
Vojislav V. Mitić, et al., Materials science and energy fractal nature new frontiers 
Contemporary Materials (Renewable energy sources), VI−2 (2015)                                                           Page 190 of 203 

 

 

Original scientific papers                                                                                                                       UDK 620.91:514.12  
doi: 10.7251/COMEN1502193M  

 
 

MATERIALS SCIENCE AND ENERGY FRACTAL  
NATURE NEW FRONTIERS 

   
Vojislav V. Mitić1,2,*, Hans-Jörg Fecht3, Ljubiša M. Kocić1 

1 Faculty of Electronic Engineering, University of Niš, Aleksandra Medvedeva 16, Niš, Serbia 
2 Institute of Technical Sciences of the Serbian Academy of Sciences and Arts  

3Institute of Micro and Nanomaterials University of Ulm, 89081 Ulm, Germany 
 
 

Abstract: The modern material science faces very important priorities of the future 
new frontiers which open new directions within higher and deeper structure knowledge 
even down to nano and due to the lack of energy, towards new and alternative energy 
sources. For example, in our up to date research we have recognized that BaTiO3 and other 
ceramics have fractal configuration nature based on three different phenomena. First, 
ceramic grains have fractal shape looking as a contour in cross section or as a surface. 
Second, there is the so-called “negative space” made of pores and inter-granular space. 
Being extremely complex, the pore space plays an important role in microelectronics, 
micro-capacity, PTC, piezoelectric and other phenomena. Third, there is a Brownian 
process of fractal motions inside the material during and after sintering in the form of 
micro-particles flow: ions, atoms and electrons. Here we met an exciting task of the Coble 
model, with already extended and generalized geometries. These triple factors, in 
combination, make the microelectronic environment of very peculiar electro-static/dynamic 
combination. The stress is here set on inter-granular micro-capacity and super micro-
capacitors in function of higher energy harvesting and energy storage. An attention is paid 
to components affecting overall impedances distribution. Constructive fractal theory allows 
recognizing micro-capacitors with fractal electrodes. The method is based on the iterative 
process of interpolation which is compatible with the model of grains itself. Inter-granular 
permeability is taken as a function of temperature as fundamental thermodynamic 
parameter.  

Keywords: BaTiO3-ceramics, fractals, microstructure, micro-impedances. 
 
 
 

1. INTRODUCTION 
 
Barium-titanate ceramics is one of the most 

important electronic ceramics for the small size and 
multilayer capacitors of high capacitance manufac-
ture. For these applications this ferroelectric is usually 
doped with various additives such as Er+, Ho3+, Mn2+, 
Nb5+, Zr2+, Yb3+, and some oxides, in an attempt to 
achieve temperature-stable dielectrics. It is shown that 
dielectric constant depends strongly on grain and pore 
size in the ferroelectric state, i.e. the finer the grain 
size, the higher the dielectric constant. The investiga-
tion of microstructure characteristics of undoped and 
doped BaTiO3 in the function of consolidation para-
meters is a necessary step in barium-titanate ceramics 
processing and designing. Structure investigations 
provide better understanding of dialectic properties, 
especially from the point of view of the relative di-
electric constant response of pure and doped BaTiO3-

ceramics. Fractal method traces a new approach for 
describing and modelling the grain's shape and rela-
tions between BaTiO3-ceramics structure and elec-
trical properties. It gives more natural approximation 
to the grain's boundary, whereas the construction uses 
recursive random algorithms. Particle shape is a fun-
damental powder property, affecting powder packing 
and thus bulk density, porosity, permeability, cohe-
sion, flowability, attrition, interaction with fluids, 
covering ability of pigments, resistance, capacity, 
magnetic permeability etc. Introducing mathematical-
ly well-established fractal nature theory in the powder 
metallurgy science, new materials, nano-technology, 
„free-floating” metallic drops processing, various ce-
ramics technologies, graphene oxide flakes, literally 
from trash recycling to self-healing materials, become 
more complete explained and connected.  

Using the fractal theory modern developments, 
offers enough firm arguments to support modelling, 
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predicting and many modern technological processes 
control, as outstanding examples of fractal-based 
structures. Estimation of the fractal analysis main pa-
rameter − the Hausdorff or fractal dimension, for all 
relevant morphologies that appear in consolidation 
processes is of crucial importance. By using obtained 
values, the study of their impacts on distribution of 
energy, temperature, surface tension, dielectric con-
stants, rate of densification etc., can be performed. 
The fractal analysis is used in ceramics materials to 
quantify the particle’s structure complexity, granular 
complexes, sintering processes, pores distribution 
changes etc. (For some other ceramics samples the 
pressure is up to 150 MPa). 

 
 
2. EXPERIMENTAL PROCEDURE 
 
In this paper, Er2O3, Yb2O3, Ho2O3, Mn2O3, 

Nb2O3, doped BaTiO3-ceramics were used for mi-
crostructure characterization and modelling. The 
samples were prepared from high purity (>99.98%) 
commercial BaTiO3 powder (MURATA) with 
[Ba]/[Ti]=1,005 and Ho2O3 powders (Fluka chemi-

ka) by conventional solid state sintering procedure. 
The content of Ho2O3 ranged from 0.50 to 2.0 wt%. 
After drying at 200 ºC for several hours, the powders 
were pressed into disk of 7mm in diameter and 3mm 
in thickness under 120 MPa. The compacts were 
sintered from 1320ºC to 1380ºC in air for four hours. 
The microstructures of sintered and chemically 
etched samples were observed by scanning electron 
microscope (JEOL-JSM 5300) equipped with energy 
dispersive spectrometer (EDS-QX 2000S). 

 
 
3. BASIC WORK, EXPERIMENTS AND 

RESULTS 
 
The first results of joint work of the group 

guided by prof. Mitić and Kocić appeared around the 
mid-90s of the last century. All was based on a strict 
mathematical treatment of approximated ceramics 
micro-morphology and using more advanced and 
even daring approaches including the first usage of 
fractals as a tool in the systematic ceramics studying 
and similar materials. 

 

 
Figure 1. Left. Ellipsoidal model of the grain’s contacts and formation of inter-grain micro capacitor.  

Right. Contact geometry 
 

 

Here, the result from 1998 [1] that generalizes 
Coble’s model of two grains in contact are pre-
sented. Instead of two equiradial spheres, two ellip-
soids E1 and E2 (Figure 1) are considered with dif-
ferent dimensions. Different models were studied 
assuming that one or both grains belong to one of 
three approximate classes: polyhedrons or prisms 
(P), spheres (S) or ellipsoids (including spheroids) 
(E). All possible two-grain contact combinations 
have been considered: P-P, S-S, E-E, P-S, P-E and 
S-E [10−12] .  

The contact zone, shown in the left figure has 
an approximate shape as indicated above and may be 
considered as a micro-capacitor. In the case of 
coaxial ellipsoids, having proportional parallel semi 
axes, the surface of the ellipse is made in the inter-

section of two surfaces. Indeed, if the parallel semi-
axes are a, c and p, q obey the proportional relation 

,
c

r

a

p
  

then the common elliptic disk area is given by 

 2
21 ,S ac d d        

 
 

where d is ellipsoids’ centres distance and 

 
2 2

2 2 2
2 2 2 2 2 2 2

1
, , 1 .

k q k q
k b q

k b q k b q k
            

 

The functional diagrams S(d) are shown in the 
above figure. Three different diagrams correlate to 
proportion ratios and the third semi-axis length. 

In the same year, the paper [2] was published 
with further elaboration of the idea of ellipsoidal 
approximation of grains being randomly scattered 
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through the space, making a kind of firm packing 
but still with a substantial quantity of pores. Using 
the set-theory characteristic function  

 
1,

0, otherwise,A

x A
x


 


 

applied on the grains’ clusters to describe their dif-
ferent morphologies, like these shown in Figure 2.  

 

    
Figure 2. The real BaTiO3 grains (left) and the computer models of common, intergranular zones of ellipsoidal 

modelled inter-grain surfaces (right) 
 
 

Now, define 

( ) ( ) ,
iG

i I

F r r


  
 

the function F , being discontinuous at the surface 
points of these zones. The shape and size of intergra-
nular domains shown in Figure 2 (on the right) is re-
sponsible for integral micro-capacity, and is explained 
by function F. On the other hand, the quality of the 
surface of these domains, its roughness and uneven-
ness increases the possibility of establishing new mi-
cro-contacts which directly increases integral capacity 
of the inter-grain domains. So, in the same paper [2], 
the first estimation of the fractal dimension of the 
grains contours is given. It was DHf = 1.0677699. The 
method being used for this first attempt is the box-
counting method based on the famous formula 

 0

ln ( )
lim

ln 1/f
r

N r
DH

r
                                               (1) 

where N(r) denotes the number of boxes (square 

boxes in 2D space or cubits in 3D space) which 
characterizes the so-called „slim” fractal, i.e. the 
fractal that is quite close to the smooth contour. 

Let M be the measure of the object S characte-
rized by length, area, volume (or hyper-volume), but 
also by mass, charge of electricity, etc. At the same 
time, let l be the linear dimension of S, like length, 
thickness or diameter. Then, for S being classical, 
Euclidean object, immerged in the space of dimen-
sion (also called topological dimension) DT, the 
power law takes place 

( ) TDM l l .                                                            (2) 
The role of proportionality constant in (2), 

plays the DT -dimensional density ( )l  . By de-
finition,   

( ) ( ) TDl M l l    .                                              (3) 
So, for d = 1, 2 and 3, the relation (3) may 

represent mass density, particle density, electric 
charge density, energy density etc.  

 

Figure 3. Left. The grain contour extraction from SEM photo 
 

Now, for fractal object S, characterized by 
fractal dimension fDH  that always strictly exceeds 

topological dimension f TDH D , it holds 

( ) TDM l Const l  , so that   
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( ) Const Const

f
Tf

T T

DH
DH D

D D
M l l

l l
l l




     .  (4) 

The formula (4) is very useful in estimation of 
fractal dimension of some fractal objects. If, for ex-
ample, one needs to know an approximate fractal 
dimension of the micro-particle’s contour, the role 
of ( )l  plays the length of the contour L as a func-

tion of the accepted unit of measure δ, so, ( )L   
and, taking into account that the contour is a one-
dimensional object ( 1TD  ), one gets 

1( ) Const fDHL      
which is called Richardson law, (also, Mandelbrot- 
Richardson law). By taking logarithm (any base), 
and for a series of measures with (typically) decreas-
ing sequence of etalon measures 

  1; 1,2,..., ,k k kk n    , the linear relation-

ship emanates 
log ( ) log Constk f kL DH                                (5) 

in the  log , log ( )L  coordinate system. The pro-

cedure requires fitting the line through the data 

 log , log ( )k kL   to find its slope coefficient fDH . 

An example applied on the Koch snowflake curve 
shown in Figure 4, reveals using square mesh with 

„cells” sides k , decreasing in the manner of geome-

tric sequence by choosing 1

1

2k k   . The log-log 

diagram presented  in Figure 7 (on the left) gives DH
f
 

= 1.258 as the calculated value. The theoretic value 
for Koch snowflake is DH

f
 = 1.2619.  

Figure 5 (on the right) shows dependence of 
approximation error of the choice of metrics being 
used for the least square fitting procedure. Namely, 
if the distance between two plane points having 

coordinates  ,i ix y  and ( , )j jx y  be defined using 

generalized p-norm 

      1/

dist , , , , 1
pp p

p i i j j i j i jx y x y x x y y p      , 

depending on the parameter 1 p   . For 2p  , 
the above metric reduces on the usual Euclidean 
distance, and Figure 5 (on the right) shows the circle 
as a set of points (in the plane) having constant 
distance from the point M, and therefore, the closest 
point on the line is the tangent point M2. As p 
increases in the interval [2, )  , the point M2 

moves towards M  , which is the closest point on 

the line to M, in p   metrics. On the other 
hand, M1 is the closest in p = 1 metrics. 

  

 
Figure 4. Successive halving of box side length results in decreasing sequence of covers 

 

      
Figure 5. Left. The log-log fitting diagram for extracted Box-counting data. Right. The possible error source in 

generalized lp metrics  
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Applied to pure BaTiO3 or with various addi-
tives ( Er+, Ho3+, Mn2+, Nb5+, Zr2+, Yb3+), and some 
oxides, and similar perovskite ceramics, a grain con-
tour line fractal dimension has relatively small val-
ues [9,10,15,16] 
1.02 < DHf (contour) < 1.30, 
which is quite in agreement with other author’s 
results (see Smirnov [11], p.38). For the grains’ 
surface, according to our experiments, the fractal 
dimension satisfies [12], 
2.01 < DHf (grain’s surface) < 2.095. 

It is natural that DHf values both for grains’ 
contours or surfaces depend on the ceramics sinter-
ing phase, additives concentration and technological 
parameters (temperature, pressure, duration). Further 
investigations paid attention to the SEM photos of 
the surface of ceramics materials, looking as the two 
dimensional pattern. The estimation yields [16] 
1.60 < DHf (surface of specimen) < 1.90. 

The grains as solitary objects are electrical 
micro accumulators and therefore the sources of 
electrical potential energy and integral capacitors. 
The known rule gives the potential energy of a soli-
tary grain being on the time dependent potential dif-
ference (voltage) ( )v t , and bearing the quantity of 

electricity ( )q t to be  

1
( ) ( ) ( )

2grainE t q t v t .                                             (6) 

This relation is very important as it gives the 
energy stored in the body of every individual grain, 
with time dependency. The structure of the grain 
also has its volume fractality which seems to be still 
unknown, but very close to 3.  

From the energetic point of view, it is impor-
tant, besides the grains themselves, to study inter-
granular morphology, especially in the context of 
fractals.   

 
 
4. FRACTALITY AND CERAMICS 

GRAINS’ CONTACTS  
 
Electronics ceramics, especially BaTiO3-

ceramics, are made out of very fine powder having 
the maximum Ferret diameter. These particles have 
such a high surface energy to fuse together and to 
make sintered ceramics. As it is well known [1−10], 
many powder materials have fractal structure, and 
nowadays it is a well established, documented and 
widely accepted fact. Fractal geometry, systemati-
cally introduced by Benoit Mandelbrot [3,4] at the 
end of the sixth and the beginning of the seventh 
decade of the last century (for a constructive ap-

proach, see Barnsley [5] ) as an efficient toll for de-
scribing complex non-Euclidean shapes.  

Consider a structural pattern of three sphere-
shaped ceramic grains, contacting each other in only 
one point and making pointwise contacts (Figure 6, 
left). By decreasing the distance between centres of 
these spheres the body of each sphere sinks into 
another one, forming a virtual body as in Figure 2, 
on the right. Once that we have a method of retriev-
ing the fractal dimension, we get a chance to go dee-
per into the nature of micro grain contacts. At this 
point the concept of generalized Minkowski hull 
comes forward. The associated with a plane contour 
G, and generated by a convex plane figure S, sliding 
along G in the manner that one fixed point of S coin-
cide with one G point. The concept of Minkowski 
hull is very useful in explanation of the contact 
zones nature.  

The union of all points of S made by covering 
the whole way back to the starting point is a two-
dimensional layer called generalized Minkowski 
hull. It is shown in Figure 6, on the right.  

Let r1 and r2 be minimal and respectively 
maximal Ferret diameter of S.  

1 2min diam( ), max diam( ),r S r S    

The generalized Minkowski hull’s thickness 

    is the function of polar angle  , with respect 

to the pole that may be fixed at, for example, centro-
id of S. 

Consider two grains, A and B with hulls hav-
ing variable thickness rA and rB, respectively 

   
0 2 0 2
min , minA A B Br r
   

   
   

  . 

The meaning of these distances and the gene-
ralized Minkowski hulls is that the grains’ coarse-
ness stays inside the hull. It means that no micro 
relief hills overtop the hull boundary. If two grains 
are in a position when their distance d is not bigger 
than the sum rA + rB , the grains are in the position of 
the first touch. 

If d becomes smaller than rA + rB, the inter-
granular zone appears.  

The second characteristic position is when the 
either hull’s contour touches the other grain’s body, 
i.e., when d = max{ rA, rB }, the second contact is 
encountered. The third contact comes when d = 
min{ rA, rB }. The contact of two grains in only one 
point is the fourth contact, in two points is the fifth 
contact and, finally if 3 points are common, it is the 
sixth contact. 

Without the concept of fractal surface, the 
above considerations will be pointless.  
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Figure 6. Left. Forming the intergrain zone in the case of three spherical grains Right. The real grain and its gene-
ralized Minkovski hull 

 
Figures 7 and 8 describe 3D reconstruction of 

the real shapes of ceramics grains. Figure 7 also con-
tains the box-counting procedure with application of 
grey-shade algorithm, which extracts the fractal di-
mension of the ceramics surface that is substantially 
bigger than the dimension of the individual grain.  

Shapes which are not fractal are the excep-
tion, said Mandelbrot. The fractal geometry key 

concept is the unique number that is connected with 
the fractal object which is known as fractal dimen-
sion, a concept introduced sixty years ago by Felix 
Hausdorff. If DHf  denotes fractal dimension, the 
simple inequality DHf > DT , where DT is topologi-
cal dimension, has been suggested by Mandelbrot as 
an acceptable (although not complete) definition of 
fractal objects.  

 

BaTiO3 ceramics sample 
level 24/255 

 

         

       

Figure 7. Fractal dimension estimation using grey shades box counting algorithm applied at the SEM 
photograph in the middle, left part. In the middle, on the right is the reconstruction of the surface as a 

3D object. The value estimated is DH
f
 = 1.8529. The data and log-log diagram are shown below 
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Figure 8. Two BaTiO3 grain’s in contact and 3D reconstruction 

 
 
If two grains are in contact as shown in the 

SEM in Figure 8, a huge set of spots may be encoun-
tered as potential contact sites. The good candidates 
are the exposed points at each grain, but also flat 
areas where gradient of the function describing 
grain’s surface is locally constant, or, 

 T Const.g g x g y g z          Such spots are 

shown on the surface in Figure 9, as locally flat rec-
tangles or squares having maximal diameter approx-
imately of the magnitude  210 diam S  . 

Another means of the analysis that reveals a 
heavy disorder contact surfaces and confirm their 
fractality is discrete Fourier analysis. For discrete 

cosine (DCT), the following four representations are 
known   

     
1

11
1

2

2
) ( ) cos 1 1 1

1 2 1 2

n
s n

r
r

u u
a dct u u r s

n n






            
  , 

 2
1

1 1
) ( ) cos 1

2

n

r
r

b dct u u r s
nn




        
 , 

 3 1
2

1 1
) ( ) 2 cos 1

2

n

r
r

c dct u u u r s
nn




            
 , 

and 

4
1

2 1 1
) ( ) cos

2 2

n

r
r

d dct u u r s
n n




              
 . 

 

     

Figure 9. Left. Possible contacting spots for the grains from Figure 10. Right. Smoothing the piecewise constant 
function from the left, the grains’ shapes can be retrieved 

 
 

The corresponding graphs showing the abso-
lute value of diagonal elements of the discretized 
surface data array u (Figure 10). 

Using the Mandelbrot’s formula that gives a 
relationship between the length L of a fractal “space 
filling” curve of fractal dimension DHf that “fills” 
the two-dimensional area of size A , i.e.,  

 , is constant ,fDHL K A K 
 

in combination with Richardson law of variable 
yardstick, upon which a fractal curve length depends 
on measurement precision, i.e. on the measure 
yardstick length δ is 

1 ,fDHL    
gives A as a function of DHf 

1
12

( ) fDH

fA DH K 
 

  
   . 
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Figure 10. Four types of Discrete Cosine Transform (DCT) reveal main and secondary harmonics having confi-

guration typical for fractal surfaces 
 

The physical meaning of the last equation is 
the functional dependence of the capacitor electrode 
area size with fractal dimension DHf that can be 
measured using different algorithms, as explained 
above. 

Such considerations did help in gaining the 
approximate value of neck cross section area size A 
in Coble two grain contact model, where real cross 
section is approximated by a, b semi-axes elliptic 
disc as 

1
1

Coble

2
2 .fDH

A ab 
 

  
   

It is clear from the last two formulas that the surface 
area increases when δ gets smaller; theoretically, for 
1 ,fDH А  

 
when 0  . 

In addition, the area of ceramics surface (as a 
cluster of grains) as well as the area of a single grain 
surface, depends on the unit of measure δ and local 
fractal dimension DHf  and is given by ([25]) 

2( , ) ~ fDH

fA DH  

.                                       (7) 

The relationship (7) is illustrated by the 
graphs in Figure 11. The increasing of the contact 
area size with more precise measuring (smaller d) is 
evident for all fractal dimensions > 2. Even for 
„smooth“ fractal surfaces, i.e. surfaces with DHf  
close to 2 (as it is the case with BaTiO3-ceramics 
grains surfaces having 2.079 < DHf < 2.095), the 
area size A duplicates its value if the unit of measure 
d  decreases by the factor 2.87389 x 10-4 .   

 

Figure 11. Size of the contact area ( , )fA DH  vs. fractal dimension. A0 in the right 2D graph 

is the area size for ideally flat contact surface 
 



Vojislav V. Mitić, et al., Materials science and energy fractal nature new frontiers 
Contemporary Materials (Renewable energy sources), VI−2 (2015)                                                           Page 198 of 203 

 

 

Figure 12. Left. Reconstruction of 3D-surface for BaTiO3 sample; Right. Level lines of the same surface.  
Picks represent grains. The similarity with Earth relief iso-lines is obvious 

 
While the fractal dimension of BaTiO3-

ceramics grain’s surface is modest, the dimension of 
the specimen surface is much higher, as shown in 
Figure 11. The fractal dimension is calculated using 
max-gray level box-counting method of the SEM, 
which gives DHf  = 1.7531. For other specimens 
similar values are obtained in the range from 1.7529 
to 1.8025.  

These results led to revision of the formula for 
parallel-plate capacitor with plates area size A and a 
separation d (d << A1/2) 

0 ,r

A
C

d
   

where er and e0 are dielectric constants of BaTiO3-
ceramics grains contact zone and in vacuum respec-

tively. Namely, the intergranular micro capacitor, 
formed in the contact zone of two ceramics grains is 
not a parallel-plate capacitor. It is a fractal capacitor 
that may be thought of as being a product of an itera-
tive process described in Figure 13, left. The top 
subfigure shows a parallel-plate capacitor as de-
scribed above. It corresponds to a capacitor (denoted 
by C0) with adjacent grains’ perfectly flat contact 
surfaces which do not exist in reality. On the con-
trary, the contact surface is rough and uneven, so 
that the following fractal model will be a good ap-
proximation. Suppose that the flat parallel geometry 
of C0 (Figure 13, left) is replaced by three flat capa-
citors „Z“-shaped configuration connected in paral-
lel, forming the unique capacitor C1.  

 

 

Figure 13. Above. Grain contacts: From ideal Euclidean shapes and contacts to real, fractal-like capacitor  
electrode forms. Below. SEM shots and computer reconstruction of rough contact surfaces 
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In the next stage, each of three linear seg-
ments is replaced by another smaller „Z“ made out 
of three smaller flat capacitors. By continuing this 
procedure, the sequence of more and more seg-
mented chains of sub-capacitors C0, C1 , C2,..., is 
obtained (Figure 5, on the right). It is suitable to take 
each smaller „Z“ to be a shrunk affine image of the 
bigger „Z“ standing in the above line. In this man-
ner, the separating distance would be shrunk as well 
for some factor (although it is not shown in our fig-
ure for clarity reasons). This factor (called vertical 

scaling factor), makes the ratio /d A  smaller for 
each iteration, making capacity to increase. Also, the 
sum of the lengths in each iteration increases due to 
the wiggling form of the higher stage capacitor. In 
all, the capacity of Cn will be substantially higher 
than C0. This increment is characterized by the ratio 

0 0lim /n
n

C C


  and thus, if Cf  stands for “fractal 

capacitor”   

0 0 0 0 0limf n r rn

A A
C C C

d d
      



     
 

          (8)
 

where C is the capacity of the capacitor having 
ideally flat plates. Since fC C , it follows that 

0 1  . This effect of increasing capacity due to 

fractality of the contact zone is referred to by these 
authors as the α-correction of the intergranular ca

pacity or, which is the same, dielectric constant, by 

stating 0r f r   ([15, 16]). Indeed, the increasing 

in capacity is the consequence of micro-structure, 
not of macro-parameters like grains’ position or size. 
Consequently, it may be considered as an intrinsic 
BaTiO3-ceramics characteristic and also doped Ba-
TiO3-ceramics.  

Regarding the energy aspect, the part of ener-
gy stored in the grain-grain contact micro-capacity is 
given by 

2
2

int 0 0

1 ( ) 1
( ) ( ) .

2 2er r f

v t
E t A C v t

d
                      (9) 

In the above formula, the distance d is the 
thickness of contact intergranular zone, while ( )v t  
is the potential difference between two neighbour 
grains. 

Consider the domain U of ceramics material 
containing N grains ( 2N  ). The energy density in 
U, ( )E U , is given by 

( )
( )

( )E

E t
U

vol U
  , 

provided the ( )E t  denoting the total energy in the 

domain U, having the volume ( ).vol U In case that 
every grain is in contact with four grains  

3/4
0

3 2
3

4
N   . 

 

 
Figure 14. The constructive way is used to explain fractal character of an intergranular  

micro capacitor grain surfaces 
 

 
Figure 15. Model of grain cluster forming the pyramid of Sierpinski (a), with intergranular contacts 

 (b) and number of intergranular contacts 
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5. TEMPERATURE INVOLVEMENT 
 
Arguing about the crystal surface „natural 

roughness“ as macroscopic steps collection on the 
arbitrary section surface of the crystal plane section, 
the authors of [30] quote an observation Frenkel [31] 
had come forward with, that this roughness does not 
coincide with the crystal faces atomic roughness, 
with small surface energy, which can occur as a 
thermal fluctuations consequence at high tempera-
tures. This temperature consideration illustrates the 
impact on dynamical processes inside the ceramics 
body. Such impact generates a motion inside the 
ceramics crystals in the Fermi gas form, containing 
different particles such as electrons (Bloch wave), 
atoms, atomic nuclei etc. In essence, this motion has 
a Brownian character and imposes necessity of in-
troducing the third fractality factor–factor of move-
ments, (0 1)M M   . Our hypothesis ([25]) is 

that BaTiO3-ceramics working temperature must be 
influenced by these three fractality factors, making 
correction of „theoretic” temperature as  

,fT T                                                          (10) 

where α is a fractal corrective factor. It is natural 

that all three factors ,
S P

a a , and 
M

a , influences  

 , ,s P M                                                 (11) 

The argument for this expectation hides in the 
fact that geometrically irregular motion of huge par-
ticles number has to unleash an extra energy to the sys-
tem. In other words, fractality of the system 

represented by three factors ,
S P

a a , and 
M

a  should 

increase overall energy of the system, and this incre-
ment must be subtracted from input energy which is in 

fact, an input thermal energy denoted by T. In other 
words, fT T T= -  and since it follows from (10) 

that fT T T

T T
a

-
= =

 , it gives 

0 1 / 1T Ta< = - < .  
The nature of the function in (11) is unknown 

by now, but at the first moment, the linear approxi-
mation will suffice, 

 , , ,s P M s P Mu v w          

where , , 0u v w   are real coefficients satisfy-

ing 1.u v w     
Back to formula (9) gives us a hint of alpha 

correction embodied in the corrective coefficient 0 . 
On the other hand, in formula (10) another correc-
tive coefficient, this time corrects the temperature. 
To find a connection between 0 and α,, consider the 
Curie-Weiss law, giving temperature dependence 
dielectric constants of BaTiO3-ceramics grains’ con-
tact zone

 ( ) c
r

S

C
T

T T
 


                                                       (12) 

where Ts is the Curie temperature and Cc is Currie 
constant. If r  is corrected to gain the value 

0 r  , 

then from (10) and (12) it follows  0 /r c SC T T    . 

After elimination of Currie constant Cc using (12), one 
gets  

0 0

1 1
1 CT

T


 
 

   
 

 , and reversely 
0 ,CT T

T Tc






  

 (13) 

which are the formulas and α0 with temperature T. Fig-
ure 17 visualizes the relationship between α and α0, 
where the natural range for both α and α0, are delibe-
rately extended for better insight. 

 

 
Figure 16. a.Two grains of BaTiO3-ceramics doped with 0.1% of Ho2O3, sintered at 1350±C.  

b. Shematic illustration of G1-G2 contact. c. Equivalent micro-impedance without α-correction 

Figure 17. Figure 7.  Left. Ce=0.1; C=0.01; L=0.001; 
Right. Ce =0.01; R=1; L=0.001;{α, 0, 1}, {f, 1, 80} 
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6. CONCLUSION 
 

In this article the doped BaTiO3-ceramics 
fractality on some energetic consequences are inves-
tigated. It is not new that ceramics, from powder 
phase through all sintering phases, exhibits fractal 
structure and microstructure posing a basis for ce-
ramics’ dielectric, ferroelectric, PTCR and piezoe-
lectric properties. A special stress is put on the rela-
tion of ceramics microstructure and integral micro 
capacity. The connection between energy storage 
and energy harvesting from high concentration of 
micro capacitors using energy density model, has 
fractal dimension of the ceramics material as a pa-
rameter. Based on previous investigations (papers 
[9-10, 12-29]) where some of BaTiO3-ceramics ele-
ments fractality and also for doped BaTiO3-ceramics 
were established, a new approach to intergranular 
capacity is developed. Also, the relationship be-
tween the size of the contact area and its fractal di-
mension is formulated. It is shown that the fractal 
form of an intergranular contact zone may be pre-
sented as a chain of micro-capacitors forming one 
bigger capacitor. It is shown how the capacity in-
creases as the complexity of contact zone increases. 
The alpha correction of intergranular capacity is in-
troduced to reflect an increase in capacity due fractal 
character of intergranular contact. The correction 
factor is 0 1  . Next, the pores geometry in Ba-

TiO3-ceramics material is investigated with conclu-
sion that all pores collection in ceramic body is a 
fractal object too. The porosity behavior is studied in 
all of sintering process three phases, Frenkel, Scher-
er and Mackenzie-Shuttleworth, and corresponding 
formulas for box-dimension of pores are established.  
A third source of fractality, except intergranular sur-

face geometry quantified by the factor 
S

a and pore 

system that yields factor 
P

a , in BaTiO3-ceramics is 

interior movements of different particles, subatomic, 
atomic, molecular etc. Due to its Brownian nature, it 
also has fractal character defined by the third factor 

M
a . These three factors ,

S P
a a , and 

M
a , are argu-

ments of a functional parameter a  that represents all 

of them. The relationship between a  and 
0

a  is es-

tablished and two different models of grain cluster-
ing is considered. As it is shown in [25] the four 
grains-tetrahedral, diminishes the total capacity of 
four intergranular contacts by 40% while the eight 
grains-cubic connection increases it by 20%. This 
shows dependence of the inner energetic capacity of 
ceramic materials on its fractality, which promotes 

fractal structures as a serious capacity in storage of 
energy. 
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 
 

НАУКА О МАТЕРИЈАЛИМА И ЕНЕРГЕТСКА ФРАКТАЛНА ПРИРОДА НОВЕ ГРАНИЦЕ 
 

Сажетак: Модерна наука о материјалима суочава се са веома важним приори-
тетима будућих нових граница што отвара нове правце ка знању о вишим и дубљим 
структурама чак до нано нивоа, а због недостатка енергије, према новим и алтерна-
тивним изворима енергије. На примјер, у досадашњим истраживањима смо признали 
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да је природа конфигурације BaTiO3 и остале керамике фрактална на основу три раз-
личите појаве. Прво, зрна керамике имају фрактални облик било као контура у 
попречном пресјеку или као површ. Друго, постоји такозвани „негативни простор“ 
сачињен од пора и интергрануларног простора. Будући да је крајње комплексан, про-
стор пора игра важну улогу у микроелектроници, микро-капацитету, PTC-у, пиезое-
лектричним и осталим појавама. Треће, постоји Браунов процес фракталног кретања 
унутар материјала за вријеме и након синтеринга у форми тока микрочестица: јона, 
атома и електрона. Овдје сусрећемо интригантан задатак Кобловог модела, са већ 
проширеном и генерализованом геометријом. Ова три фактора у комбинацији праве 
од микроелектронског окружења јединствену електро-статичку/динамичну комбина-
цију. Нагласак је при овоме стављен на интергрануларни микрокапацитет и супер 
микро-кондензаторе у функцији већег прикупљања енергије из спољашњег извора и 
складиштења енергије. Пажња је посвећена компонентама које утичу на цјелокупну 
расподјелу импеданси. Конструктивна фрактална теорија омогућава прихватање 
микро-кондензатора са фракталним електродама. Метод се заснива на итеративном 
процесу интeрполације који је компатибилан са моделом самих зрна. Интергранулар-
на пермеабилност се разматра у функцији температуре као основног термодинамског 
параметра. 

Кључне ријечи: BaTiO3-керамика, фрактали, микроструктура, микроимпедан-
се.  
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