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Abstract: A pressurized functionally-graded cylinder is considered made of the ma-
terial whose elastic moduli vary with the radial distance according to the power-law relation.
Some peculiar features of the mechanical response are noted for an incompressible func-
tionally-graded material with the power of radial inhomogeneity equal to two. In particular, it
is shown that the maximum shear stress is constant throughout the cylinder, while the dis-
placement changes proportional to 1/r along the radial distance. No displacement takes place
at all under equal pressures applied at both boundaries.
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1. INTRODUCTION

The effects of radial inhomogeneity of ma-
terial on the mechanical response in thick-walled
cylinders under different loading conditions have
been studied by many researchers. The rep-
resentative references include [1-9]. Unusual cha-
racteristics of the response associated with even a
small degree of radial nonuniformity have been
discussed, such as the stress amplification due to
enhanced material stiffness, or the stress shielding
due to softening of material near a hole. These stu-
dies are of importance for the mechanics of compo-
site materials, processing of the functionally-graded
materials, wood industry, etc.

In this paper we consider a pressurized func-
tionally-graded cylinder made of the material whose
elastic moduli vary with the radial distance according
to the power-law relation. The mechanical response
is evaluated for compressible and incompressible
functionally-graded materials. Some distinct features
of stress response are noted in the case of the material
with the quadratic-type radial inhomogeneity. It is
shown that in this case the maximum shear stress is
constant throughout an incompressible cylinder,
while the displacement changes proportional to 1/r
along the radial distance. The displacement in the
cylinder vanishes identically under equal pressures
applied at both boundaries. The presented analysis
can be extended to other types of boundary condi
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tions, which correspond to prescribed displacements
at both boundaries, or mixed boundary conditions,
along the lines presented in [10].

2. FUNCTIONALLY-GRADED CYLINDER

We consider a long hollow cylinder under
plane strain conditions, made of isotropic material
which is functionally-graded (nonuniform) in the
radial direction so that its elastic shear modulus va-
ries according to the power-law relation

u(r)=u”(5) . (1)
b

The exponent m is a positive or a negative real
number, reflecting the degree of nonuniformity of the
material, and 4” is the shear modulus at the outer
boundary » = b. If m > 0, the elastic stiffness
increases outward from the inner (» = a) to the outer
(r = b) radius of the cylinder, while it decreases for
m < 0. The shear moduli at the two boundaries are
related by u“ =c”u”, where ¢ = a/b is the aspect
ratio of the hollow cylinder. Generally speaking, for
m > 0 there is a tendency for stress shielding, and for
m < 0 for stress amplification. Other types of non-
uniformity can be considered, such as the exponential
variation [5]. The stress-strain relations for infinite-
simally small elastic deformations are
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The coefficient of lateral contraction v is as-
sumed to be independent of r, which simplifies the
mathematical aspects of the analysis [7-9]. As a
consequence, the Young's modulus of elasticity also
varies according to the power-law relation [1,3,9]

E(r)= Eb(%j CEP =2(1+v)u’. 3)

3. GOVERNING DIFFERENTIAL
EQUATIONS

If uniform pressure is applied at two bounda-
ries, the circumferential component of displacement
is zero, and the radial component u# depends on the
radial distance r only. Correspondingly, the stress
components ¢, and g are also r-dependent only. In
the absence of body force, the equilibrium equation is

[11]

do. o -0
e (4)
dr 7
The strain-displacement relations are &, = du/dr, and

eo = u/r, with the corresponding Saint-Venant com-
patibility condition
de, &, —¢

L —2=0. )

dr r

By the standard procedure it follows that the radial
stress is governed by the second-order differential
equation

d’c do, 1-2v

2 .

r'o—>r+3-mp—=—- o, =0. 6

dr2 ( ) d}" 1 Y 7 ( )
The general solution of this equation is

o, =Ar" +Br ™. (7

the integration constants are 4 and B, and the expo-
nents n; and n, are

1 4vm v
nlzz—(?_—mis), s={4-———+m’ | . (8)
T2 I-v
The circumferential stress readily follows from (4)
and is given by
o, =(=n)Ar™ +(1-n,)Br. )

The displacement can be conveniently deduced
from the circumferential strain ¢y as u = rgy. By

substituting (7) and (9) into the second of (2), the
circumferential strain is found to be

&y = 2; [bj (nlAr +7723r""2l (10)
with the parameters

n=1-20-(1-v)n,

1, =1-20—(1-v)n,. (11)
Therefore, the radial displacement is

u= 2bﬂb (771Ar " +n,Br" ) (12)
where

m =m+n —1, my=m+n,—1. (13)

For auniform material (m = 0), the parameters are
n; = 0,7’[2:2,7}’11 = —I,andmg = 1.

4. BOUNDARY CONDITIONS

If the uniform pressures p and ¢ are applied at
the inner and outer boundary, the boundary condi-
tions are o,(a) = —p and 6,(b) = —q. The integration
constants in (7) are then

A= pc” f]me pc"
1-¢° 1-¢™°

P~ dpm (14)

so that the radial and hoop stresses can be expressed
as

pc” —q(b pc —-q(b
Y . 15
o.(r) o (r) o (rj , (15

n o _ b m no_ b ny
O e I

1- r l1-c r

(16)

The corresponding radial displacement is

b pc —q(b\" pc" —q(b\"
= = + =1 |
u(r) 2" {771 1-¢* [rj & 1-¢c™ \r

17)

5. INCOMPRESSIBLE FUNCTIONAL-
LY-GRADED CYLINDER

If the considered functionally-graded material
is also elastically incompressible (v = 1/2), then
s =|2 — m|. For example, if m < 2 there follows:
n=0,n=2—mm;=m—1,my,=1,n; =0, and
n, = (m — 2)/2. Consequently, in this case,
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and

u(r)= 4flb (m —2)

—. (20)
r
If m = 1, the hoop stress oy is uniform throughout the
cylinder.

5.1. Incompressible material with m =2

For this particular type of the material (v =1/2

and m = 2), the governing differential equation for the
radial stress is, from (6),

2
2do, 4o, _y, @1)
dr dr

which has the solution

o (r)=L"Lml L |-q. (22)
Inc b

The corresponding hoop stress is

oy(r)= uln(zj 4, (23)
Inc b

where e is the Naperian base of the natural logarithm.
The magnitude of the maximum shear stress is
constant throughout the cylinder and equals to

T = o, ~00] __lp=dl, (24)
2 2Inc
The hoop strain is
g-p (bY
=—| — 25
£,(r) 4ﬂ,,1nc(r], (25)

so that the displacement varies with the radial dis-
tance according to

qg-p b
ulr)= e, ()=
In particular, if equal pressures are applied at both
boundaries (p = ¢), no displacement takes place in the
cylinder made of this particular functionally-graded
incompressible material. For a thin-walled cylinder,
with the thickness 6 = b — a « b, the approximation
In ¢ = — 8/b can be used. For a very thick cylinder
(b » a), In ¢ —o which gives rise to stress amplifi-
cation.

(26)

6. CONCLUSION

We have presented an analysis of elastic re-
sponse of a pressurized hollow cylinder whose stiff-
ness is nonuniform in the radial direction according
to the power law relationship u(r) = 1’ (v/b)", where b
is the outer radius of the cylinder. The stress com-
ponents are expressed as linear combinations of two
power functions of the radial coordinate », whose
exponents #; and n, depend on the Poisson ratio v and
the nonuniformity parameter m. The corresponding
exponents in the displacement expression m; and m;,
also depend on v and m only. Some distinct features
of mechanical response are noted for incompressible
functionally-graded material with the quadratic de-
pendence of the elastic stiffness on the radial dis-
tance. It is shown that the maximum shear stress is
constant throughout the cylinder, while the dis-
placement decreases as b”/r. No displacement takes
place under equal pressures applied at both bounda-
ries. The obtained results may be of interest for the
optimization of material properties of functionally-
graded materials.
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TOR

O MEXAHUYKOM OAI'OBOPY ®YHKIIMOHAJIHO I'PAJJUJEHTHOTI
MUJIMHAPA ITOA ITPUTUCKOM

Ca:xkerak: Pa3marpa ce QyHKIMOHANTHO TPaIWjeHTHH LWIMHAAP TOJ MPUTHCKOM
YHUjH MOAYJIH €TaCTUYHOCTH BapHUpPajy ca pairjaJHOM yIaJbeHOCTH II0 CTENEeHO) (HyHKIH)H.
YoueHe cy Heke crel(prIHEe KapaKTepPUCTUKE MEXaHWYKOT [TOHAIIAHha HEKOMITPECHOMITHOT
(YHKIIMOHAIHO T'PaIjE€HTHOT MaTepujalia YijH je CTEIeH paujaiHe HEXOMOT€HOCTH jeIHAK
nBa. [TokasaHo je 1a je MaKCUMaJIHH HAIIOH CMHLaka KOHCTaHTaH y I1jeJI0oM HWIHHAPY, 10K
j€ ToMjepame MPOMOPIMOHAIHO ca 1/r y3ayx paaujanHor mnpasia. [ToMjepame je jeaHako
HYJIM y IMjEJIOM LWIMHAPY KaJa ce Ha HEroBY YHYTpallby W CHOJbAlliky MOBPILIMHY

NPUMH]jEHH jeTHAKH IPUTHCAK.
Kibyuyne pujeun: enacTH4HOCT,

(hyHKIMOHATTHO

TPaIijeHTHH  MaTepHjall,

HECTUIIJbUBOCT, HUJIMHAAD IO MNPUTUCKOM, paz[I/IjanHa HCXOMOT'CHOCT, aMHHI/I(i)I/IKaHI/Ija

HaItoHa.



