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Abstract: By solving the diffusion equation using the explicit finite difference me-
thod, oxygen concentrations inside the soil are determined for various periods of time. Two 
different cases are investigated, with constant and daily changing air oxygen concentra-
tions. It was concluded that the influence of the periodical change of the air oxygen concen-
tration on the oxygen concentration in the soil was more pronounced for smaller diffusion 
times at smaller lengths of the soil profile.  
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1. INTRODUCTION 
 
Soil productivity largely depends on the 

process of soil aeration. The air space in soil con-
tains oxygen to provide for respiration of plant roots. 
Plant roots adsorb oxygen and release carbon dio-
xide in the process of respiration. In most plants, the 
internal transfer of oxygen from parts above the 
ground (leaves and stems) to those below the ground 
surface (roots) cannot take place at a rate sufficient 
to supply the oxygen requirements of the roots [1]. 
Adequate root respiration requires that the soil itself 
be aerated. Poor aeration can decrease the uptake of 
water and induce early wilting. Most plants depend 
on the transport through the soil of oxygen from and 
of carbon dioxide to the external air. Gases and va-
pors are transported in soil air by convection and 
diffusion, the latter being recognized as the main 
mechanism [2]. Most of the available research data 
indicate that excessive soil water reduces the ex-
change of air between the soil and the atmosphere 
and causes oxygen deficiency. There are several fac-
tors that affect the oxygen diffusion rate. It increases 
with decreasing soil water content or increasing suc-
tion up to a certain level and then declines with fur-
ther depletion of water. Oxygen moves from the at-
mosphere to the plant roots mostly by the process of 
diffusion through air filled soil pores and subse-
quently through water films separating the root sur-
faces from the gas phase [3]. Compact layers in a 

soil profile can also influence transport of oxygen 
through the soil [4]. The oxygen diffusion rate of 
soil has been proposed as a good index of soil aera-
tion [5,6].  

Oxygen molecules in soil are in continuous 
thermal motion according to the kinetic theory of 
gases. The concentration gradient in soil causes net 
movement of molecules from high concentration to 
low concentration, this gives the movement of gas 
by diffusion. Analytical models are developed to 
describe transient-state oxygen diffusion in soil us-
ing Fourier Transforms [7]. An analytical solution to 
describe non steady-state oxygen transport from at-
mosphere to soil using the technique of Laplace 
transformation was also reported [8]. The analytical 
solutions have limited application since the solution 
is based on specific initial and boundary conditions. 
In general, analytical solutions are a very lengthy 
process. Numerical methods in solving diffusion 
equation are applicable with less efforts than analyt-
ical methods to accurately predict oxygen diffusion 
state in soil media [9]. 

Air is a mixture of several gases. When com-
pletely dry, it is about 78% nitrogen and 21% oxy-
gen. The remaining 1% is other gases such as argon, 
carbon dioxide, neon, helium, and others. However, 
in nature, air is never completely dry. It always con-
tains some water vapor in the amounts varying from 
almost none to 5% by volume. As water vapor con-
tent increases, the other gases decrease proportio-
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nately. The absolute oxygen concentration also con-
tinuously changes with daily change of barometric 
pressure. It is therefore of interest to investigate how 
a small periodical change of O2 concentration in the 
air influences the diffusion dynamics of O2 into the 
soil. 

In this work, the diffusion dynamics of O2 in 
the soil column has been investigated. By solving 
the relevant diffusion equation using the explicit 
finite difference method, the concentration profiles 
of O2 inside the soil column are determined for vari-
ous periods of time, for constant and periodically 
changing air oxygen concentration. 

 
 
2. OXYGEN DIFFUSION DYNAMICS  
 
The governing equation describing the oxygen 

diffusion into soil is expressed by the following par-
tial differential equation [8]: 
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where C(x,t) is the concentration of oxygen in the 

soil air at the depth x, t is the time, D is the diffusion 
coefficient of oxygen in the soil,   is the activity 
(the rate of oxygen consumption by the biological 
and chemical processes within the soil mass). In ref. 
[8] Eq. (1) is solved analytically for a semi-infinite 
homogenous soil profile, and for the following ini-
tial and boundary conditions: 
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where C0 is the concentration of oxygen in the at-
mosphere. In Eq. (1) the assumption of constant and 
uniform activity  has only the merit of simplicity. 
If oxygen in a given soil is absorbed by biological 
action, then adsorption would presumably vary with 
time and position [8]. 

The analytical solution for this problem is [8]: 
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The concentrations of oxygen at any time and 

depth resulting from Eq. (4) were compared to the 
measured data obtained experimentally by [7], and a 
reasonably good agreement between measured and 
predicted oxygen concentrations was observed by 
[8]. In previously reported work by Kalita [9], Eq. 
(1) is solved numerically using the finite element 
method for a semi-infinite homogenous soil profile.  

It is also of interest to study the problem of ob-
taining the O2 concentration inside the soil in the case 
when the target O2 concentration in the air is a periodic 
function of time, i.e. when the boundary condition at 
 x = 0 is  )/2sin(1),0( 0 TtCtxC  , where 

 is the O2 concentration oscillation amplitude and T 
the oscillation period. In that case, the analytical solu-
tion of diffusion equation (1) does not exist and numer-
ical solution is needed. 

 
 
3. NUMERICAL METHOD 
 
Analytical solutions of diffusion equations 

with limited initial and boundary conditions have 
limited applicability and are very lengthy. Employ-
ing numerical methods does not have such limita

tions and also offers flexibility, especially for arbi-
trary initial distribution and boundary conditions 
[10,11]. In the 1970s and 1980s, implicit finite dif-
ference methods (IFDMs) were generally preferred 
over explicit finite difference methods (EFDMs). 
This trend has been changing with the advancement 
of computers, shifting the emphasis to EFDMs. Be-
ing often unconditionally stable, the IFDM allows 
larger step lengths. Nevertheless, this does not trans-
late into IFDM’s higher computational efficiency 
because extremely large matrices must be manipu-
lated at each calculation step. We find that the 
EFDM is also simpler in addition to being computa-
tionally more efficient [11,12]. In this paper, EFDM 
is used to solve the diffusion equation (1). The cen-
tral difference scheme was used to represent the 
term  22 /),( xtxC    
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and a forward difference scheme for the derivative 
term  ttxC  /),(  [12], 
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With these substitutions, equation (1) trans-

forms into: 
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where indexes i and j refer to the discrete step 
lengths x and  t for the coordinate x and time t, 
respectively. Equation (5) represents a formula for 

1, jiC  at the (i, j + 1)th mesh point in terms of the 

known values along the jth time row. The truncation 
error for the difference equation (7) is O( t, (x)2). 
Using a small-enough value of  t and x, the trun-
cation error can be reduced until the accuracy 
achieved is within the error tolerance [12]. 

The initial condition (2) for equation (1) can 
be expressed in the finite difference form as: 

,00, CCi   ;0 Lx       t = 0                           (8) 

In the case of constant boundary condition at 
the soil surface, it can be written in the finite differ-
ence form as: 

0;0,0,0  txCC j                              (9) 

In the case of periodic boundary condition at 
the soil surface, it can be written in the finite differ-
ence form as: 

  0;0,)/2sin(10,0  txTtCC jj       (10) 

Boundary condition at  xx  in the finite 
difference form becomes: 
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where N= x /x  is the grid dimension in the x direc-

tion and x  is the distance in the direction x at which 

0/  xC  ( x  replaces x  in equation (3)).  

 
 

4.  NUMERICAL AND ANALYTICAL  
RESULTS 

 
To facilitate the comparison of results, we ap-

plied our numerical method to the diffusion of oxy-
gen in a soil column with the geometry used in the 
work by Kalita [9], Figure 1. The following values 
of diffusion coefficient (D) and activity () are used: 
D = 259.2 cm2 h-1 and  = 0.002125 cm3 cm-3 h-1[7]. 
We first investigate the case when the air oxygen 
concentration at x = 0 is C(0,t) = C0 = 0.21 cm3 cm-3. 

Shown in Figure 2 are numerical results for 
relative oxygen concentration at five different times 
obtained by solving the diffusion equation (1) by 
EFDM in the case of constant air oxygen concentra-

tion. In the numerical calculations, the step lengths 
x = 5 cm and t = 0.00005 h have been used to 
achieve the stability of the finite difference scheme. 

In equation (11) we used x 10 m as the distance 

at which there is no change in the oxygen concentra-

tion. Increasing x  further affected the solution a 

little but greatly increased the grid size and therefore 
the computation time. In Figure 2 the filled squares 
represent an analytical solution (4) of the diffusion 
equation (1). A good agreement between the numer-
ical and analytical solution is obtained. The devia-
tions are less than 0.5%. Figure 2 illustrates the O2 
concentration profile, C(x, t) inside the soil column 
with lapse of time. The oxygen concentration de-
creases with increasing the soil depth, approaching 
the steady-state distribution for t = 160 h.  

 

 
Figure 1. A schematic diagram of a soil column. 

 
Figure 3 shows numerical results for the oxygen 

concentration inside the soil column for various diffu-
sion times, when the air oxygen concentration periodi-
cally changes as )]/2sin(1[),0( 0 TtCtxC  , 

where C0 = 0.21 cm3 cm-3,  = 0.05, and T = 24 h are 
assumed. In Figure 3 O2 concentration in the soil col-
umn in the case of constant air oxygen concentration 
C0=0.21 cm3 cm-3 is also shown.One can see in Figure 
3 that due to the periodical change of air oxygen con-
centration, the transient oxygen concentrations after 12 
h is slightly larger if compared to the case of constant 
air oxygen concentration. With increasing the diffusion 
time, the oxygen concentrations in soil for the case of 
periodical change of the air oxygen concentration are 
smaller than those when air oxygen concentration is 
constant. These differences are more pronounced for 
smaller x and smaller diffusion times. Finally, the same 
steady-state oxygen concentration in the soil profile is 
obtained for different air oxygen concentrations ana-
lyzed.  
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Figure 2. Relative oxygen concentration vs. depth of the soil column at different diffusion times for constant  
air oxygen concentration C0=0.21 cm3 cm-3. Solid squares represent analytical solution (4). 
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Figure 3. Relative oxygen concentration vs. depth of the soil column at different diffusion times obtained for periodical-
ly changing air oxygen concentration )/2sin(1(),0( 0 TtCtxC  , C0 = 0.21 cm3 cm-3,  = 0.05 and T = 24 h 

(solid line) and for constant air oxygen concentration C0 = 0.21 cm3 cm-3 (dashed line). 
 
 

5. CONCLUSION 
 
Diffusion of oxygen in the soil is investigated 

based on a simple diffusion equation. By solving the 
diffusion equation using the explicit finite difference 
method, the oxygen concentration profiles inside the 
soil column are determined for various periods of 
time. Two different cases are investigated, with con-
stant and periodically changing air oxygen concen-
tration. We have inferred that the influence of a dai-
ly periodical change of the air oxygen concentration 
on the oxygen concentration in the soil is more pro-
nounced for smaller diffusion times at smaller 
lengths of the soil profile. Finally, we have shown 

that the explicit finite difference method is effective 
and accurate for solving the equation that describes 
the oxygen diffusion in the soil, which is especially 
important when arbitrary initial and boundary condi-
tions are required. 
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НУМЕРИЧКО РЕШЕЊЕ ДИФУЗИОНЕ ЈЕДНАЧИНЕ  
ЗА ДИФУЗИЈУ КИСЕОНИКА У ЗЕМЉИ 

 
Сажетак: Решавајући дифузиону једначину користећи експлицитни метод 

коначних разлика, одређене су концентрације кисеоника у земљи за различита 
времена дифузије. Испитивана су два различита случаја, са константним и дневно-
променљивим концентрацијама кисеоника у ваздуху. Добијено је да је утицај 
периодичне промене концентрације кисеоника у ваздуху на концентрацију кисеоника 
у земљи израженији код краћих времена дифузије на мањим дубинама у земљи.  

Кључне речи: дифузија кисеоника, земља, дифузиона једначина, експлицитни 
метод коначних разлика. 
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