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1. INTRODUCTION  
 
Ferroelectrics is a special class of condensed 

matter physics which has a broad application in dif-
ferent technologies such as computing, sensor, 
display, thermal image technology etc. In computing 
technology, it has an important role in memory devi-
ce and quantum capacitor etc. Due to switching pro-
cess and other physical constants of crystal-like local 
mode frequency, electric polarisation, micro wave 
absorption, quality factor, acoustic mode frequency, 
relaxation time, electric resistivity, differentiability, 
IR sensitivity etc., these properties may be used 
directly or indirectly in computing technology. The 
first mention of the idea of ferroelectrics FETs was 
in US patent of Ross (1957) and the first realization 
was by Moll and Tarui (1963) while the first attempt 
to fabricate one ferroelectric on silicon was by Wu 
(1974). Early ferroelectrics FETs utilized gate of the 
lithium niobate (Rice University; Rabson et al 1995) 
or BaMgF4 (Westinghouse, Sinharoy et al 
1991,92,93). An example of ferroelectrics FET devi-
ce was fabricated by Mathews et al (1997). The 
optimum parameters for such a ferroelectrics-gate 
material are extremely different from those for pass-
gate-switched capacitor arrays, in particular, the 
latter require a remanent polarisation (~ 10 µC/cm2), 
whereas the ferroelectric-gated FETs can function 
well with 50 times less (̴ 0.2 µC/cm2). However, the 
switching array (FRAMs) is very tolerant of surface 
traps in the ferroelectric (which may be 1020 cm-3) in 
the interface region near electrodes. 

1.1. Crystal Study 
 

Triglycine Sulphate (TGS) Crystal was a first 
crystal to be discovered of all (NH2CH2COOH)3 

H2SO4 type crystals in 1956 by Matthias et al [1]. 
TGS crystal exhibits a phase transition at 490 C from 
ferroelectric phase to paraelectric phase which 
means polar to non-polar form. Triglycine Sulphate 
(TGS) crystal is a monoclinic type crystal with space 
group points 2m and 2 which disappears after phase 
transition. In Triglycine Sulphate (TGS) crystal, 
there are three different glycine ions with plane mir-
ror symmetry. This plane mirror symmetry produces 
a double potential well barrier in the crystal and this 
potential barrier condition is solved by quantum 
mechanics. Thus we came to know about pseudo 
spin character of proton between two adjacent poten-
tial wells. Some authors have previously carried out 
study of ferroelectric Triglycine sulphate crystal [2–
4]. Its deuterated form is deuterated triglycine sulp-
hate crystal whose phase transition is 333.89 K 
while other behaviour in terms of physics is similar. 
Crystal growths and its characteristics with doped 
condition were studied by Batra et al [5]. DTGS is a 
successful high sensitive detector type used as infra-
red spectrometers which is used to take measure-
ments in the mid-infrared (mid IR) range. Domain 
structure of DTGS crystal has been investigated by 
Drozhdin et al [6]. J. Bjorkstam et al [7] have shown 
a phase transition in deuterated triglycine sulphate 
crystal by deuteron nuclear-magnetic-resonance 
method. Ferroelectric properties of different solid 
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solution of DTGS crystal with different concentra-
tion were studied by B. Brezina et al [8]. Optical 
properties of deuterated triglycine sulphate have 

been investigated by O. S. Kushnir et al [9]. Dielec-
tric properties of DTGS were proposed by A. Cam-
nasio and J. A. Gonzalo et al [10]. 

 
 

        
Figure 1. Lattice structure of triglycine sulphate (left) [5] and mirror symmetry in triglycine sulphate crystal which 

develop a double potential well barrier in the crystal lattices which trapped a hydrogen bond in its either well. 
 

 
Figure 2. Anharmonic interaction between different lattices of hydrogen bonded ferroelectric crystals. 

 
 

We know about domain structure of ferroelec-
tric crystal which may be helpful in memory device. 
The domain of the crystal is uniaxial, optically 
distinguished, safe reversible field domain, and the 
convenient temperature region make it suitable for 
non-volatile memory device. We have determined 
that quasi-stable spike-like domains structure in 
external electric field domain change into regular 
hexagons domain well are parallel to the facets pul-
led along the polar axis. The field dependent 
sideways motion or velocity of these domains is 
approximately or parallel to the crystal facets. We 
use this condition in our paper to make a good non-
volatile memory structure of crystals and this is pos-
sible by one method only, which is real time regi-
stration of domain pattern during switching by using 
electron or optical microscopy. This can be done by 
measuring the transient current. For memory devices 
crystal film should be prepared for which polarisa-
tion should be any stable thermo-dynamical condi-
tion. 

It should allow switching between two states 
with a character of hysteresis loop. So on the bases 
of these properties of crystals we can form a ferroe-
lectric capacitor which can store information. This is 
not sufficient for making a non-volatile computer 
memory.  

A pass-gate transistor is required so that a vol-
tage above the coercive voltage is only applied to the 
capacitor when voltage is applied to both of the 
word and bit line; how electronics information can 
be stored in electric polarisation state of ferroelectric 
materials is a fairly obvious issue, however the reali-
zation is not straight forward; the initial barrier in 
development of ferroelectric memory necessary to 
make them very thin because the coercive voltage of 
ferroelectric materials are typically of the order of 
several kV/cm requiring submicron thick film to 
make that work on the voltage scale required for 
computing ( all Si device work at ≤ 5 V) with today 
depositions techniques. This is no longer a problem 
and high density arrays of non-volatile ferroelectrics 
memories are commercially available. However 
reliability remains an issue, a ferroelectric capacitor 
while capable of storing information is not computa-
tional electronic structure theory has increase 
dramatically giving us new understanding of 
ferroelectricity.  If the capacitor being read is in 
different state, the difference in current will be quite 
large where the displacement current associated with 
for the differences. If capacitor does not switch, it is 
already in reference state. The difference in current 
capacitor being read and reference Capacitor is zero. 
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2. CRYSTAL THEORY 
                
2.1. Inhomogeneous Theory 
 
We consider the Inhomogeneous solution for 

crystal of hydrogen bonded crystal  
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This Green’s function satisfies the equation of 
motion 
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involves and in-homogenous terms and higher-order 
Green’s function. One of the problems of this met-
hod is to decouple the higher-order Green’s function 
and ω choose appropriate Green’s function so that a 
closed system of equation is obtained. 

In addition we have shown that the poles of 
the Green function correspond to the energies of the 
elementary excitation of the system. The average 
value of the product of two operators can be calcula-
ted from the formula. 
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The parameter η may be arbitrarily chosen as 

+1 or -1. If z
iS1  and z

jS1  are bose operators, η is 

generally chosen as +1 and if they are Fermi opera-
tors, η is chosen to be -1. Sometimes, however, the 
reverse choice becomes necessary. In the problem of 
DTGS (Deuterated triglycine Sulphate) crystal, 
where one deals with spin operators, it would be 
convenient to chose η = +. However, it turns out that 
Green’s function for system has a zero frequency 
pole. Under these consideration, in the calculation 
for which η = +1, it cannot be used. Since the inte-
gral becomes divergent (efforts to circumvent this 
problem by the addition of vanishingly small pertur-
bation terms were unsuccessful) on therefore has to 
resort to fermion Green’s function i.e. with η = –1, 
to treat the pseudo spin problem. 
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The above equation can be closed by decoupling the 
higher order Green’s functions. The two decoupling 
procedure. 

In decoupling of pseudospin, one assumes that  
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Then the above equation of decoupling beco-
mes as, if f = g 
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where <<+│- >>, << -│- >>, << z│- >> are aberra-
tion of notation for  

ff SS  etc. 

The secular determinant for the system is 
given by  

22( p  ) 

where, 
2

122
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From the above mentioned equation 

]2)()[
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spontaneous polarization in deuterated triglycine 
Sulphate crystal is 
Ps=2Nμ<sz>                                                 

In two dimensional form of pseudospin in z-
directional sum is not zero before TC (Curie tempera-
ture, T < TC):  
S1

Z + S1
Z ≠ 0 and  S1

Z ≠ S1
Z ,    

but after Curie temperature (T > TC) total spontane-
ous polarization becomes zero: 
S1

Z + S1
Z = 0. 

Especially for DTGS crystal (ferroelectric) 
both spins become zero. 
S1

Z = S1
Z = 0; 

For Deuterated triglycine sulphate crystal (ferroelec-
tric crystal) at phase transition, while S1

Z ; S1
Z > 0; 
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but PS → 0 not exactly zero (for second order phase 
transition).             
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Differentiated twice GF(2) first with respect 
to time (t) and then with respect to time (t') using 
model Hamiltonian (Eq.1) taking Fourier trans-
formation and setting it into Dyson's equation from 
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The second term of Eq. (6) contains higher 
order Green's functions which are decoupled by 
using scheme <abcd> = <ab><cd> + <ac><bd> 
+ <ad><bc>. Then simpler inhomogeneous functi-
ons are solved in the zeroth order approximation i.e. 
higher order terms are neglected from )(P type 

terms. In Eq.(8) )(
~~ P  is resolved into its real and 

imaginary parts using formula     
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These are obtained as follows. 
Spin shift is       

 

   22

222

22

22

22

22

4

~
2

4
~

2

~
4

~
2

)(





















aEaNV

cba

kik

s

                                 (9)  

   
 














 


 






22
2

22

22
1

2

4
~~

~~2

kkk

kkkk
x
iik

ps

iSV                 (10) 

Spin width is                
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In Eq.(10) and (12) k
~~ is renormalized phonon 

frequency and )(k  is phonon width in the 
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which are obtained as 
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Phonon shift is given as  
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And, phonon width is given as  
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The Green' function (2) finally becomes  
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In Eq.(18) second term is evaluated using 
mean field approximation i.e. 
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J* is renormalized exchange interaction constant. 
 
2.2. Crystal energy 
 

Hamiltonian of hydrogen bonded ferroelectric 
crystal can be calculated by pseudo vibration [11–
17] and Ising spin [16] model with Inhomogeneous 
function theory of ferroelectrics extended with third 
and fourth order phonon anharmonic interaction 
terms and electric field terms 
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Where, in Eq.(27) above   is proton tunnel-
ling frequency, Sz and Sx are components of pseudo-
spin variable  Jij is interaction between the same 
lattices and Kij is interaction between different latti-
ces.   is dipole moment of O–H–O bond, E is 
external electric field, V is spin lattice interaction 
and Ak and Bk are position and momentum operators  

k  is harmonic phonon frequency V(3) and V(4) are 

third and fourth  order atomic force constant15. 
 
2.3. Dielectric Constant 
 
The response of a dielectric crystal to the 

external electric field is expressed dielectric 
susceptibility   given as   

   iXGN ijX    2lim
02                      (28) 

The    is related to dielectric constant as  

 41                                                          (29) 
With the help of Eq.(25) and (26) one obtains 

the expression for dielectric constant as  
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  >>1 in the ferroelectric crystal.  
 
2.4. Microwave Absorption 
 
The power lost in dielectric when exposed to 

electromagnetic field is conveniently shown as die-
lectric microwave absorption which is expressed as   






tan                                                             (31) 

By using Eq. (30) and (31) we obtain 
expression for loss tangent as 
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2.5. Ultrasonic Reflection 
 

The acoustic attenuation is given as    
 

 

                                                              (33) 

where    is width and   is sound velocity.   
2.6. Ratio of Figure of Merits 
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We know that dielectric permittivity can be 
written as 

  i                                                          (34) 
where    is real part of permittivity,    imaginary 
part of permittivity and magnitude of this complex 
number will be 
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Solve  eq.(35) and eq.(31) we have 
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in IR detection we can write the figure of merit can 
be written as 
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2.7. Quality-Factor 
 

Q–Factor = 1/tanδ 
where tanδ = tangent loss. 

 
  2.8. Electric Conductivity 
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where,   = electric conductivity 
              = phonon frequency. 

 
2.9. Relaxation Time (Minimum) 
 

Relaxation time (minimum) is, 
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2.10. Differentiability  
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3. CALCULATION 
 
We have derived different relations for diffe-

rent physical constants used from different literatu-
res as given below in table 1 and table 2.   
 

Table 1. Crystal constants of deuterated triglycine sulphate crystal. 

Ω (cm-1) J (cm-1) K (cm-1) Vk (cm-3/2) Tc (K) C (K) μ (1018esu) ħω (cm-1) 

0.01 470 0 15 333.86 4873.16 2.3 1.92 

 
Table 2. Calculated values of <S1

x>,  <S2
x>,  <S1

z>, <S2
z> for deuterated triglycine sulphate crystal. 

T(K) <S1
x> <S2

x> <S1
z> <S2

z> 

285 0.0003 – 0.08598    0.0134 – 0.0156 

297 0.00051 – 0.08596    0.0118 – 0.0171 

309 0.00052 – 0.0713   0.0083 – 0.0193

321 0.00054 – 0.0398    0.0071 – 0.0206 

333 0.000568 – 0.004956    0    0 

345 0.000513 – 0.00138    0    0 

357 0.000512 – 0.0009101    0    0 

369 0.000511 – 0.000601    0    0 

381 0.000510 – 0.000342    0    0 

393 0.000509 – 0.000521    0    0 
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4. RESULTS  
 
We have calculated results, which are given in the form of temperature gradient form in Figures 3-15 

by using physical constant from table no. 1 and 2.  
 

 
Figure 3. Temperature dependence of soft mode frequency of deuterated triglycine sulphate crystal. 

 

 
Figure 4. Temperature and electric field dependence of lattice frequency shift of deuterated triglycine sulphate crystal. 

 

 
Figure 5. Temperature and electric field dependence of lattice frequency width of deuterated triglycine sulphate crystal.  
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Figure 6. Temperature and electric field dependence of dielectric constant of deuterated triglycine sulphate crystal. 

(matched with experimental result  Bye et al [18])  
 

 
Figure 7. Temperature and electric field dependence of loss tangent of deuterated triglycine sulphate crystal. (matched 

with experimental result of Hills and Ichiki et al [19]) 
 

 
Figure 8. Temperature and electric field dependence of quality factor of deuterated triglycine sulphate crystal. 

(matched with experimental result of  Hills and Ichiki et al [19])  
 
 



A. Nautiyal, T.C. Upadhyav, Role of acoustic mode vibration and optical mode vibration in  ...  
Contemporary Materials, III1 (2012)                                                                                                             Page 46 of 50 

 

 
 Figure 9. Temperature and electric field dependence of acoustic attenuation of deuterated triglycine sulphate crystal. 

(matched with experimental result of Shreekumar et al [20]  
 

 
Figure 10. Temperature and electric field dependence of electric conductivity of deuterated triglycine sulphate crystal. 

(matched with experimental result of  Gaffers et al [21]) 
 

 
Figure 11. Temperature and electric field dependence of smooth function of deuterated triglycine sulphate crystal.  
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Figure 12. Temperature and electric field dependence of relaxation time of deuterated triglycine sulphate crystal 

(matched with experimental result of Drozhdin et al [6–9, 21–23] 
 

 
Figure 13. Temperature and electric field dependence of ratio of figure of merits (M2/M1) of deuterated triglycine 

sulphate crystal. (matched with experimental result of Banan et al [23] and Kushnir et al [9]) 
 

 
Figure 14. Temperature and electric field dependence of ratio of figure of merits (M3/M2) of deuterated triglycine 

sulphate crystal. (matched with experimental result of Banan et al [23] and Kushnir et al [9])  
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Figure 15. Temperature and electric field dependence of figure of merits (M3/M1) of deuterated triglycine sulphate 

crystal. (matched with experimental result of Banan et al [23] and Kushnir et al [9]) 
 
 
4. DISCUSSION 
 
In this paper we have modified pseudo 

vibration theory by adding third and fourth order 
phonon anharmonic interaction terms in two sublat-
tice modes for deuterated triglycine sulphate 
(DTGS) crystal. Using model values given by Cha-
udhuri et al [14,15], temperature dependence of 
shift, width of soft mode frequency, dielectric con-
stant, loss tangent, quality factor, electric 
conductivity, smooth function, relaxation time and 
ratio of figure of merits have been obtained for deu-
terated triglycine sulphate crystal. Previous resear-
chers [14,15,17] have not considered phonon 
anharmonic interactions, or two sublattice model and 
even not in a convincing way as they have decou-
pled the correlations at an early stage. As a result, 
some important interactions disappeared from their 
calculations. The width and shift of the present cal-
culation reduce to the results of Chuoudhari et al. 
Previous researchers have not calculated the effect 
of electric field on soft mode frequency, dielectric 
constant, tangent loss, attenuation, quality factor, 
electric conductivity, smooth function, relaxation 
time and ratio of figure of merits of the crystal. All 
our calculated results are in good agreement with the 
experimental data. Thus, the study of deuterated 
triglycine sulphate crystal and their isomorphous 
forms can also be done in a similar way. The loss 
can be explained as the following, “A transverse 
radiation field derives the low lying transverse mode 
of the material in a forced vibration. Energy is tran-
sferred from the electromagnetic field to this lattice 
mode and is then degraded into other vibrational 
modes of the material. Due to anharmonic phonon 
interactions, decay processes take place, for 

example, third order interaction leads to the decay of 
a virtual phonon in the real phonons or the virtual 
phonon may be destroyed by scattering a thermal 
excited phonon”. A ferroelectric field effect transi-
stor in which a ferroelectric is used in place of metal 
gate on a field effect transistor would both decrease 
the main size of memory cell and provide nano 
structure read out; however, no commercial product 
has yet been developed as well as the application of 
random ferroelectrics memory (FRAMs). Ferroelec-
trics materials have a potential use in dynamics ran-
dom access memory (DPAMs) because of their high 
dielectric constant in the vicinity of ferroelectrics 
phase transition (Kingon, Maria, and Streiffer 2000). 
The leading computing technology in the long term 
for non-volatile computer includes FRAMs and 
magnetic access memory (MRAM). The main disa-
dvantage of the above mentioned devices are 
accompanied by a write operation leading to faster 
degradation of the device. As a result much of the 
ferroelectric FET research has employed buffer 
layers, for example the first BaMnF4 FET made at 
symetrix (Scott 1998) used buffer layers for 40 nm 
of SiO2, subsequently studies often used PZT (Scott 
1998). Although the large remanent polarization in 
the case (̴ 40 µC/cm2) is actually undesirable for a 
ferroelectrics FET gate. The direct contact of the 
ferroelectric on to Si produces a semiconductor jun-
ction that is quite different from the metal-dielectric 
interface the Schottky barrier height and for this case 
have been calculated by Peacock and Robertson 
(2002). It is also observed that stress widens the 
domain with compressive stress while a-stress widen 
domains with the c-stress the opposite tendency 
meanwhile the b-stress effect caused by AFM tip 
derive the domain switching towards the polar axis. 
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5. CONCLUSION 
 
As conclusion we can say that deuterated 

triglycine sulphate crystal is conditionally a 
satisfactory crystal for memory devices, display 
devices and other pyroelectric devices. 
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УЛОГА АКУСТИЧНИХ И ОПТИЧКИХ ВИБРАЦИОНИХ МОДА 
У ТЕХНОЛОГИЈАМА ФЕРОЕЛЕКТРИЧНОГ КРИСТАЛА 
(КРИСТАЛ ДЕУТЕРИСАНОГ ТРИГЛИЦИН-СУЛФАТА)  

 
Сажетак: Модификована теорија Гринове функције са теоријом псеудовибра-

ција фероелектрике примијењена је на кристал деутерисаног триглицин-сулфата како 
би се предвидјеле примјене фероелектричног кристала у компјутерској технологији.   

Кључне ријечи: фазни пријелаз, квантна стања, пребацивање.  
 

 

 


