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1.	INTRODUCTION IN CARBON 
NANOTUBES

Carbon nanotubes (CNTs), when discovered 
and produced by arc-discharged evaporation meth-
od [1] in 1991. were described as needle-like finite 
carbon structures. Using electron microscopy, it was 
found that each needle grown at the negative end of 
the electrode used for the arc discharged, contains 
coaxial tubes of graphitic sheets. The single wall 
carbon nanotubes (SWCNTs) are found as one of 
the carbon allotropes just like early predicted sta-
ble structure of fullerene [2, 3] and graphene, single 
layer of carbon atoms directly observed by electron 
microscopy [4]. Later, after the discovery of CNTs 

and the understanding of their atomic structure, they 
were modeled in a various manner to calculate and 
predict their physical properties as efficiently as pos-
sible. The simplest model is conceived as the bend-
ing of graphene into a cylinder along a vector that 
forms a chiral angle relative to the basis vector of 
the unit cell, having characteristic atomic structure 
that forms regularly arranged hexagons on the sur-
face of the cylinder, characterized by the chiral angle 
and the cylinder’s diameter. All the line groups given 
by [5] for all SWCNTs were identified, they allowe 
for the simple generation of models only from a sin-
gle atom. This is followed by efficient calculation of 
phonon and electronic bands, and consequently, the 
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derivation of physical phenomena and properties of 
nanotubes.

Carbon nanotubes exhibit remarkable physical 
properties, including mechanical, thermal, electrical 
and optical, that make them attractive for intensive 
theoretical and experimental investigation continu-
ously since their discovery [6]. For example, given 
in [7], tensile strength of individual multi wall car-
bon nanotubes measured in tensile load experiment, 
ranged from 11 to 63 GPa, while Young’s modulus 
of outermost layer varied from 270 to 950 GPa. Be-
sides, in accordance with specific elastic properties, 
very high thermal conductivity of SWCNT and MW-
CNT as well as in graphene was measured and found 
to be one of their most interesting properties. The ob-
served thermal conductivity is temperature depend-
ent with the peak at 320 K [8], and theoretically is 
predicted to be very sensitive to atomic carbon struc-
ture [9, 10]. Optical activity of SWCNTs was studied 
within the framework of symmetry application, and 
classification of possible optical devices explained 
by [11], as well as optical conductivity tensor along 
with electron energy loss function, allowed and peak 
position transition which are predicted in relation 
with quantum numbers are predicted and given in 
[12]. One of the first theoretical estimations of charge 
transport properties of CNT confirmed by [13], based 
on first- principles and self-consistent calculations, 
show their similarity with metals or zero band gap 
at room temperature and predict that their transport 
properties are most like quantum wires [14]. Ele
ctronic band structures of CNTs are found to tube 
dependent, often degenerated, but all these predicted 
with a help of applying their symmetry group. Rela-
tive to charge transport phenomena prediction, there 
is the need for full assignment of electronic bands. 
Complete set of quantum numbers consists of the an-
gular and linear quasi-momentum and parities with 
respect to the specific symmetry element like U axis 
or mirror planes, they are used to classify physical 
tensors, enabling their application through selection 
rules applications, discussed by [15, 16].

Charge fractionalization occurs as the most 
interesting manifestation in condensed matter phys-
ics, of which the earliest theoretical prediction was in 
the contents of relativistic theory given by [17]. An 
equivalent phenomenon in solid state was predicted 
in the Su Schriefer and Heeger (SSH) model [18], 
where the structure of polyacetylene was considered 
as 1D dimerized chain of electrons. In this model 

soliton with fractionalized quantum numbers occurs 
between the two dimerization states. Carbon nano-
tubes could be driven through a topological phase 
transition using either strain or a magnetic field, that 
lead to fractionalized charges with spatially inhomo-
geneous strain axial field [19]. These two types of 
fractional states occur between regions with different 
strains. 

Homogeneous deformations that preserve 
symmetry will be applied to localize charge periodi-
cally along the tube at different positions from mon-
omer the middle or ends. Berry phase is one of the 
most important quantities in topological band theo-
ry, related to smoothly modifying phase of electrons 
Bloch states with slow adiabatic evolution of param-
eters of the system.      

2.	MODEL OF SWCNTs AND THEIR 
ELECTRON BAND STRUCTURE 

Graphene possesses such a crystal structure 
that electrons through it can travel along sub-mi-
crometer distances without common scattering 
events. The electron structure of graphene is such 
that electron charge carriers behave like massless 
relativistic particles shown in [20, 21]. Electronic 
spectra of graphene sheet are useful for understand-
ing the important properties of electronic spectra of 
SWCNTs, since they are very sensitive to tube diam-
eter and wrapping angle [22].  

2.1.	Symmetry generated model of SWCNT 
and their deformation modeling  

Carbon nanotube models could imagine as 
graphene layer folded along chiral or wrapping 
vector c. This is the origin of one commonly used 
assignment  of SWCNTs with pairs of integers 

, that relate with chiral vectors 
 where  are layer lattice ba-

sis vectors. Chiral vector defines relevant geometri-
cal parameters, diameter  of nanotube and 
inclination angle  which strongly cor-
relates with electronic properties. According to the 
atom arrangement, they possess nontrivial symme-
try, depending on chirality described with the line 
group. Model of any SWCNT can be generated only 
from single carbon atom, called orbit representative 
with coordinates  by effecting 

line group generators 
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used to classify physical tensors, enabling their application through selection rules applications, discussed by 
[15, 16]. 
Charge fractionalization occurs as the most interesting manifestation in condensed matter physics, of which 
the earliest theoretical prediction was in the contents of relativistic theory given by [17]. An equivalent 
phenomenon in solid state was predicted in the Su Schriefer and Heeger (SSH) model [18], where the structure 
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quantum numbers occurs between the two dimerization states. Carbon nanotubes could be driven through a 
topological phase transition using either strain or a magnetic field, that lead to fractionalized charges with 
spatially inhomogeneous strain axial field [19]. These two types of fractional states occur between regions 
with different strains.  
Homogeneous deformations that preserve symmetry will be applied to localize charge periodically along the 
tube at different positions from monomer the middle or ends. Berry phase is one of the most important 
quantities in topological band theory, related to smoothly modifying phase of electrons Bloch states with slow 
adiabatic evolution of parameters of the system.       
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based on first- principles and self-consistent calculations, show their similarity with metals or zero band gap 
at room temperature and predict that their transport properties are most like quantum wires [14]. Electronic 
band structures of CNTs are found to tube dependent, often degenerated, but all these predicted with a help of 
applying their symmetry group. Relative to charge transport phenomena prediction, there is the need for full 
assignment of electronic bands. Complete set of quantum numbers consists of the angular and linear quasi-
momentum and parities with respect to the specific symmetry element like U axis or mirror planes, they are 
used to classify physical tensors, enabling their application through selection rules applications, discussed by 
[15, 16]. 
Charge fractionalization occurs as the most interesting manifestation in condensed matter physics, of which 
the earliest theoretical prediction was in the contents of relativistic theory given by [17]. An equivalent 
phenomenon in solid state was predicted in the Su Schriefer and Heeger (SSH) model [18], where the structure 
of polyacetylene was considered as 1D dimerized chain of electrons. In this model soliton with fractionalized 
quantum numbers occurs between the two dimerization states. Carbon nanotubes could be driven through a 
topological phase transition using either strain or a magnetic field, that lead to fractionalized charges with 
spatially inhomogeneous strain axial field [19]. These two types of fractional states occur between regions 
with different strains.  
Homogeneous deformations that preserve symmetry will be applied to localize charge periodically along the 
tube at different positions from monomer the middle or ends. Berry phase is one of the most important 
quantities in topological band theory, related to smoothly modifying phase of electrons Bloch states with slow 
adiabatic evolution of parameters of the system.       
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tube at different positions from monomer the middle or ends. Berry phase is one of the most important 
quantities in topological band theory, related to smoothly modifying phase of electrons Bloch states with slow 
adiabatic evolution of parameters of the system.       
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assignment of electronic bands. Complete set of quantum numbers consists of the angular and linear quasi-
momentum and parities with respect to the specific symmetry element like U axis or mirror planes, they are 
used to classify physical tensors, enabling their application through selection rules applications, discussed by 
[15, 16]. 
Charge fractionalization occurs as the most interesting manifestation in condensed matter physics, of which 
the earliest theoretical prediction was in the contents of relativistic theory given by [17]. An equivalent 
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of polyacetylene was considered as 1D dimerized chain of electrons. In this model soliton with fractionalized 
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spatially inhomogeneous strain axial field [19]. These two types of fractional states occur between regions 
with different strains.  
Homogeneous deformations that preserve symmetry will be applied to localize charge periodically along the 
tube at different positions from monomer the middle or ends. Berry phase is one of the most important 
quantities in topological band theory, related to smoothly modifying phase of electrons Bloch states with slow 
adiabatic evolution of parameters of the system.       
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Figure 1. Action of line group generators from the 5th family for chiral (6,3) SWCNT,  
where the blue atom is created from orbit representative (red). 
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oscillation. Coupling between deformations applied on various SWCNTs and their impact on electro-optical 
properties is theoretically investigated [25]. Homogeneous deformation is realized by changing all atoms from 
the tube in the same manner. It is achieved by changing line group parameters 𝑄𝑄, 𝑓𝑓 or NT diameter.  Radial 
deformation 𝐷𝐷′ = 𝐷𝐷(1 + 𝜖𝜖), which looks like radial breathing mode, is realized by changing the radius of all 
carbon atoms in the same way while symmetry is preserved.   
Deformations are directly related with group parameters. Continuous torsion for angle 𝜏𝜏 per unit length is 
modelled as action of screw axis elements by changing  
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are relaxed until minimum energy is reached, so continual deformations cause smooth continual change of 
geometrical parameters. Deformations intensities along with cylindrical coordinates of representative carbon 
atom 𝐶𝐶000 making continual changeable parameter space. For such a configuration electron band calculation 
is calculated.     
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2.2. Electron bands SWCNTs in relaxed and 
deformed configurations 

Electronic properties of CNTs correlate with 
their atomic structure. According to the conducting 
characteristics based on electronic band structure 
they are divided into metallic armchair, quasi-metal-
lic if   is divisible by 3 and  with a 
small narrow band gap mainly conducting at room 
temperature. Otherwise, they are semiconducting 
with an energy gap of the order of 0.5 eV, strongly 
dependent on tube diameter discussed in [26, 27].

Simplest framework of tight-binding spin-in-
dependent model is implemented to obtain electronic 
band structure. Quantum state space of electron is 
built from  orbitals, each one localized 
at carbon atom  perpendicular to the tube sur-
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face, could be imagine as generated from  by ac-
tion of line group. Used only  orbitals are obtained 
Hamiltonian and metric matrix elements, further 
used to construct their pulled down operators  
on symcell auxiliary space [28]. Considering this ap-
proximation is quite relevant for examined topolo-
gy characteristics, due to used orbitals create states 
around Fermi level, conductive for metallic as well 
as highest occupied (HOMO) in valence and lowest 
unoccupied (LUMO) in semiconducting NT. These 
relevant electron state spaces around Fermi level do 
not change significantly if rest orbitals are taken (into 

 bounds) and larger electron state space is con-
structed. With this reduction of state space acceler-
ation of calculations is achieved, without losing the 
quality of information.   
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pulled down operators 𝐻𝐻𝜇𝜇
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↓ on symcell auxiliary space [28]. Considering this approximation is quite relevant 

for examined topology characteristics, due to used orbitals create states around Fermi level, conductive for 
metallic as well as highest occupied (HOMO) in valence and lowest unoccupied (LUMO) in semiconducting 
NT. These relevant electron state spaces around Fermi level do not change significantly if rest orbitals are 
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Figure 2. Electronic band structure, in the middle of non-deform, up and down for twisted (8,4) SWCNT up to degree that valence 

and conduction bands are touching.   

Deformation is followed by changing the mutual distance of carbon atoms, that causes change overlap 
and Hamiltonian matrix elements. Related to the degree of deformation, the shape of electron bands is 
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Deformation is followed by changing the mu-
tual distance of carbon atoms, that causes change 
overlap and Hamiltonian matrix elements. Related 
to the degree of deformation, the shape of electron 
bands is changing. Those with different  could 
mix, since counterparts with same angular quantum 
number, filled below and unfilled above Fermi level, 
approach to each other forming direct disappearance 
gap like it is illustrated in Fig. 2. This cone-like shape 
of electron bands never touch and has important role 
in the occurrence of phase transition.     

3. TOPOLOGY 

Extend calculations of electron band structure 
is performed in approximation of single  orbital 
per carbon atom, allowing reduction of calculation 
for very large number of different CNTs deformed 
configuration. For certain type and various intensi-
ty of deformation using POLSym code [5] are ob-
tained electron bands with eigenvectors of each 
appropriate point from Brillouin zone applying 
the next algorithm. To the vectors of electron state 
are assigned helical quantum numbers  
where is helical quasi-momenta and 

is angular quantum number. Orthonor-
malized states are obtained by next relations firstly 
is found energy spectrum  from BZ and vector 
form reduced BZ at reference atom  by solving 
next eigen problem     

then, parts of vectors for each calculated state are 
partitioned on segments correspond to appropriate 
part from BZ.      

Further, vectors determined up to phase cor-
respond to all numerically obtained states, filled as 
well as unfiled are unpacked up to electron vectors, 
extended to columns whose components correspond 
to the atoms from the initial monomer . Apply-
ing deformation of SWCNT, the system is changed 
along with its geometrical parameters that is the rel-
ative position of the atoms, but also Hamiltonian and 
its spectrum with conducting characteristics including 
gap like shown on Fig.3, as well as eigenvectors too. 
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symmetry of 𝑈𝑈 axis values of Berry phase take quantized values 𝜗𝜗 ∈ {0, 𝜋𝜋}. Using relation between 𝜗𝜗 and 
centers of Wannier function 𝑧𝑧̅ within a unit cell  
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From previous observations can be concluded that electron in SWCNT or homogeneously deformed sitting at 
site when 𝜗𝜗 = 0 then 𝑧𝑧̅ = 0, or between two neighbor sites where for 𝜗𝜗 = 𝜋𝜋 Wannier orbital is located at 𝑧𝑧̅ =
𝑓𝑓/2.  
Continual deformation causes smooth change in parametric space of Hamiltonian matrix elements, and 
energies too, along with the components of electronic eigenvectors. These changes occur slow enough to 
characterize the process as adiabatic. 
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formed sitting at site when  then , or be-
tween two neighbor sites where for  Wannier 
orbital is located at  

Continual deformation causes smooth change 
in parametric space of Hamiltonian matrix elements, 
and energies too, along with the components of 
electronic eigenvectors. These changes occur slow 
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Change of Berry phase occurs when valence 
and conduction bands with the same angular quan-
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Due to the non-crossing rule, they never cross or 
touch each other, that is the direct gap during these 
processes never closes. Conducted states from bands 
with opposite angular quantum numbers  and  
simultaneously approaches their filled valence coun-
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4. CONCLUSION

During the closed path in parametric space 
Berry phase is unchanged, in which the system is 
returned to the original states preserving symmetry 
cycling along the path. Thanks to symmetrical defor-
mations of the single wall carbon nanotube, Berry 
phase takes characteristic values, which correspond 
to the position of the electron at middle or at the ends 
of the CNT monomer. Given example of Berry phase 
change of deformed chiral CNT show that, based on 
physical interpretation of applying continual homo-
geneous deformation, it is possible to achieve revers-
ible, but controllable shift of electron with appropri-
ate quantum numbers along the tube for the length of 
the monomer.
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МЕХАНИЧКЕ ДЕФОРМАЦИЈЕ УГЉЕНИЧНИХ НАНОТУБА  
ПРАЋЕНЕ ЛОКАЛНИМ ПОМЕРАЊЕМ ЕЛЕКТРОНА

Сажетак: Због своје атомске структуре и геометрије, моделирање угљеничних нанотуба могуће 
је коришћењем једног репрезентативног атома применом симетријских трансформација. Такође, 
симетрија се може искористити за редуковање времена прорачуна како електронских бендова 
тако и широког спектра релевантних физичких својстава. Хомогена механичка деформација, 
која одржава симетрију, узрокује репараметризацију Хамилтонијана, што даље утиче на проме-
ну енергетских бендова. За полупроводне угљеничне нанотубе, током деформације најзначајније 
промене се дешавају око Фермијевог нивоа, где су у процес укључени проводни и валентни поја-
севи са истим ангуларним квантним бројем. Деформације могу варирати све док се зоне не при-
ближе једна другој. Унутар Брилуенове зоне при хомогеној деформацији електронске зоне се увек 
приближавају у две симетричне тачке у односу на гама тачку, уколико је симетрија угљеничне 
наноцеви очувана. У складу са правилом искључења, валентна и проводна стања се никада не 
секу ако имају све квантне бројеве исте, чак и у тренутку када попримају облик конуса приликом 
промене Беријеве фазе, што се интерпретира као промена позиције два електрона. При скоку 
Беријеве фазе електрони истовремено тунелују из тренутне у суседну позицију унутар мономера, 
са једног атома на место између атома или обратно, упркос томе што је нанотуба полупроводна.
Кључне речи: угљеничне нанобуте, симетрија, бери фаза, деформације. 
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