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Abstract: We studied compact conformations of a ring polymer adsorbed on the 
non homogeneous (e. g. porous) substrates. Substrates are represented by the generalization 
of modified rectangular (MR) lattice – a hierarchically constructed family of fractal lattices 
embedded in 2d space and parameterized with an integer p >1. Analyzing the exact set of 
recursive relations for arbitrary value of p, we established an asymptotic form of a number 
of conformations. As a correction to the leading exponential factor we obtained the 
stretched exponential factor with the exponent  = 1/2 on each member of the fractal 
family. Although it is believed that the critical exponent  on fractal lattices is determined 
not only by the fractal dimension of the underlying lattice but also by other lattice parame-
ters, here we found that  had the same value on different fractals with the same fractal 
dimension (df = 2).  

Keywords: non-homogeneous media, fractal, polymer, scaling functions, critical 
exponents. 
 

 
 
1. INTRODUCTION 
 
Polymer is a large molecule made up of 

covalently bonded units called monomers. As solid 
material, a synthetic polymer can exists in various 
forms: from ordinary thermoplastics used in 
everyday life to some highly advanced polymer 
matrix composites used in marine and aerospace 
applications. Nature also prefers polymers since all 
living beings are comprised of polymers such as 
structural or functional proteins whose performance 
is directed and controlled by other well known 
polymers: DNA and RNA. 

The conformational properties of a single 
polymer are best learned when the polymer is immer-
sed in a solvent. Then, due to the thermal agitation, 
polymer continuously changes its shape and acquires 
different conformations. Depending on the quality of 
the solvent and /or temperature, there are three 
qualitatively different regimes. In good solvent (or 
high temperature), the regime polymer is in an 
extended state. Lowering the solvent quality or tem-
perature, at the so called  - condition, a polymer 
undergoes collapse transition from expanded to com-

pact state. In the bad solvent regime (or low tempera-
ture) when polymer is in compact state, it occupies 
compact, globular conformations in order to minimize 
contacts with the solvent. Statistics of linear polymer 
conformations in all three regimes are well described 
by a suitable kind of random walks defined on a latti-
ce [1]. In good solvent regime, when conformations 
are of the random coil type, self-avoiding random 
walks are applicable, a concept originally introduced 
in polymer physics by Montroll [2]. Self avoiding 
random walks (SAWs) are random walks that never 
visit some lattice site more than once, i.e. they do not 
intersect themselves, a property that mimics the self-
excluded volume in real polymers. Compact confor-
mations are best represented by Hamiltonian walks 
(HWs) which are SAWs that visit each lattice site and 
therefore maximally occupy the lattice. The compact 
state of a polymer is a principal state in the biological 
world due to the fact that the functional proteins 
under normal conditions fold into the unique compact 
conformation, or to the fact that chromatin in 
eukaryotic cells is compactly packed into the nucleus.  

In this article we study conformations of a 
ring polymer that are compact and fractal in charac-
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ter, which is directly applicable to chromatin organi-
zation in the nucleus as stated in [3−6].These kinds 
of conformations are generated by the Hamiltonian 
closed walks (cycles) on fractal lattices, where each 
walk can be viewed as space-filling fractal curve. 
Utilizing self-similarity of fractal lattices, through 
the exact set of recurrence equations, we determine 
how the number of HWs ( Z ) grows with the num-
ber of lattice sites ( N ) when N  (asymptotic 
law). 

 
 
2. MODIFIED RECTANGULAR LATTICE  

AND ITS GENERALIZATION  
 
Modified rectangular (MR) lattice and its gene-

ralization (GMR) are fractal lattices embedded in 2d 
space [7,8]. Each fractal of GMR family is paramete-
rized with an integer p ,  p2 . The case 2p  
corresponds to MR lattice. Construction of fractals is 

iterative, step by step, as illustrated in Figure 1 and 
Figure 2. For an arbitrary p , the first four steps of 

construction are: st1  step − graph of four points in the 

form of the unit square is constructed; nd2  step 
− p unit squares are connected in the form of rectan-

gle; rd3  step − p  rectangles, as the one obtained in 
the previous step, are connected in the form of a 

pp  square; th4  step − p  squares from the previo-
us step are connected in the form of a rectangle. Frac-
tal is obtained after infinitely many steps in which we 
alternatively generate rectangular and square shapes. 

The structure obtained in the thl step of the construc-

tion is called the thl order generator, and is denoted 
by lG . For a given p  generator lG (p) comprises 

14  l
l pN  lattice cites, and each fractal lattice 

obtained when l  has fractal dimension 
2fd , independently of p . 

 

 
Figure 1. Iterative construction of MR fractal lattice: the first five steps 

 

 
Figure 2. The first five steps of the iterative construction of GMR fractal lattice with 3p  

 
3. RECURSIVE ENUMERATION OF 

WALKS AND ASYMPTOTICS 
 
In order to enumerate all Hamiltonian cycles 

on )(1 pGl , in Figure 3 we schematically represent 

all cycles on the coarse grained )(1 pGl  − generator 

of order 1l (square or rectangle) that consists of p  

generators of order l  (rectangles or squares) whose 
internal structure is not shown. It turns out that for 
any p  there is only one coarse grained cycle. This 

cycle on )(1 pGl  consists of p  steps (parts), each 

one through one of the )( pGl . Steps are denoted 

by B  if they consist of one brunch that enters and lea-
ves )( pGl  through vertices of )( pGl  belonging to 

different )(1 pGl . Actually, step B  represents all 

Hamiltonian walks that enter and leave generator 
through mentioned vertices, and whose number on 

)( pGl  is denoted by lB . Similarly, steps are denoted 

by D  if they consist of two brunches, each of them 
entering and leaving )( pGl  through vertices of 

)( pGl belonging to the same )(1 pGl . Step D  

represents all walks of that type whose number on 
)( pGl  is denoted by lD . We can see in Figure 3 that 
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there are two B steps and 2p  steps D , so that the 

overall number of Hamiltonian cycles on )(1 pGl  

can be expressed as : 
22

1


  p
lll DBZ  .                                                    (1) 

 

 
Figure 3. Schematic representation of all Hamiltonian 

cycles on )(1 pGl . Grey rectangles represent ).( pGl  

 

Due to the self-similarity of fractal lattices the 
numbers of walks of B  and D  types can be obtai-
ned recursively, but in order to achieve this, the 
other two types of walks, denoted by A  and E , are 
needed. Schematic representation of walks of  type 
A , B  and E are given in Figure 4, and that of walk 
D  is given in Figure 5. Recurrence equations are:  

1
1


 

p
lll DBA ,                                                       (2) 

p
ll AB 1 ,                                                              (3)  

221
1 )1( 
  p

lll
p

ll DBpEpDD ,                      (4)  

p
ll DE 1 .                                                             (5) 

This system of non-linear difference equations 
should be supplemented with the initial conditions − 
the numbers of walks on the unit square: 

11111  EDBA  .  
 

 
Figure 4. Graphic representation of A , B  and E  type of walks together with schematic derivation  

of the corresponding recurrence relations 
 

 
Figure 5. Schematic representation of  D  type of  walks and illustration of obtaining recurrence relation 

 
The numerical iteration shows that variables 

lA , lB , lD  and lE  grow very fast with each iteration 

l , so that we rescale them dividing lA , lB  and lE  by 

lD , and obtain new, rescaled variables defined as: 

lll DAx / , lll DBy /  and lll DEz / . Recur-

rence equations for rescaled variables, that follow 
from equations (2), (3) and (5) are: 

ll

l
l pzyp

y
x


 21 )1(

,                                        (6) 

ll

p
l

l pzyp

x
y


 21 )1(

,                                       (7) 

ll
l pzyp

z


 21 )1(

1
,                                       (8) 

while equation (4) turns to  

])1[( 2
1 ll

p
ll pzypDD  .                             (9) 

By numerical iteration we obtain that 
0, ll yx for large l , while constzl   whose 

value depends on the parity of l . With these facts, 
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combining equations (6) and (7) for 1l  it 

follows that p
ll yy const 2   , meaning that  







 

 

y

lC

l C
l

l

p
o

p
e

l

.  oddfor 

even for 
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      ,
2

1

2

2

1




                            (10) 

From equation (9) for 1l  we have 
p

ll DconstD  ~1  so that variable D  

asymptotically grows as 
lp

l constD 1 ~  , where 

1  can be obtained numerically as 

l
l

l p

Dln
limln 1   for each value of p . In 

rescaled variables relation (1) becomes 
p

lll DyZ
2

1  , from which, together with the 

asymptotic given by (10), asymptotic for lD  and 

relation for the number of lattice cites 
14  l

l pN , it is derived that the number of 

Hamiltonian cycles on GMR lattices for arbitrary 
p asymptotically behaves as   







 ωconst

ωconst
Z

l

l 
ll

ll

N
o

N

N
e

N

l
,      , 

      ,  
~

  oddfor 

even for 







              (11) 

where the connectivity constant 41

p

   and 

constant   in the stretched exponential factor 

depend on p , but   also depends on the parity of 

l  for given p .  

We obtained that 
p

oe

1

)(   while 

.eo    Exponent   in the stretched exponential 

factor is equal to 2/1  for all p . Values of  , e  

and o  as functions of p are given in Table 1 for 

102  p , and graphical presentations of  , o  

and e  are given in Figures 6 and 7. 

 

Table1. Values of parameters  , e  and o  appearing in scaling form (10) for 102  p  

p 2 3 4 5 6 7 8 9 10 
  1.1687 1.1474 1.1293 1.1151 1.1039 1.0948 1.0872 1.0809 1.0755 

e  0.4621 0.5537 0.6141 0.6574 0.6903 0.7164 0.7377 0.7555 0.7706 

o  0.1660 0.1154 0.08999 0.07430 0.06352 0.05561 0.04953 0.04469 0.04075 
 

                         
Figure 6. Connectivity constant   as a function of p.                            Figure 7. Constant  for even and odd  

                                                                                                                     values of l as a function of p.  
 

4. DISCUSSION OF THE RESULTS 
 

In this paper we established an asymptotic 
form given by the equation (11) for the number of 
Hamiltonian cycles on GMR fractal lattices. As a cor-
rection to the leading exponential factor we obtained 
the stretched exponential factor with 2/1 on the 
whole fractal family. It is well known that the bases 

  and   in the scaling form (11) depend on lattice 

details, but it is expected that   on homogeneous 
lattices depends only on lattice dimension due to its 
origin in surface correction [10,11]. Contrary to 
homogeneous lattices, as pointed out in [12−14],   
on fractal lattices should be of non-universal charac-
ter, meaning that it should depend not only on the 
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fractal dimension but on other lattice parameters too. 
Here we found the same value of   on the whole 
family of similar, but slightly different lattices, with 
the same fractal dimension. Although lattice depen-
dent on fractals, we see that  is less sensitive on lat-
tice details than   and  . Furthermore, it follows 

from Figure 7 that the connectivity constant   
slightly decreases with p , although for all p  lattices 
have the same coordination number (three). Due to 
the high anisotropy of horizontal and vertical directi-
ons for each p , by varying p  we obtained two bran-

ches for the base   in the stretched exponential fac-

tor (for even and odd values of l ) as depicted in Figu-
re 7. In the end, we can say that this is an instructive 
example of a study of how topological properties of 
lattices influence scaling parameters of Hamiltonian 
walks. 
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ЕКСПОНЕНТ СКАЛИРАЊА КОМПАКТНИХ ПОЛИМЕРНИХ  

КОНФОРМАЦИЈА У НЕХОМОГЕНИМ СРЕДИНАМА 
 

Сажетак: Проучавали смо компактне конформације прстенастих полимера адсор-
бованих на нехомогене (нпр. порозне) супстрате. Супстрати су представљени генерализа-
цијом модификоване правоугаоне (МП) решетке − хијерархијски конструисаном фамили-
јом фракталних решетки смјештених у дводимензионални простор и параметрисаних са 
цијелим бројем p, p > 1. Анализом егзактног система рекурентних релација за произвољну 
вриједност p, успоставили смо асимптотски облик функције скалирања укупног броја 
конформација. Као корекцију на водећи експоненцијални фактор добили смо проширени 
експоненцијални фактор са експонентом  = 1/2 на сваком фракталу разматране фамили-
је. Иако се сматра да критични експонент  на фракталним решеткама не одређује само 
фрактална димензија решетке већ и њени остали параметри, овдје смо добили да  има 
исту вриједност на различитим фракталним решеткама исте фракталне димензије (d f= 2). 

Kључне ријечи: нехомогене средине, фрактал, полимер, функције скалирања, 
критични експоненти. 
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