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Abstract: We studied compact conformations of a ring polymer adsorbed on the
non homogeneous (e. g. porous) substrates. Substrates are represented by the generalization
of modified rectangular (MR) lattice — a hierarchically constructed family of fractal lattices
embedded in 2d space and parameterized with an integer p >1. Analyzing the exact set of
recursive relations for arbitrary value of p, we established an asymptotic form of a number
of conformations. As a correction to the leading exponential factor we obtained the
stretched exponential factor with the exponent ¢ = 1/2 on each member of the fractal
family. Although it is believed that the critical exponent o on fractal lattices is determined
not only by the fractal dimension of the underlying lattice but also by other lattice parame-
ters, here we found that o had the same value on different fractals with the same fractal

dimension (d; = 2).
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1. INTRODUCTION

Polymer is a large molecule made up of
covalently bonded units called monomers. As solid
material, a synthetic polymer can exists in various
forms: from ordinary thermoplastics used in
everyday life to some highly advanced polymer
matrix composites used in marine and aerospace
applications. Nature also prefers polymers since all
living beings are comprised of polymers such as
structural or functional proteins whose performance
is directed and controlled by other well known
polymers: DNA and RNA.

The conformational properties of a single
polymer are best learned when the polymer is immer-
sed in a solvent. Then, due to the thermal agitation,
polymer continuously changes its shape and acquires
different conformations. Depending on the quality of
the solvent and /or temperature, there are three
qualitatively different regimes. In good solvent (or
high temperature), the regime polymer is in an
extended state. Lowering the solvent quality or tem-
perature, at the so called ® - condition, a polymer
undergoes collapse transition from expanded to com-
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pact state. In the bad solvent regime (or low tempera-
ture) when polymer is in compact state, it occupies
compact, globular conformations in order to minimize
contacts with the solvent. Statistics of linear polymer
conformations in all three regimes are well described
by a suitable kind of random walks defined on a latti-
ce [1]. In good solvent regime, when conformations
are of the random coil type, self-avoiding random
walks are applicable, a concept originally introduced
in polymer physics by Montroll [2]. Self avoiding
random walks (SAWSs) are random walks that never
visit some lattice site more than once, i.e. they do not
intersect themselves, a property that mimics the self-
excluded volume in real polymers. Compact confor-
mations are best represented by Hamiltonian walks
(HWs) which are SAWs that visit each lattice site and
therefore maximally occupy the lattice. The compact
state of a polymer is a principal state in the biological
world due to the fact that the functional proteins
under normal conditions fold into the unique compact
conformation, or to the fact that chromatin in
eukaryotic cells is compactly packed into the nucleus.

In this article we study conformations of a
ring polymer that are compact and fractal in charac-
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ter, which is directly applicable to chromatin organi-
zation in the nucleus as stated in [3—6].These kinds
of conformations are generated by the Hamiltonian
closed walks (cycles) on fractal lattices, where each
walk can be viewed as space-filling fractal curve.
Utilizing self-similarity of fractal lattices, through
the exact set of recurrence equations, we determine
how the number of HWs (Z ) grows with the num-
ber of lattice sites (/N ) when N — oo (asymptotic
law).

2. MODIFIED RECTANGULAR LATTICE
AND ITS GENERALIZATION

Modified rectangular (MR) lattice and its gene-
ralization (GMR) are fractal lattices embedded in 2d
space [7,8]. Each fractal of GMR family is paramete-
rized with an integer p, 2< p <oo.Thecase p =2

corresponds to MR lattice. Construction of fractals is

* se se e

iterative, step by step, as illustrated in Figure 1 and
Figure 2. For an arbitrary p, the first four steps of
construction are: 1* step — graph of four points in the
form of the unit square is constructed; 2md step
— p unit squares are connected in the form of rectan-
gle; 3™ step — p rectangles, as the one obtained in
the previous step, are connected in the form of a
P X p square; 4" step — p squares from the previo-
us step are connected in the form of a rectangle. Frac-

tal is obtained after infinitely many steps in which we
alternatively generate rectangular and square shapes.

The structure obtained in the /" step of the construc-
tion is called the /" order generator, and is denoted
by G, . For a given p generator G, (p) comprises

N,=4-p"" lattice cites, and each fractal lattice

obtained when [/ —>o0 has fractal dimension

d, =2, independently of p .
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Figure 1. Iterative construction of MR fractal lattice: the first five steps
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Figure 2. The first five steps of the iterative construction of GMR fractal lattice with p =3

3. RECURSIVE ENUMERATION OF
WALKS AND ASYMPTOTICS

In order to enumerate all Hamiltonian cycles
on G,,,(p), in Figure 3 we schematically represent
all cycles on the coarse grained G,,,(p) — generator
of order / +1(square or rectangle) that consists of p

generators of order / (rectangles or squares) whose
internal structure is not shown. It turns out that for
any p there is only one coarse grained cycle. This

cycle on G,,,(p) consists of p steps (parts), each
one through one of the G,(p). Steps are denoted

by B if they consist of one brunch that enters and lea-
ves G,(p) through vertices of G,(p) belonging to
different G, (p) . Actually, step B represents all

Hamiltonian walks that enter and leave generator
through mentioned vertices, and whose number on

G,(p) is denoted by B,. Similarly, steps are denoted
by D if they consist of two brunches, each of them
entering and leaving G,(p) through vertices of
G,(p) belonging to the same G, (p) . Step D

represents all walks of that type whose number on
G,(p) is denoted by D,. We can see in Figure 3 that
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there are two B steps and p —2 steps D, so that the

overall number of Hamiltonian cycles on G, ,(p)
can be expressed as :

Due to the self-similarity of fractal lattices the
numbers of walks of B and D types can be obtai-
ned recursively, but in order to achieve this, the
other two types of walks, denoted by 4 and E , are

Z, = Bl2 D;”*2 . (1) needed. Schematic representation of walks of type
A, B and E are given in Figure 4, and that of walk
| 2 p-1 P D is given in Figure 5. Recurrence equations are:

g Ap,= BlDlp_l ) (2)

= B =4/, 3)

. e B D= lepilEl +(p— I)BJZDIW2 ) “)

D
E, = DIP . 6))

Figure 3. Schematic representation of all Hamiltonian

cycles on G, (p) . Grey rectangles represent G,(p).

This system of non-linear difference equations
should be supplemented with the initial conditions —
the numbers of walks on the unit square:

A =B =D =E =1,

1l 2 «..p-1 P 3 i 2 «..p1 P
Jp:o-an oD (>0
1 2 <Pl P ’
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Figure 4. Graphic representation of A, B and E type of walks together with schematic derivation
of the corresponding recurrence relations
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Figure 5. Schematic representation of D type of walks and illustration of obtaining recurrence relation

The numerical iteration shows that variables

p

X
. . . — , (7)
4,, B,, D, and E, grow very fast with each iteration ~ Vin (p—1)y 12 + pz,
[, so that we rescale them dividing 4,, B, and E, by 1
D, , and obtain new, rescaled variables defined as: 211 = 5 > )
4,/D B,/D, and z, = E,/D,. R (p =y pe
Y= L Vi =50 an Zl_ - Bl el while equation (4) turns to
rence equations for rescaled variables, that follow , 5
from equations (2), (3) and (5) are: D, =D/[(p—Dy; + pz]. )]

_ Vi
(p-Dy; +pz,

(6)

X

iteration we obtain that
x;,y; = 0 for large /, while z, = const whose

value depends on the parity of /. With these facts,

By numerical
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combining equations (6) and (7) for />>1 it
follows that y, = const y;”, , meaning that
(jl//i’ep2

foreven/

/ ~

(10)

C,A,"", forodd I.

From equation (9) for />>1 we have

D, ~constD,”  so  that  variable D

1
asymptotically grows as D, ~ const @,” , where

o, can be obtained

In D,

i

numerically  as

Inew, =lim, for each value of p . In

rescaled  variables relation (1) becomes

Z, =y12D,p , from which, together with the
asymptotic given by (10), asymptotic for D, and
relation the lattice cites
N=4-p"", it is derived that the number of

for number of

Hamiltonian cycles on GMR lattices for arbitrary
p asymptotically behaves as

for even/
for odd |/,

const o™ u N
Z, ~ ¢’ (11)

const ™ ,uoN’ ,
. 2
where the connectivity constant @ = w4 and
constant u in the stretched exponential factor
depend on p, but ux also depends on the parity of
[ for given p.
=
We that )

obtained while

He = (4,
u, = A,. Exponent o in the stretched exponential
factor is equal to 1/2 for all p. Values of @, 4,
and A, as functions of p are given in Table 1 for
2< p <10, and graphical presentations of @, 1,

and x, are given in Figures 6 and 7.

Tablel. Values of parameters @, A, and A, appearing in scaling form (10) for 2 < p <10

b 2 3 4 5 6 7 8 9 10
o | 11687 | 11474 | 1.1293 | L1151 | 1.1039 | 1.0948 | 10872 | 1.0809 | 1.0755
A | 04621 | 05537 | 06141 | 06574 | 06903 | 07164 | 07377 | 0.7555 | 0.7706
A, | 01660 | 0.1154 | 008999 | 0.07430 | 0.06352 | 0.05561 | 0.04953 | 0.04469 | 0.04075
4
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Figure 6. Connectivity constant @ as a function of p.

4. DISCUSSION OF THE RESULTS

In this paper we established an asymptotic
form given by the equation (11) for the number of
Hamiltonian cycles on GMR fractal lattices. As a cor-
rection to the leading exponential factor we obtained
the stretched exponential factor with o =1/2 on the
whole fractal family. It is well known that the bases

Figure 7. Constant A for even and odd
values of | as a function of p.

o and u in the scaling form (11) depend on lattice

details, but it is expected that o on homogeneous
lattices depends only on lattice dimension due to its
origin in surface correction [10,11]. Contrary to
homogeneous lattices, as pointed out in [12—-14], o
on fractal lattices should be of non-universal charac-
ter, meaning that it should depend not only on the
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fractal dimension but on other lattice parameters too.
Here we found the same value of o on the whole
family of similar, but slightly different lattices, with
the same fractal dimension. Although lattice depen-
dent on fractals, we see that o is less sensitive on lat-
tice details than @ and . Furthermore, it follows

from Figure 7 that the connectivity constant @
slightly decreases with p , although for all p lattices

have the same coordination number (three). Due to
the high anisotropy of horizontal and vertical directi-
ons for each p, by varying p we obtained two bran-

ches for the base u in the stretched exponential fac-

tor (for even and odd values of /) as depicted in Figu-
re 7. In the end, we can say that this is an instructive
example of a study of how topological properties of
lattices influence scaling parameters of Hamiltonian
walks.
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O

EKCITIOHEHT CKAJIMPAIA KOMITAKTHHUX ITOJIMMEPHUX
KOH®OPMAIIMJA V HEXOMOI'EHUM CPEJIJMHAMA

Caxerak: [IpoyyaBany cMO KOMITaKTHE KOH(pOpMAIHje MPCTEHACTHX IOJIMMEpa aacop-
OoBaHMX Ha HEXOMOreHe (HIp. nopo3He) cymncrpare. CyncTpaT Cy NpeAcTaB/beHN I'eHepann3a-
nujom Moaudukosane npaBoyraone (MII) perieTke — XHjepapXujcKu KOHCTPYHCAHOM (haMILTH-
joM (pakTamHUX PELIETKH CMjeITeHHX y IBOAMMEH3UMOHAIHU MPOCTOpP U MapaMeTPUCAHHUX ca
nujeauM OpojeM p, p > 1. AHaIHM30M er3aKTHOT CHCTEMa PEKYPEHTHUX pellalija 3a IPOU3BOJBHY
BPHjEJHOCT P, YCHOCTaBHJIM CMO ACHMIITOTCKH OOJIMK (PYHKIMje CKajJHpama YKYIHOr Opoja
koHpopmanmja. Kao kopekiujy Ha Bojehin eKCIIoHEHIHjamHH (GakTop JOOHIM CMO NMPOIIUPEHU
€KCIIOHEHIUjalTHU (PAaKTOp ca eKCIIOHEHTOM G = 1/2 Ha cBakoM (ppakraiy pasmarpaHe pamuau-
je. Mako ce cMaTtpa /1la KpUTHYHU €KCIIOHEHT G Ha ()pakTaIHUM pelieTkaMa He oapelyje camo
(pakTanHa AUMEH3HUja pelleTKe Beh U BeHU OCTalIM IapaMeTpH, OBAje CMO JOOWIU Jla G UMa
UCTY BPHjEIHOCT HA Pa3IMYUTAM (paKTaTHUM perieTkama ucte ¢ppakranne numensuje (d = 2).

KibyuHe pujeum: HexoMoreHe cpeiuHe, (QpakTai, MmoiuMmep, QyHKIHjEe CKalIupama,

KPUTUYHU €KCIIOHCHTH.



