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Abstract: Magnetic properties of spin %2 Ji-J, quantum Heisenberg antiferromagnet
on body centered cubic lattice are investigated in the paper. By using two-time temperature
Green's functions, sublattice magnetization and critical temperature depending on the fru-
stration ratio J,/ J; are obtained in both stripe and Neel phase. The analysis of ground state
sublattice magnetization and internal energy indicates the first order phase transition from
Neel to stripe phase for 0.7<J,/ J1< 0.8, which is in agreement with previous studies.
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1. INTRODUCTION

Frustrated spin systems [1] represent a dy-
namic area of condensed matter physics, offering
possibilities for theoretical as well as experimental
research. As a rule, competing interactions yield rich
phase diagram and spectrum of elementary excita-
tions [2] and such structures are interesting by them-
selves. The most famous examples include J;-J; Is-
ing and Heisenberg models on a square lattice [3,2].
In both cases, the phase diagram displays strong de-
pendence on the frustration ratio
p = Jo/ Ji. For J,<< Jy, localized spins exhibit stan-
dard Neel-type of order, while for J,> J;/2 a new
phase, the so called stripe phase, emerges. A com-
mon feature of these 2D models is the equal number
of sublattices in Neel and stripe phase.

The discovery of high-temperature supercon-
ductors based on iron compounds [4,5] provided
additional stimulus and pointed on somewhat more
complicated models. The one considered in the
present paper is spin %2 Heisenberg antiferromagnet
on the body centered cubic (bcc) lattice with the
nearest and next-nearest neighbor interactions J; and
J». Its model Hamiltonian is compactly written as

H=JY5-S+J,).8,S,, (1)
(i) ((i.d))

where the first sum, <i, ]>, captures z,= & nearest
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neighbours, while the second one <<i, J>> picks up

z,= 6 next-nearest neighbors. The mean field calcu-

lation [6] indicates the existence of two phases, as
shown in Figure 1. The Neel phase (AF1) can be
described by a standard two-sublattice system as in
the case of 2D models, while the collinear phase
(AF2) can be properly described only with four sub-
lattices. The mean field theory also predicts
Pur =J,/J, =2/3as the critical value for the fru-

stration ratio [7].

More sophisticated approaches were also ap-
plied to the model defined in (1). Schmidt et al. [8]
performed exact diagonalization of finite 3D lattices
with periodic boundary conditions (for N >36) and
found the discontinuity in ground state energy at
J,/J, =0.693 indicating a first order quantum tran-

sition between two phases. This is confirmed by cal-
culation of the sublattice magnetization and extrapo-
lation to infinite lattice. Oitmaa and Zhang [7] per-
formed high-order linked-cluster expansion at
T =0K and concluded that two branches of ground
state energy for two phases cross for
J,/J, =0.705%0.005.

Finally, Majumdar and Datta [9] presented a
non-linear spin-wave theory (up to quartic terms in
Bose-operators) and found similar results. Majumdar
[10] also extended this problem to the antiferromag-
net on stacked square lattices with different ex-
change in vertical direction.
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The aim of this paper is to present the first
calculation within spin operator Green's functions
formalism. As described in Section 2, it allows one
to obtain all the quantities necessary for the analysis
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of phase transitions at 7= 0K . Finally, Section 3 is
devoted to the numerical analysis. Throughout the
paper ,,h.c.” denotes ,hermitian conjugate” and we

haveset i=kyz=1.
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Figure 1. Body-centered cubic lattice in a) Neel (AF1) and b) stripe (AF2) phase

2. RANDOM PHASE APPROXIMATION
FOR SPIN GREEN'S FUNCTIONS

We will now analyze the system for S'=1/2
using the formalism of two-time temperature depen-
dent Green's functions (GF) [11-16] the use of which
allowed us to calculate all necessary correlators. For
the application of GFs technique on Heisenberg
AFMs, see e.g. [17-19]. Retarded GF will be de-
fined as

G, (:6) = (4,018, 1)) = 0 - )[4, 0), B, )
2)
where O(t —t') denotes the Heaviside step function.

In our case operators Aand B will be the spin op-
erators located at a particular site n(m) belonging to
the sublattice & : S!(a)(i = x, y,z,+,—). Following

the standard procedure, we write down the equations

of motion for GFs. However, the infinite chain of
equations for GFs is produced in this manner. One
way of truncating the chain in the lowest order is to
apply the so-called Tyablikov's decoupling or Ran-
dom Phase Approximation (RPA) in the following
manner:

((8: @81 18,()) = (5:@){(S!(8) 18, ()
3)

where $* and S~ are standard spin rising and lo-

wering operators and operator B will be chosen in a
convenient way later (see [13,14] for more details).
Due to translational invariance within each of the

sublattices, <§: (a)> = o(ar) does not depend on site.

After decoupling, the system of equations for GFs
can be closed by performing spatial and temporal
Fourier-transform

(S:11B,)), = T [da=r)e((5,8.018,¢.1)) @

k,o

Here N is the total number of sites in the
sublattice, while the wave vector k& from reciprocal
lattice is restricted to the first Brillouin zone.

2.1. AF1 phase

We start with the Hamiltonian of the system
with two sublattices, @ and b :

3 1 [as S+ Sz Sz
A =0 3B @S el 81032, 00

n,A
J2 1 o+ o— oz oz
+ > Z{E [Sn (@S, (@) + h.c.]+ S, (@)S,,,, (a)} +(a > b)

)

Here n denotes the site in the given sublat-
tice. A, connects the given site to its z, (8) nearest

neighbours. A, connects each ion to its z, (6) next
nearest neighbours belonging to the same sublattice.
We have performed the rotation of the quantization
axis in one of the sublattices. Both exchange para-
meters (J,,/,)are assumed to be positive. The coef-

ficient 1/2 in front of J, takes care of the possible

double summing of the term within the same sublat-

tice. The distance between NNN will be denoted by

a (not to be confused with the index of a sublattice).
The first step will be to write the equations of

motion for two operators S (a), S L(b):
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;48 df“) oy Z(S @S5, B)+ S @5z, 1)+ 1,3 (8:@8, (@) - $! (@52, (@) ®)
A

i% ) (82008, @)+ $; 1)S2,, (@))- JQZ(S )5, (@)~ 5: (B)S2., (a) )

This enables us to write down the equations of  any suitably chosen spin operator.

motion for corresponding two GF, where l}m can be

E<<§;(a)|ém>>=i<[§;<a>,ém]>+tflﬂz(<<s (@8,.,®) B, ) +(($; @S, (b)\ﬁ’m») ®)
c (S8 @18.)) (8 @8 @18.))
E((S; 1)1 B,)) =5 (15, ).5,1)- JZ(((S ®)55, @1 8,))+ (505, @I8,)  ©
({580 018.))-(8:055.0)18.)

After performing RPA (3) and Fourier- transforms (4), one obtains:

(£~ 0) - 20000 + )o@ (S7 @1 B))  ~zo@n (S ®)18) = (5 @.5), (10

2do®{(8° @1 B), +[E+ (i 00)-2d0@ zo@n | (S @)18) = (5 618), a1

The geometrical factors introduced in (10) and  (11) are

ka k 1 : 1
Ze’“‘ =Cos 2a COSTCOS Za,yzk =—Ze’“z =§(coskxa+coskya+coskza) (12)

Zl A Zy 4

Due to the rotation, one can assume that sublattice magnetizations and then prove that they
o(a)=o(b)=0c . (Actually, one can calculate are equal.) Introducing the notation,

g =0(J,(0)=J,(0)+J,(k)).J,(0) = z,J ., J (k) = 2] .y ,i =1,2 (13)
the system (10) and (11) is rewritten as

- N A N i f[as A
(E-s)(3"@!8) ~w@f(S®18) -—(§w@.5), (14)

o, (k)<<§+ (@) é>>k,5 (Ete, )<<S o) B>>k’E - éds (b),l?]>k,5

Vanishing determinant of the system gives the 11 A (1 £
Green's functions poles (the positive one defining o=—-— <S‘S *> = (Zg]coth kj (17)
the magnon energy) 2 N% we 2\NFE, r
E,(k)y=2%E,, E, zzlJlo-\/[l_p(l_72k)]2_712k: p:% For T'=0K, we have

Z1J4 1
. . . . (15) o, = 11 1-p(- 72k) 2 (18)
so choosing B to be S, (b), one obtains GF N \/ —pU-p,) =72
G (k.E) = I o |E +¢ N E, —¢ (16) The internal energy of the system is obtained
27 E,| E-E, E+E, by using equations of motion (6) together with two

. additional equations corresponding to a < b. We

Now the spectral theorem [12] gives: multiply them with the suitable operators and com-
bine them with the identities valid for S =1/2. The

averaging of this expression yields the internal ener-
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gy in terms of correlation functions of only two op-
erators, in this way avoiding any decoupling proce-

A

n

——Z<Sn( )i d5+( 5@ | e > 42<S (b)i ds, t(b) c.>

n

(A )= ‘2 > (Si@sy, (b)+h.c.>+%;<§;(a)§m(a)+h.c.>+

dure [12].

% > (S8, (b) + he)

n’ZQ

(19)

(85 @+ S )+ 2 T (S5 @+ 55, )

n,A n,A,

Moving on to spatial and temporal Fourier

transforms, one can evaluate all necessary correla-

() o,

zJ\N Wy

2N

with o, defined by (18). These results will be ana-
lyzed further on.

27“[1 p(1- m)ﬁﬁz{wk—[l—p(l—y2k>]}—%(l—p)

tion functions, leading to

(20)
k

2.2 AF2 phase

The Hamiltonian of the system can be written
in the following form:

HAFz _JZ[S (a,) Sn+,1 (a4)+S (a,)- S,,Ma(as)J"'JzS (a,)- SM/ (a3)

n,A

+ Y 8,@) S, @)+ LY 8,(@)- S, @)+ 8,(@)5, . ()]

Al n.,

We are now dealing with four sublattices ( a,
to a,) and n implies the site of the corresponding
lattice. It is important to notice that while summation
over second neighbours (A4,) is the same as in the
previous section, there are two summations over the
nearest neighbours. Summation over A, covers the
following  four (a/2,al/2,al?2),
(—a/2,—al2,al?2), (-al/2,a/2,~al?2),
(a/2,-a/2,~a/2), while the summation over A/

neighbours

H,., JZ{ [Sn (a, )SM (a4)+h.c.]—§j(al)§:+

n,Ay

nﬂ{
1)

covers (—a/2,—a/2,-al?2), (al2,a/2,~al?),
(a/2,-al2,al2), (-al2,a/2,a/2). For this reason

we will define two Fourier transforms 7, and 7, .

Since both of them are complex numbers, they are
actually complex conjugate to each other. (Please

note that y, from the previous section is the sum of
these two, so it is a real number.)

The explicit expression which takes into ac-
count the rotation of quantization axes is

)

1 :
+JIZ{5 51 (@3, @) el $:@)87, (a3>}+J 2{ ;@8 @)+ hel-$i@s:, (%)}
n /1{ nA
1 + o— z
+J, 2{2 Sn (az)SM, (a,)+hec. ]+ S (a2)S i (a4)} (22)
n Z.]/
1 A+ o— AZ AZ
+ JzZ{ S (a, )SnﬂQ (a,)+h.c. ] S (a, )Sn+,12 (a,)+ 5 [Sn (613)Sn+,12 (a,)+ h.C.]— S, (a, )Snuq (a, )}
n.k
Writing down four equations of motion for GF:
(23)

G.=((8°@)18)) .G.=((S@)I8)) .G =((5@)IB) .G =(($@)lB))

invoking the RPA with equal average sublattice

magnetization o and performing the spatial Fourier
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- transforms, one can write the following set of eq- uations for GFs

* l o+ a
(E_6a]2)G1 _a]272kG2 _a]171kG3 _a]171kG4 = Z<[S (al )9B]>
* l o— a
o/,7,.G + (E+6O:/2 )Gz +al 7, Gy + o 1, Gy = E<[S (az)aB]> (24)
* l A a
—aJ,7,,G, - o,7,G, + (E - 607,)G, - 01,7,,G, = Z<[S (a3),B]>

* l o— -
o1,73G, + 0, 7,G, +01,7,Gy +(E +607,)G, = Z<[S (a4),B]>

This set leads to the following biquadratic eq- E*—2AE*+B=0 (25)

uation for magnon energies: .
with

"4202*]22(222 _7221()’B=04[J;(222 _722/()2 _J14(712k _71*1(2)2 _4J12J22 1671 = VsV |2]>Zl =4,z,=06 (26)
giving four magnon branches

E=+A- A4 -B,E,, =+J4+\4> - B.(27)

These can be also written as

2 2
J J
E, zajl\/(sz (Zzz _722k)+K,E3k =OZ]1\/(72J (Zz2 _722k)_K’ (28)

1 1

* J *
(Ey =—Ey, Ey=-Ey), K= \/(712k _711?)2 +4(J_2J 1671k = ViuV i |2
1
Choosing Green's functions for convenient tion in AF2 phase
operators, we can calculate the sublattice magnetiza-

- - -1

J, lzi 6K +121y, B _72k(712k+71*kz)coth&+6K_12|71k § +72k(7/12k+71*k2)coth& (29)

J N<K % 2T % 2T
(2] @-rer 2] @-ri-x
1 1

The internal energy (per lattice site) in AF2  final result is
phase is calculated as described in Section 2.1. The

<F[AF2> - % Z|:_2K|71k I +(7/12k —71*1{2)2 _12P2(712k +71*k2)72k +4p |70 |” 72

JN 4N%4 KK,

2K P = = +120°0 47 b =40 L P

K-K,
+ (712k _71*/3)2 +21 7y ‘2 (K+72p2)_12p2(712k +71*k2)72k
K-K,
Ui —ref 20 P (K =720 1200 + 72
K K,

L % zp%k 207 1 12 =6l + 732 )= 1K, =200, 1 + 6l + 72 )= 7K
INT K K, K,
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2
+ 203K, + K, ~12p]-6po,
N %

with o, defined by (29) and

2 2
J J
K1=\/[sz (222—;/22,{)+K,K3:\/[Jz] (Zzz_}’zzk)_K and
1 1

p=J,/J,.

3. RESULTS AND DISCUSSION

Numerical solutions of equations for sublat-
tice magnetization AF1 and AF2 phase are shown in
Figure 2 (See also [20]). As expected, the next-

AF1
phase

L
0.0 0.2 0.4 0.6 0.8 1.0
p= Jz/J]

a)

(30)

nearest neighbor coupling reduces the sublattice
magnetization in AF1 phase, eventually destroying
the long range order at p=J,/J, = 0.65. It is also

seen that the stripe long range order emerges at
p ~0.7. Since the magnon energies (in RPA) are

proportional to sublattice magnetization, our analy-
sis suggests that elementary excitations may not be
well defined around p = 0.7. However, GF method

(within RPA) alone cannot resolve whether or not a
transition from the Neel order to the spin-liquid state
occurs or the system directly passes to the stripe
phase.

=
S| AF1
I | phase
-1.8p
2.0
-2.2
0.0 0.2 0.4 0.6 0.8 1.0
p:Jz/Jl
b)

Figure 2. a) Ground state magnetization and b) internal energy of frustrated spin %> Heisenberg antiferromagnet on bcc
lattice. Dashed line (for p>0.65) denotes extrapolation.

Similar conclusions are drawn from the plot of
the ground state energy (see Figure 2). We see that
the transition from Neel to stripe order is predicted to
take place at p~0.8. This value is somewhat higher

than the one obtained from the analysis of the sublat-
tice magnetization and the Neel temperature [20].
Still, it is higher than the mean field result and quite
close to the values obtained by other methods (see
discussion in [20] and references therein).

Finally, it is safe to say that RPA GF method
yields results in agreement with nonlinear spin-wave
theory and linked cluster expansions. Its main ad-
vantage is direct applicability to the ground state
(T=0K) and higher temperatures (the vicinity of Neel
temperature) so that reliable results may be obtained
with a single set of parameters in wide temperature
range.
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TOR

YHYTPAIIBA EHEPTUJA XAJ3EHBEPI'OBOLI J;-J, AHTUGEPOMAT'HETA
CA CIITMHOM 1/2 HA 3ATIPEMMWHCKU HEHTPUPAHOJ KYBHOJ PELIETKU
Y AITPOKCUMAIINIU TJABJINKOBA

Caxerak: Y pajy cy MCTpa)keHa MarHeTHa CBOjCTBa KBaHTHOT Xaj3eHOeprosor Ji-
J, antudepomarsera ca cnmHOM 1/2 Ha 3aNpEeMUHCKH LEHTPUPAHO] KyOHO] PELIETKH.
Kopucrehn meron nBoBpemeHckux Temmeparypckux ['puHOBHX (yHKIMja, noOMjeHa je
3aBHCHOCT MarHeTH3allfje IIo/IpelIeTKe W KPUTHYHE TeMIepaType Oj IiapaMeTpa
dpyctpanmje J,/ J; kako y KoimHeapHOj, Tako U y HemoBoj da3u. AHanu3a MarHeTusamnuje
MOJIPEIIETKE Y OCHOBHOM CTamy, Ka0 M YHYTpallikhe €Hepruje, ykasyjy Ha (azHu mperna3
npBor pena u3 Henose y konmmHeapHy ¢a3zy 3a 0.7<J,/ J;< 0.8, mTo je y CKIIaay ca paHujuM

HCTpaXXNBamkbHUMa.

Kbyune peum: XajszenGeproB Ji-J, anTudepomarHer, yHyTpaiima eHepruja,
Hernosa u konmneapHa aza, anpokcumanuja Tjadbmukosa.

(C22:9)



