those 
surfaces, the equivalent stress reaches its maximum 
and minimum values per wall thickness. At any point 
in between, the equivalent stress will have a value 
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shows the equivalent stress on the lower surface of the elements in the case of meridian approximation using 
a generalized ellipse ( )1 = . For those surfaces, the equivalent stress reaches its maximum and minimum 
values per wall thickness. At any point in between, the equivalent stress will have a value between the specified 
minimum and maximum. 

 
Figure 5. Top Von Mises Stresses (generalized ellipse, α = 1) 

 
Figure 2. One-arc profiles 

 

 
Figure 3. Two-arc profiles 

 
Based on Figures 2 and 3, it can be seen that for higher values of the weighting coefficients, smaller 

dome depths are obtained. 
 
 

4. FEA MODELS 
 

For all calculation forms, pre-processing and post-processing of FEA models were performed in the 
Simcentar Femap software package. Structural analysis was conducted using NX Nastran software, which 
operates based on the finite element method. Linear static analysis was performed using the same material data 
with a Young's modulus ( )E  of 221000 kN/cm  and Poisson ratio ( )  of 0.3. Additionally, an internal 

pressure of 20.02 kN/cmp = was applied.  
The length of the modelled cylindrical part is 200 cm and the thickness of the wall of the entire structure 

is given as 0.4 cm = . Due to symmetry 1/8 of the closed cylinder was modelled with defined symmetry 
conditions as follows: 
for nodes with the coordinate 0y = , 0, 0, 0x zv  = = = , 
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The graphs in Figures 7 and 8 show the di-

mensionless equivalent stress 
eq
head

eq
cyl

σ
σ

 of the cylinder 

head at the outer and inner surface as a function of 
the dimensionless coordinate 1 /z aξ = .

for nodes with the coordinate 0x = , 0, 0, 0y zu  = = = , 
for nodes with the coordinate 200 cmz = − , 0, 0, 0x yw  = = = . 

The 1/8 of the closed cylinder is modelled in detail with 27500 4-node shell finite elements and 27851 
nodes. The average length of the sides of elements is about 1 mm. FEA model with corresponding boundary 
conditions and detailed mesh quality is shown in Figure 4. 
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minimum and maximum. 
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Figure 6. Bottom Von Mises Stresses (generalized ellipse, α = 1)
 

Figure 6. Bottom Von Mises Stresses (generalized ellipse, α = 1) 
 

The graphs in Figures 7 and 8 show the dimensionless equivalent stress 
eq
head

eq
cyl




 of the cylinder head at the outer 

and inner surface as a function of the dimensionless coordinate 1 /z a = . 

 
Figure 7. Dimensionless equivalent stresses in case of one-arc domes defined via generalized ellipse: a) α = 1,  

b) α = 0.5 and Bezier polynomial of the 5th degree: c) α = 1, d) α = 0.5 
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Figure 8. Dimensionless equivalent stresses in case of two-arc domes defined via Bezier polynomial of the 3rd degree:  
a) α = 1, b) α = 0.5, and Bezier polynomial of the 5th degree: c) α = 1, d) α = 0.5

 
Figure 6. Bottom Von Mises Stresses (generalized ellipse, α = 1) 
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Figure 8. Dimensionless equivalent stresses in case of two-arc domes defined via Bezier polynomial of the 3rd degree: 

a) α = 1, b) α = 0.5, and Bezier polynomial of the 5th degree: c) α = 1, d) α = 0.5 
 
 
6. CONCLUSIONS 

 
Based on the presented graphs (Figures 7 and 8), it can be concluded that the proposed meridian forms 

meet the strength requirements in all cases. Differences in the equivalent stresses on the inner and outer 
surfaces indicate a change in the value of the equivalent stress per wall thickness. At any other point in between, 
the value of the equivalent stress will be between those previously mentioned, one of which is minimum and 
the other one maximum. Namely, the difference in these values causes the bending of the dome. 

Domes with greater depths were obtained for lower values of the weight coefficients for both one-arc 
and two-arc meridional profiles. However, for those domes, better results were obtained regarding the 
functional (1). Also, Figures 7 and 8 indicate that the state of bending is minimized precisely for domes with 
a weight coefficient α = 0.5. 

When comparing one-arc and two-arc domes, lower values of criterion function (1) are obtained in the 
case of one-arc domes, so in terms of optimisation, can serve as a better solution. 
If a comparison is made between the meridians defined by the generalized ellipse and the meridians defined 
by the Bezier polynomial of the 5th degree, we can see that for the same values of the weighting coefficients, 
smaller depths and lower values of the criterion function (1) are obtained for the meridians defined by the 
Bezier polynomial of the 5th degree. 

In terms of eliminating bending, the best solution turned out to be the generalized ellipse for the value 
of the weight coefficient α = 0.5. 
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6. CONCLUSIONS

Based on the presented graphs (Figures 7 and 
8), it can be concluded that the proposed meridian 
forms meet the strength requirements in all cases. 
Differences in the equivalent stresses on the inner 
and outer surfaces indicate a change in the value of 
the equivalent stress per wall thickness. At any other 
point in between, the value of the equivalent stress 
will be between those previously mentioned, one 
of which is minimum and the other one maximum. 
Namely, the difference in these values causes the 
bending of the dome.

Domes with greater depths were obtained for 
lower values of the weight coefficients for both one-
arc and two-arc meridional profiles. However, for 
those domes, better results were obtained regarding 
the functional (1). Also, Figures 7 and 8 indicate 
that the state of bending is minimized precisely for 
domes with a weight coefficient α = 0.5.

When comparing one-arc and two-arc domes, 
lower values of criterion function (1) are obtained in 
the case of one-arc domes, so in terms of optimisa-
tion, can serve as a better solution.

If a comparison is made between the meridians 
defined by the generalized ellipse and the meridians 
defined by the Bezier polynomial of the 5th degree, 
we can see that for the same values of the weighting 
coefficients, smaller depths and lower values of the 
criterion function (1) are obtained for the meridians 
defined by the Bezier polynomial of the 5th degree.

In terms of eliminating bending, the best solu-
tion turned out to be the generalized ellipse for the 
value of the weight coefficient α = 0.5.
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STATIČKA ANALIZA OPTIMALNIH VIDOVA ZATVARANJA 
TANKOZIDNIH CILINDARA

Sažetak: Ovaj rad razmatra problem optimalnih vidova zatvaranja tankozidnih cilindara pod dejstvom 
unutrašnjeg pritiska. Cilj je da se analiziraju oblici srednje površi u slučaju jednolučnih i dvolučnih 
kupola. Optimalna rješenja minimiziraju dizajn, te zadovoljavaju geometrijske zahtjeve i uslove čvrstoće. 
U slučaju jednolučnih kupola, meridijalni profili su definisani generalizovanom elipsom i Bezijerovim 
polinomom 5. stepena, dok su u slučaju dvolučnih kupola definisani pomoću Bezijerovih polinoma 
3. i 5. stepena. Statička analiza je sprovedena primjenom konačnih elemenata kroz Simcentar Femap 
softverski paket. Uz osvrt na ekvivalentne napone i kriterijumske funkcije doneseni su odgovarajući 
zaključci.
Ključne riječi: Geometrijska optimizacija, posude pod pritiskom, unutrašnji pritisak.
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