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Abstract: Magnetic properties of spin ½ J1-J2 quantum Heisenberg antiferromagnet 
on body centered cubic lattice are investigated in the paper. By using two-time temperature 
Green's functions, sublattice magnetization and critical temperature depending on the fru-
stration ratio J2/ J1 are obtained in both stripe and Neel phase. The analysis of ground state 
sublattice magnetization and internal energy indicates the first order phase transition from 
Neel to stripe phase for  0.7< J2/ J1< 0.8, which is in agreement with previous studies. 
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1. INTRODUCTION  
 
Frustrated spin systems [1] represent a dy-

namic area of condensed matter physics, offering 
possibilities for theoretical as well as experimental 
research. As a rule, competing interactions yield rich 
phase diagram and spectrum of elementary excita-
tions [2] and such structures are interesting by them-
selves. The most famous examples include J1-J2 Is-
ing and Heisenberg models on a square lattice [3,2]. 
In both cases, the phase diagram displays strong de-
pendence on the frustration ratio  
p = J2/ J1. For J2á J1, localized spins exhibit stan-
dard Neel-type of order, while for J2> J1/2 a new 
phase, the so called stripe phase, emerges. A com-
mon feature of these 2D models is the equal number 
of sublattices in Neel and stripe phase. 

The discovery of high-temperature supercon-
ductors based on iron compounds [4,5] provided 
additional stimulus and pointed on somewhat more 
complicated models. The one considered in the 
present paper is spin ½ Heisenberg antiferromagnet 
on the body centered cubic (bcc) lattice with the 
nearest and next-nearest neighbor interactions J1 and 
J2. Its model Hamiltonian is compactly written as 

 
ji

ji
ji

ji SSJSSJH
,

2
,

1
ˆ ,                         (1) 

where the first sum, ji, , captures 1z = 8 nearest 

neighbours, while the second one ji,  picks up 

2z = 6 next-nearest neighbors. The mean field calcu-
lation [6] indicates the existence of two phases, as 
shown in Figure 1. The Neel phase (AF1) can be 
described by a standard two-sublattice system as in 
the case of 2D models, while the collinear phase 
(AF2) can be properly described only with four sub-
lattices. The mean field theory also predicts 

3/2/ 12MF  JJp as the critical value for the fru-
stration ratio [7]. 

More sophisticated approaches were also ap-
plied to the model defined in (1). Schmidt et al. [8] 
performed exact diagonalization of finite 3D lattices 
with periodic boundary conditions (for 36N ) and 
found the discontinuity in ground state energy at 

693.0/ 12 JJ  indicating a first order quantum tran-
sition between two phases. This is confirmed by cal-
culation of the sublattice magnetization and extrapo-
lation to infinite lattice. Oitmaa and Zhang [7] per-
formed high-order linked-cluster expansion at 

KT 0 and concluded that two branches of ground 
state energy for two phases cross for 

005.0705.0/ 12 JJ .  
Finally, Majumdar and Datta [9] presented a 

non-linear spin-wave theory (up to quartic terms in 
Bose-operators) and found similar results. Majumdar 
[10] also extended this problem to the antiferromag-
net on stacked square lattices with different ex-
change in vertical direction. 
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The aim of this paper is to present the first 
calculation within spin operator Green's functions  
formalism. As described in Section 2, it allows one 
to obtain all the quantities necessary for the analysis 

of phase transitions at KT 0 . Finally, Section 3 is 
devoted to the numerical analysis. Throughout the 
paper „h.c.” denotes „hermitian conjugate” and we 
have set 1B  k .  

 

a)

a1

a2

b)

a1

a3a4

a2

Figure 1. Body-centered cubic lattice in a) Neel (AF1) and b) stripe (AF2) phase 
 

 
2. RANDOM PHASE APPROXIMATION 

FOR SPIN GREEN'S FUNCTIONS  
 
We will now analyze the system for 2/1S  

using the formalism of two-time temperature depen-
dent Green's functions (GF) [11-16] the use of which 
allowed us to calculate all necessary correlators. For 
the application of GFs technique on Heisenberg 
AFMs, see e.g. [17-19].  Retarded GF will be de-
fined as 

])'(ˆ),(ˆ[)'()'(ˆ|)(ˆ)',(, tBtAtttBtAttG mnmnmn  

                                                                    (2) 

where )'( tt   denotes the Heaviside step function. 

In our case operators Â and B̂  will be the spin op-
erators located at a particular site )(mn  belonging to 

the sublattice  : ).,,,,()(  zyxiS i
n   Following 

the standard procedure, we write down the equations 

of motion for GFs. However, the infinite chain of 
equations for GFs is produced in this manner. One 
way of truncating the chain in the lowest order is to 
apply the so-called Tyablikov's decoupling or Ran-
dom Phase Approximation (RPA) in the following 
manner: 
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where Ŝ  and Ŝ  are standard spin rising and lo-

wering operators and operator B̂  will be chosen in a 
convenient way later (see [13,14] for more details). 
Due to translational invariance within each of the 
sublattices, )()(ˆ  z

nS  does not depend on site. 

After decoupling, the system of equations for GFs 
can be closed by performing spatial and temporal 
Fourier-transform 
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Here N  is the total number of sites in the 
sublattice, while the wave vector k  from reciprocal 
lattice is restricted to the first Brillouin zone.  

 
2.1. AF1 phase  
 
We start with the Hamiltonian of the system 

with two sublattices, a  and b :  
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(5) 

Here n  denotes the site in the given sublat-
tice. 1 connects the given site to its 1z (8) nearest 

neighbours. 2  connects each ion to its 2z  (6) next 
nearest neighbours belonging to the same sublattice. 
We have performed the rotation of the quantization 
axis in one of the sublattices. Both exchange para-
meters ),( 21 JJ are assumed to be positive. The coef-

ficient 1/2 in front of 2J  takes care of the possible 
double summing of the term within the same sublat-
tice. The distance between NNN will be denoted by 
a (not to be confused with the index of a sublattice). 

The first step will be to write the equations of 

motion for two operators )(ˆ),(ˆ bSaS nn
 : 
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This enables us to write down the equations of 

motion for corresponding two GF, where mB̂  can be 

any suitably chosen spin operator. 
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After performing RPA (3) and Fourier- transforms (4), one obtains: 
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The geometrical factors introduced in (10) and (11) are 
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Due to the rotation, one can assume that 
  )()( ba . (Actually, one can calculate 

sublattice magnetizations and then prove that they 
are equal.) Introducing the notation, 

  2,1,)(,)0(,)()0()0( 2211  iJzkJJzJkJJJ ikiiiiii                                                         (13) 

the system (10) and (11) is rewritten as  
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Vanishing determinant of the system gives the 
Green's functions poles (the positive one defining 
the magnon energy)  
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so choosing B̂  to be )(ˆ bSn
 , one obtains GF  
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Now the spectral theorem [12] gives:  
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For KT 0 , we have  
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The internal energy of the system is obtained 
by using equations of motion (6) together with two 
additional equations corresponding to ba  . We 
multiply them with the suitable operators and com-
bine  them with the identities valid for 2/1S . The 
averaging of this expression yields the internal ener-
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gy in terms of correlation functions of only two op-
erators, in this way avoiding any decoupling proce-

dure [12]. 
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Moving on to spatial and temporal Fourier 

transforms, one can evaluate all necessary correla-
tion functions, leading to 
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with 0  defined by (18). These results will be ana-

lyzed further on. 

2.2 AF2 phase 
 
The Hamiltonian of the system can be written 

in the following form: 
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We are now dealing with four sublattices ( 1a  

to 4a ) and n  implies the site of the corresponding 
lattice. It is important to notice that while summation 
over second neighbours ( 2 ) is the same as in the 
previous section, there are two summations over the 
nearest neighbours. Summation over 1  covers the 

following four neighbours ),2/,2/,2/( aaa  

),2/,2/,2/( aaa  ),2/,2/,2/( aaa 

)2/,2/,2/( aaa  , while the summation over f
1  

covers ),2/,2/,2/( aaa   ),2/,2/,2/( aaa   

),2/,2/,2/( aaa   ).2/,2/,2/( aaa  For this reason 

we will define two Fourier transforms k
~ and 

k
~ . 

Since both of them are complex numbers, they are 
actually complex conjugate to each other. (Please 
note that k  from the previous section is the sum of 

these two, so it is a real number.) 
The explicit expression which takes into ac-

count the rotation of quantization axes is 
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Writing down four equations of motion for GF:  
   (23) 

 
 

invoking the RPA with equal average sublattice magnetization   and performing the spatial Fourier 

EkEkEkEk
BaSGBaSGBaSGBaSG

,
44

,
33

,
22

,
11

ˆ|)(ˆ,ˆ|)(ˆ,ˆ|)(ˆ,ˆ|)(ˆ  



Darko Kapor, et al., Internal energy of Heisenberg spin-1/2 J1 - J2 anatiferromagnet on the body-centered-cubic ... 
Contemporary Materials, V−2 (2014)                                                                                                          Page 194 of 196 

 

 

- transforms, one can write the following set of eq- uations for GFs  
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This set leads to the following biquadratic eq-

uation for magnon energies: 
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giving four magnon branches  
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These can be also written as 
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Choosing Green's functions for convenient 

operators, we can calculate the sublattice magnetiza-
tion in AF2 phase  
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The internal energy (per lattice site) in AF2 
phase is calculated as described in Section 2.1. The 

final result is 
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with 0  defined by (29) and 
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3. RESULTS AND DISCUSSION 
 
Numerical solutions of equations for sublat-

tice magnetization AF1 and AF2 phase are shown in 
Figure 2 (See also [20]). As expected, the next-

nearest neighbor coupling reduces the sublattice 
magnetization in AF1 phase, eventually destroying 
the long range order at 65.0/ 12  JJp . It is also 
seen that the stripe long range order emerges at 

7.0p . Since the magnon energies (in RPA) are 
proportional to sublattice magnetization, our analy-
sis suggests that elementary excitations may not be 
well defined around 7.0p . However, GF method 
(within RPA) alone cannot resolve whether or not a 
transition from the Neel order to the spin-liquid state 
occurs or the system directly passes to the stripe 
phase.  

 

a) b)

-2.2

-2.0

-1.8

-1.2

-1.0

H
J
 N

[

[-1

 
Figure 2. a) Ground state magnetization and b) internal energy of frustrated spin ½ Heisenberg antiferromagnet on bcc 

lattice. Dashed line (for p>0.65) denotes extrapolation. 
 
 

Similar conclusions are drawn from the plot of 
the ground state energy (see Figure 2). We see that 
the transition from Neel to stripe order is predicted to 
take place at 8.0p . This value is somewhat higher 
than the one obtained from the analysis of the sublat-
tice magnetization and the Neel temperature [20]. 
Still, it is higher than the mean field result and quite 
close to the values obtained by other methods (see 
discussion in [20] and references therein). 

Finally, it is safe to say that RPA GF method 
yields results in agreement with nonlinear spin-wave 
theory and linked cluster expansions. Its main ad-
vantage is direct applicability to the ground state 
(T=0K) and higher temperatures (the vicinity of Neel 
temperature) so that reliable results may be obtained 
with a single set of parameters in wide temperature 
range. 
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УНУТРАШЊА ЕНЕРГИЈА ХАЈЗЕНБЕРГОВОГ Ј1-Ј2 АНТИФЕРОМАГНЕТА 
СА СПИНОМ 1/2 НА ЗАПРЕМИНСКИ ЦЕНТРИРАНОЈ КУБНОЈ РЕШЕТКИ 

У АПРОКСИМАЦИЈИ ТЈАБЛИКОВА 
 
Сажетак: У раду су истражена магнетна својства квантног Хајзенберговог Ј1-

Ј2 антиферомагнета са спином 1/2 на запремински центрираној кубној решетки. 
Користећи метод двовременских температурских Гринових функција, добијена је 
зависност магнетизације подрешетке и критичне температуре од параметра 
фрустрације Ј2/ Ј1 како у колинеарној, тако и у Неловој фази. Анализа магнетизације 
подрешетке у основном стању, као и унутрашње енергије, указују на фазни прелаз 
првог реда из Нелове у колинеарну фазу за 0.7< J2/ J1< 0.8, што је у складу са ранијим 
истраживањима. 

Кључне речи: Хајзенбергов Ј1-Ј2 антиферомагнет, унутрашња енергија, 
Нелова и колинеарна фаза, апроксимација Тјабликова.  

 
 

 


