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1. INTRODUCTION

A major earthquake is typically followed by 
smaller tremors known as “aftershocks.” Several 
methods exist to describe aftershock dynamics. One 
common approach is the Gutenberg-Richter relation 
[1]. In this model, it is proposed that the number of 
earthquakes of magnitude M or greater N (M), is giv-
en as: 

logN (M) = a – bM,� (1)

where a and b are two constants. The parameter val-
ues are determined experimentally and depend on 
the regions where earthquakes occur. For instance, 
the value of the constant b ranges between 0.7 and 
1. Another approach known as Omori’s law links 
the time elapsed since the main shock to the number 
of aftershocks per unit time, n(t) [2-5]: 

n(t)     t–p� (2)~~

To avoid divergence at t=0, Omori’s law is re-
written as: 
n(t) = K (t + t) –p ,                                                             (3)

where K and t are constants. In order to obtain the 
number of aftershocks N (t) after the main shock, the 
previous equation is integrated in the interval from 
0 to t [6]. In addition to the previously mentioned 
models that describe the behavior of the system after 
a large impact, numerous other studies address the 
same topic. It is particularly interesting that the phys-
ics used to describe the occurrence of earthquakes 
and the number of aftershocks following the main 
shock can also be applied to other disciplines, such 
as economics, specifically in stock market analysis 
[5-9]. We can apply the model presented in this paper 
to the prediction of aftershocks in the earthquakes 
and the stock market with change in the value of 
stock indices after financial crises. 
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2. METHOD

We associate parameters of non-conventional 
force acting on a point in data space with the time 
series xk (k = 1,2,3,...) representing daily values of a 
particular stock index if we investigate stock market 
in a given year, or values of vertical acceleration in 
earthquakes.

We define nk = xk – xk-1 for  
k = n + j, n = 2,3,4, ...12; j = 0,1,2,...

Then, Sj =       ∑12� (4)

and by solving ten equations (3 < n < 12) of the form 
nk – nk–1 = a (xk – Sj) + a2 (xk – Sj)2 + a3 (xk – Sj)3 
+ bvk + w + ∑6    ci cos � (5)

We obtain ten force parameters:
a, a2, a3, b, w, c2, c3, c4, c5, c6.

The relationship (5) represents the Newton Sec-
ond Law. If  xk is the coordinate of a particle with unit 
mass, the right side of the relationship (5) represents the 
conventional force acting on the particle. We calculate 
the correlations of force parameters and the determi-
nant of the correlation matrix. After considering a large 
number of examples, we will formulate a rule that links 
specific values of this determinant with future declines 
in the stock market index or vertical acceleration.

The correlation matrix of force parameter 
pairs is a 9 by 9 matrix where correlations are on the 
diagonal and above the diagonal, while symbols be-
low the diagonal are not relevant. The force param-
eters are associated with a time series of stock index 
values over the course of one year (the length of this 
time series is approximately 250). 

In the first row of the matrix, the correlations 
are between a and a2 , a and a3,… a and c6 . In the 
second row, the correlations are between a2 and a3,   
a2 and b, …, a2  and c6 .

In the ninth row, the correlation are between 
c5 and c6. When we want calculate determinat of the 
matrix we take condition
x = a2x = a3x = bx = wx = c2x = c3x = c4x = c5x = 1

3. RESULTS

3.1. Artificial matrices

For a more thorough understanding of the 
depicted model, artificial matrices were generat-
ed, and the determinants’ values were subsequently 

1––12 n=1 xn+j

i=2
6.25k
i

scrutinized and commented upon. The level of sto-
chasticity is determined by the amount of correlation 
and the regularity of matrix elements. In the case of 
moderate stochasticity, it is moderate the amount of 
determinant, which announces a decline. Let us look 
at three examples (Tables 1-3).

Table 1. An example of a matrix with  
a high level of stochasticity

0.48 0.12 0.14 0.06 0.17 0.15 -0.49 -0.12 -0.34
a2x -0.19 -0.18 0.28 -0.14 -0.17 0.12 0.39 0.43
a3x x -0.38 -0.11 -0.45 0.17 0.15 0.01 -0.06
bx x x -0.21 0.37 -0.32 -0.08 -0.19 0.32
wx x x x 0.14 0.09 0.12 0.17 -0.48
c2x x x x x -0.11 0.14 -0.16 0.18
c3x x x x x x -0.13 0.18 -0.36
c4x x x x x x x -0.50 -0.39
c5x x x x x x x x -0.49

In this case value of determinant is -3.23 and 
correlations are in interval from 0 to – 0.5. 

Table 2. An example of a matrix with moderate  
level of stochasticity

0.58 0.62 0.64 0.66 0.77 0.55 -0.69 -0.52 -0.78

a2x -0.69 -0.53 -0.73 0.51 -0.57 0.72 0.69 0.63

a3x x 0.71 -0.79 -0.51 0.70 0.69 0.61 -0.76

bx x x -0.71 0.72 -0.62 -0.58 -0.59 -0.72

wx x x x 0.58 0.55 0.62 0.67 -0.48

c2x x x x x -0.71 0.54 -0.76 0.18

c3x x x x x x -0.53 -0.64 -0.56

c4x x x x x x x -0.50 0.52

c5x x x x x x x x -0.74

In this case value of determinant is -0.16 and 
correlations are in interval from 0.5 to – 0.8. The 
eighth and ninth columns in the determinant are 
roughly proportional.

Table 3. An example of a matrix with  
a low level of stochasticity

0.87 0.87 -0.89 0.86 0.87 0.85 -0.99 0.82 -0.81
a2x 0.99 -0.85 -0.83 -0.84 -0.97 0.82 0.89 -0.88
a3x x 0.95 -0.89 -0.91 0.90 0.89 0.83 -0.82
bx x x 0.98 0.97 -0.87 -0.94 -0.88 -0.87
wx x x x 0.96 -0.95 0.92 0.86 -0.85
c2x x x x x -0.94 0.86 0.94 -0.93
c3x x x x x x -0.83 0.94 -0.93
c4x x x x x x x 0.83 0.18
c5x x x x x x x x -0.99
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In this case value of determinant is -10-10 and 
correlations are in interval from 0.8-1. The first and 
second and eighth and ninth columns in the determi-
nant are roughly proportional. 

We can now formulate the rule: If the deter-
minant of the correlation matrix is between 0.10 and 
0.72, a downturn is likely to occur. A moderate de-
terminant value of the correlation matrix (0.10-0.72) 
corresponds to a moderate level of stochasticity. In 
the case of a high level of stochasticity, there is no 
bubble inflation nor strong government interven-
tion. In the case of a moderate level of stochasticity, 

a bubble inflates but there is no strong government 
intervention.

3.2. Earthquakes

Japanese seismologist Omori discovered the 
first law of earthquake physics [5-6]. It is seems to be 
an additional correlation between stock market crash-
es and earthquakes, alongside Omori’s Law. Now let 
us examine the results obtained using the method pre-
sented here for three earthquakes: Kobe 1995 (Table 
4.), Van 2011 (Table 5.) and Encino 2014 (Table 6). 

time interval det. value trend
1-250 from -10 045 to 11 252 0.17

251-500 from -5415 to 12036 -0.29 up-up
501-750 from -8116 to 11194 0.04 down-down
751-1000 from -7733 to 14597 -0.02 up-down
1001-1250 from -7673 to 10151 0.27 up-down
1251-1500 from -10258 to 13567 10-5 down-up
1501-1750 from -11289 to 27920 0.004 down-up
1751-2000 from -28860 to 42428 -0.02 down-up
2001-2250 from -34522 to 38691 -0.0005 down-down
2251-2550 from -19894 to 25791 -0.0005 down-up
2501-2750 from -12369 to 18402 -0.76 down-up
2751-3000 from -9148 to 11794 -0.02 down-up

Table 4. Earthquake Kobe 1995

Table 5. Earthquake Van 2011 

time interval det. value trend
1-200 from 0.009 to 0.01 0.0003

201-400 from 0.012 to 0.015 0
401-600 from 0.015to 0.018 0.04
601-800 from 0.018 to 0.020 -0.003
801-1000 from 0.020 to 0.021 2.9
1001-1200 from 0.021 to 0.022 0.13 prediction
1465-1664 from 0.020 to 0.021 0.002
1665-1864 from 0.018 to 0.022 -0.16 prediction
1865-2064 from -0.03 to 0.04 -0.01
2065-2264 from -0.01 to -0.03 -0.006
2265-2464 from -0.2 to -0.004 0.55 prediction
2465-2664 from -0.4 to -0.1 0.01
2665-2864 from -0.3 to 0.1 0.02
2865-3064 from -0.2 to 0.2 -0.01
3065-3264 from -0.1 to 0.2 -0.18 prediction
3265-3464 from 0.05 to 0.4 -0.0002
3465-3664 from -0.07 to 0.2 -0.008
3665-3864 from -0.1 to 0.1 -0.0002
3865-4064 from -0.4 to 0.1 0.17 prediction
4065-4264 from -0.2 to 0.1 0.30 prediction
4265-4464 from -0.2 to 0.1 -0.06
4465-4664 from 0.06 to 1.2 0.0005
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In the second column of Table 5, the interval 
represents the vertical acceleration measured by seis-
mographs at the University of Tasmania during the 
Kobe earthquake in 1995. The unit of time is 0.01 
seconds. The note ‘up-down’ in the fourth column of 
the table indicates that the lower limit of acceleration 
increased while the upper limit decreased compared 
to the previous period. The increase in amplitude 
(down-up) in the sixth, seventh, and eighth rows in 
Table 5 is predicted by moderate determinant values 
(0.17, -0.29, and 0.27; first, second, and fifth rows). 
From the first to the eighth row in Table 6 an ampli-
tude order of magnitude is 0.001. In the ninth row, 
there is a sudden increase in amplitude predicted in 
the sixth row. The eleventh row shows the increase 
predicted in the eighth row. A new increase occurs in 
the thirteenth row, predicted in the eleventh row. In 
the nineteenth row, the amplitude is 2.5 times larger 
than in the previous one (predicted in the fifteenth 
row). The largest amplitude (last row of Table 6) is 
predicted in the nineteenth and twentieth rows. We 
have the same case in Table 7, where the amplitude 
growth is predicted in the fourth row.

4. CONCLUSION

This part of the research highlights an addi-
tional correlation between stock market crashes and 
earthquakes, building on Omori’s Law, the first law 
of earthquake physics. The results of the analysis of 
three earthquakes—Kobe 1995, Van 2011, and Enci-
no 2014—demonstrate that changes in the amplitude 
of vertical acceleration can be predicted based on 
moderate determinant values. This analysis suggests 
that certain patterns in amplitude, such as sudden 
increases, may be associated with specific determi-
nants, opening up possibilities for further research 
on predicting natural and market events using math-
ematical models.
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АНАЛИЗА КОРЕЛАЦИЈА ПАРАМЕТАРА СИЛЕ  
ПРИДРУЖЕНИХ ВРЕМЕНСКИМ НИЗОВИМА

Сажетак: У комплексном систему, детерминизам без хаоса, детерминизам са хаосом и стоха
стика су испреплетени, што отежава предвиђање понашања таквог система. У овом моделу, вре-
менске серије података су повезане са временски зависним параметрима силе користећи Њутнов 
други закон. Корелације између ових параметара силе се рачунају, а затим се креира матрица 
корелација, те се рачунају вриједности детерминанти матрице корелација. Разматра се зависност 
између вриједности детерминанти и предвиђања понашања комплексног система. Ова врста гру-
бог модела за предвиђање може бити корисна за проучавање земљотреса, кретања на берзама и 
берзанским индексима, као и за предвиђање осцилација дневних и мјесечних температура.
Кључне ријечи: Други Њутнов закон, матрица корелација, комплексни системи.
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