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Abstract: Hamiltonian cycles with bending rigidity are studied on the first three 
members of the fractal family obtained by generalization of the modified rectangular (MR) 
fractal lattice. This model is proposed to describe conformational and thermodynamic pro-
perties of a single semi-flexible ring polymer confined in a poor and disordered (e.g. 
crowded) solvent. Due to the competition between temperature and polymer stiffness, there 
is a possibility for the phase transition between molten globule and crystal phase of a 
polymer to occur. The partition function of the model in the thermodynamic limit is obtai-
ned and analyzed as a function of polymer stiffness parameter s (Boltzmann weight), which 
for semi-flexible polymers can take on values over the interval (0,1). Other quantities, such 
as persistence length, specific heat and entropy, are obtained numerically and presented 
graphically as functions of stiffness parameter s. 
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1. INTRODUCTION 
 
 Synthetic polymers such as polyethylene can 

be quite flexible. Flexibility of polyethylene is 
primarily caused by almost free rotation about single 
covalent bond. Strictly speaking, there are three 
values of torsion angle that are energetically favora-
ble, allowing for trans, gauche +, and gauche- rotati-
onal states [1]. The former two can easily be excited 
by thermal energy, so that linear polymer in solvent 
looks like a coiled thread of cotton. Typical confor-
mations of a flexible polymer in good solvent condi-
tions are that of random coil type.  

One measure of polymer flexibility is the per-
sistence length ݈௣, which can be defined as a length 
along the backbone of a polymer over which the 
polymer segments become orientationally uncorrela-
ted. More intuitively, it is a length of polymer seg-
ments that appear straight. For flexible polymers 
݈௣ ≪ where L ,ܮ  is the contour length of polymer.  

Biopolymers usually have complex chemical 
structure which make them rigid over the range of 
length scales much smaller than the contour length. 
Such polymers (e.g. DNA, actin) belong to the class 

of semi-flexible polymers for which the persistence 
length is comparable with the contour length, i.e. 
݈௣~L. Conformational and thermodynamic properti-
es of semi-flexible polymers are less known compa-
red to their flexible counterparts. For flexible 
polymers, it is well known that: (i) in good solvent 
conditions they adopt swollen, coil like conformati-
ons, (ii) they undergo collapse transition at ߠ tempe-
rature, (iii) bellow the ߠ temperature in poor solvent 
conditions, they are in compact, liquid like state with 
globular conformations. Rigidity of polymer affects 
the behavior in all three regimes. In compact phase, 
with which we are primarily concerned, semi-
flexible polymer takes elongated, toroidal conforma-
tions [2,3]. It is confirmed that semi-flexible 
polymers in compact phase can exist in either of two 
phases: disordered – liquid-like phase or ordered - 
crystal phase. But the order of phase transition and 
the characterization of phases are questions that are 
far from being settled[4-8]. 

In this paper, we apply model of weighted 
(biased) Hamiltonian walks on fractal lattices to 
describe compact conformations of a semi-flexible 
polymer adsorbed on a non-homogeneous substrate. 
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A model is applicable to biopolymers that are 
usually confined in small and crowded space such as 
eukariotyc cell or even adsorbed on surfaces (DNA 
wrapped around the histone [9,10] ) . 

 
 
2. MODEL AND LATTICES 
 
Semi-flexible polymers are quite rigid, they 

resist to bending. It costs energy to bend a portion of 
a polymer. To incorporate this property in our 
model, we introduce an energy penalty for each bend 
in the conformation represented by Hamiltonian 
walk (HW). Hamiltonian walks are self-avoiding 
random walks that visit every lattice site, a property 
that mimics compactness of conformations. Con-
formations have different energy, depending on the 
number of bends in the walks. If ߝ ൐ 0 is the energy 
of each bend, then the conformation w with ܭ௪ 
bends will have the energy equal to ܧ௪ ൌ -௪. Parܭߝ

tition function of the model is ܼ ൌ ∑ ݁
ି		

ಶೢ
ೖಳ೅௪  , 

where the sum runs over all possible conformations 
(HWs). Inserting energy of conformations into the 
partition function leads to ܼ ൌ ∑ ௄ೢ௪ݏ , where 

ݏ ൌ ݁
ି	

ഄ
ೖಳ೅ is the Boltzmann factor or weight associ-

ated with each bend. We call ݏ the stiffness parame-
ter, and we see that it is determined by the energy ߝ	 

of each bend and temperature T. There are two 
opposite limits: (i) rigid rod limit for which ߝ ൌ ∞ 
or ܶ ൌ 0  so that ݏ ൌ 0 , and (ii) fully flexible 
polymer for which ߝ ൌ 0  or ܶ ൌ ∞  so that ݏ ൌ 1 . 
For semi-flexible polymers 0 ൏ ݏ ൏ 1  , which can 
be achieved by keeping one of the parameters fixed 
while varying another. It should be noted that stif-
fness (rigidity) of polymer decreases with such defi-
ned stiffness parameter s. 

Our model is restricted to lattices [11], which 
in this case are taken to be modified rectangular 
(MR) fractal lattice and other two lattices which can 
be obtained by simple generalization of MR lattice. 
All three considered lattices are parameterized with 
an integer p which take values ݌ ൌ 2, 3		and . Case 

݌ ൌ 2  correspond to MR lattice. Construction of 
fractal lattices is iterative, starting from the common 
initiator which is a unit square. Then ݌ unit squares 
are connected in the rectangle to obtain first order 
generator. In the next step, ݌	 rectangles are connec-
ted into a square, and so on. Fractal lattice in each of 
the cases is obtained repeating the process ad infini-
tum. First four steps of construction for fractals with 
݌ ൌ 2	 and ݌ ൌ 3 are depicted in Figure 1. Structure 
obtained in the ݈௧௛ step of construction is called ݈௧௛ 
order generator.  

 

 

Figure 1. First four steps of the iterative construction of MR fractal lattice with ݌ ൌ 2 and lattice with ݌ ൌ 3 
 
 
3. ASYMPTOTIC FORM OF PARTITION 

FUNCTION 
 
Partition function of our model is ܼ ൌ

∑ ௄ೢ௪ݏ , where ݏ௄ೢ can be seen as overall weight of 
particular Hamiltonian walk, and the partition fun-
ction is then the total weight of all walks. One closed 
HW on the fifth stage of construction of MR lattice 
is shown in Figure 2. There are 44 turns in this walk, 

so that its contribution to the partition function on 
that generator would be ݏସସ. It would be a formida-
ble task to find all closed walks and their weights on 
generators of higher order in that way. So we utilize 
self-similarity of fractal lattices and adopt a coarse-
graining method according to which we 
schematically represent generator of arbitrary order 
and walks on them. This enables us to determine the 
weights recursively. For example, fifth order genera-
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tor of MR lattice in Figure 2. is shown on right hand 
side in coarse-graining scheme, where all substructu-
res except fourth order generator are left out. Now, 
due to self-similarity, this picture actually represents 
two consecutive generators for arbitrary ݈. Complete 
cycle from the left side becomes two ‘step’ walk in 
coarse-graining scheme on the right side, and all 
Hamiltonian cycles on ݈௧௛  order generator of MR 
lattice would be represented by the same coarse-
graining cycle. ‘Step’ denoted by ܤଵ  represent all 
Hamiltonian walks that enter and leave ሺ݈ െ 1ሻ௧௛ 

order generator through the vertices that belong to 
different generators of order ሺ݈ െ 2ሻ , and whose 
entering and exiting direction makes an angle of 

180°. Assuming that ܤଵ
ሺ௟ିଵሻ denotes overall weight 

of all walks represented by step ܤଵ  on ሺ݈ െ 1ሻ௧௛ 
order generator, partition function on ݈௧௛ order gene-

rator of MR lattice can be written as ܼሺ௟ሻ ൌ ቀܤଵ
ሺ௟ሻቁ

ଶ
. 

Weight ܤଵ
ሺ௟ሻ  should be determined recursively, 

which involves different types of steps or configura-
tions on generators . 

 

 

Figure 2. An example of closed compact conformation (thick line) on 	5݄ݐ order generator of MR fractal. All lattice 
points are visited (compactness) only once ( self-avoidance). Vertices are colored white if the walk makes right angle 

turn on them. The same walk is represented in coarse-graining scheme on the right 

 

 
Figure 3. Different types of configurations that are possible on generators of any order for fractals  

with ݌ ൌ 3 and ݌ ൌ 4 
 
 

Due to the lattice geometry and connectivity, 
applying symmetry considerations, we find that the-
re are  symmetrically non-equivalent configurati-
ons that are possible on MR fractal (݌ ൌ 2) and 11 
configurations possible on fractals with ݌ ൌ 3  and 
݌ ൌ 4. All eleven are represented schematically in 
Figure 3. Configurations denoted by ܦଷ and ܧଷ	 can-
not exist on ݌ ൌ 2 fractal. Weights of configurations 
that appear on fractal with ݌ ൌ 2 satisfy following 
recurrence equations  

ଵܣ
ሺ௟ାଵሻ ൌ ଵܤ

ሺ௟ሻܦଵ
ሺ௟ሻ, 	ܣଶ

ሺ௟ାଵሻ ൌ ଵܤ
ሺ௟ሻܦଶ

ሺ௟ሻ,                (1) 

 

ଵܤ
ሺ௟ାଵሻ ൌ ቀܣଶ

ሺ௟ሻቁ
ଶ
ଶܤ ,

ሺ௟ାଵሻ ൌ ଵܣ
ሺ௟ሻܣଶ

ሺ௟ሻ, ܤଷ
ሺ௟ାଵሻ ൌ

ቀܣଵ
ሺ௟ሻቁ

ଶ
,                                           (2) 

ଵܦ  
ሺ௟ାଵሻ ൌ ቀܤଶ

ሺ௟ሻቁ
ଶ
൅ ଶܦ2

ሺ௟ሻܧଶ
ሺ௟ሻ, ܦଶ

ሺ௟ାଵሻ ൌ ଶܤ
ሺ௟ሻܤଷ

ሺ௟ሻ ൅

ଵܦ
ሺ௟ሻܧଶ

ሺ௟ሻ ൅ ଶܦ
ሺ௟ሻܧଵ

ሺ௟ሻ ,                                               (3) 

ଵܧ	
ሺ௟ାଵሻ ൌ ቀܦଶ

ሺ௟ሻቁ
ଶ
ଶܧ ,

ሺ௟ାଵሻ ൌ ଵܦ
ሺ௟ሻܦଶ

ሺ௟ሻ,                    (4) 

while on fractal with ݌ ൌ 3 they are given by  

ଵܣ
ሺ௟ାଵሻ ൌ ଵܤ

ሺ௟ሻܦଵ
ሺ௟ሻܦଷ

ሺ௟ሻ , 		ܣଶ
ሺ௟ାଵሻ ൌ ଵܤ

ሺ௟ሻܦଶ
ሺ௟ሻܦଷ

ሺ௟ሻ,    (5) 
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ଵܤ
ሺ௟ାଵሻ ൌ ଵܣ

ሺ௟ሻ ቀܣଶ
ሺ௟ሻቁ

ଶ
ଶܤ ,

ሺ௟ାଵሻ ൌ ቀܣଵ
ሺ௟ሻቁ

ଶ
ଶܣ
ሺ௟ሻ, ܤଷ

ሺ௟ାଵሻ ൌ ቀܣଵ
ሺ௟ሻቁ	ଷ,                  (6) 

ଵܦ	
ሺ௟ାଵሻ ൌ ଵܤ2	

ሺ௟ሻܤଶ
ሺ௟ሻܦଶ

ሺ௟ሻ ൅ ଶܦ2
ሺ௟ሻܦଷ

ሺ௟ሻܧଶ
ሺ௟ሻ ൅ ቀܦଶ

ሺ௟ሻቁ
ଶ
ଷܧ
ሺ௟ሻ ,                   (7) 

ଶܦ
ሺ௟ାଵሻ ൌ ଵܤ

ሺ௟ሻܤଶ
ሺ௟ሻܦଵ

ሺ௟ሻ ൅ ଵܤ
ሺ௟ሻܤଷ

ሺ௟ሻܦଶ
ሺ௟ሻ ൅ ଵܦ

ሺ௟ሻܦଶ
ሺ௟ሻܧଷ

ሺ௟ሻ ൅ ଵܦ
ሺ௟ሻܦଷ

ሺ௟ሻܧଶ
ሺ௟ሻ ൅ ଶܦ

ሺ௟ሻܦଷ
ሺ௟ሻܧଵ

ሺ௟ሻ,                                     (8) 

ଷܦ	
ሺ௟ାଵሻ ൌ ଵܤ2	

ሺ௟ሻܤଷ
ሺ௟ሻܦଵ

ሺ௟ሻ ൅ ቀܦଵ
ሺ௟ሻቁ

ଶ
ଷܧ
ሺ௟ሻ ൅ ଵܦ2

ሺ௟ሻܦଷ
ሺ௟ሻܧଵ

ሺ௟ሻ ,                               (9) 

ଵܧ
ሺ௟ାଵሻ ൌ ቀܦଶ

ሺ௟ሻቁ
ଶ
ଷܦ
ሺ௟ሻ , ܧଶ

ሺ௟ାଵሻ ൌ ଵܦ
ሺ௟ሻܦଶ

ሺ௟ሻܦଷ
ሺ௟ሻ , ܧଷ

ሺ௟ାଵሻ ൌ ቀܦଵ
ሺ௟ሻቁ

ଶ
ଷܦ
ሺ௟ሻ .                                        (10) 

 
On ݌ ൌ 4 recurrence equations are similar to 

the case ݌ ൌ 3 but more cumbersome, so that they 
are omitted here. On all three fractals recurrence 
equations satisfy the same initial conditions: 

ଵܣ 
ሺଵሻ ൌ ଶܣ , ସݏ

ሺଵሻ ൌ ଵܤ , ଷݏ
ሺଵሻ ൌ ଶܤ ,ଶݏ

ሺଵሻ ൌ  , ଷݏ

ଷܤ
ሺଵሻ ൌ ଵܦ , ସݏ

ሺଵሻ ൌ ଶܦ , ଶݏ
ሺଵሻ ൌ ଷܦ , ݏ

ሺଵሻ ൌ 1 , 

ଵܧ
ሺଵሻ ൌ ଶܧ , ଶݏ

ሺଵሻ ൌ ଷܧ , ଷݏ
ሺଵሻ ൌ   . ସݏ

Partition functions of the model can be written 
as: 

ܼሺ௟ାଵሻ ൌ ቀܤଵ
ሺ௟ሻቁ

ଶ
                                                  (11) 

	ܼሺ௟ାଵሻ ൌ ቀܤଵ
ሺ௟ሻቁ

ଶ
ଷܦ
ሺ௟ሻ                                          (12) 

ܼሺ௟ାଵሻ ൌ ቀܤଵ
ሺ௟ሻቁ

ଶ
ቀܦଷ

ሺ௟ሻቁ
ଶ
                                      

(13) 

for fractals with ݌ ൌ 2,3 and  respectively. In order 
to obtain asymptotic form of the partition function, it 
is more convenient to introduce new rescaled varia-
bles whose values for arbitrary ݈  are defined as: 

ܽ௜
ሺ௟ሻ ൌ ௜ܣ

ሺ௟ሻ/ܧଵ
ሺ௟ሻ  for ݅ ൌ 1,2 ; ܾ௜

ሺ௟ሻ ൌ ௜ܤ
ሺ௟ሻ/ܧଵ

ሺ௟ሻ  for 

݅ ൌ 1,2,3  ; ݀௜
ሺ௟ሻ ൌ ௜ܦ

ሺ௟ሻ/ܧଵ
ሺ௟ሻ  for ݅ ൌ 1,2,3  and 

݁௜
ሺ௟ሻ ൌ ௜ܧ

ሺ௟ሻ/ܧଵ
ሺ௟ሻ  for ݅ ൌ 2,3 . Recurrence equations 

for new variables on fractal with ݌ ൌ 2, that follow 
from equations (1)-(4) are:  

ܽଵ
ሺ௟ାଵሻ ൌ

௕భ
ሺ೗ሻௗభ

ሺ೗ሻ

ቀௗమ
ሺ೗ሻቁ

మ 	 ,  ܽଶ
ሺ௟ାଵሻ ൌ

௕భ
ሺ೗ሻ

ௗమ
ሺ೗ሻ ,                          (14) 

ܾଵ
ሺ௟ାଵሻ ൌ ൬

௔మ
ሺ೗ሻ

ௗమ
ሺ೗ሻ൰

ଶ

, ܾଶ
ሺ௟ାଵሻ ൌ

௔భ
ሺ೗ሻ௔మ

ሺ೗ሻ

ቀௗమ
ሺ೗ሻቁ

మ  , ܾଷ
ሺ௟ାଵሻ ൌ ൬

௔భ
ሺ೗ሻ

ௗమ
ሺ೗ሻ൰

ଶ

	,   

(15) 

݀ଵ
ሺ௟ାଵሻ ൌ

ቀ௕మ
ሺ೗ሻቁ

మ
ାଶௗమ

ሺ೗ሻ௘మ
ሺ೗ሻ

ቀௗమ
ሺ೗ሻቁ

మ , ݀ଶ
ሺ௟ାଵሻ ൌ

௕మ
ሺ೗ሻ௕య

ሺ೗ሻାௗమ
ሺ೗ሻାௗభ

ሺ೗ሻ௘మ
ሺ೗ሻ

ቀௗమ
ሺ೗ሻቁ

మ , 

(16) 

݁ଶ
ሺ௟ାଵሻ ൌ

ௗభ
ሺ೗ሻ

ௗమ
ሺ೗ሻ		.                                                       (17) 

For fractals with ݌ ൌ 3 and ݌ ൌ 4  reccurence 
equations for the variables ܽଵ, ܽଶ and ݁ଶ are the same 
as for ݌ ൌ 2, while recurrence equation for the varia-

ble ݁ଷ is ݁ଷ
ሺ௟ାଵሻ=ቀ݁ଶ

ሺ௟ାଵሻቁ
ଶ
. Recurrence equations for 

variables ܾ௜ and ݀௜ are different from those given by 
equations (15) and (16) and more complicated. In 
new variables, all three partition functions can be 
written as 

ܼሺ௟ାଵሻ ൌ ቀܾଵ
ሺ௟ሻቁ

ଶ
ቀ݀ଷ

ሺ௟ሻቁ
௣ିଶ

ቀܧଵ
ሺ௟ሻቁ

௣

,                    (18)  

and for all three ݌ considered, recurrence equation 
for the variable ܧଵ can be written as  

ଵܧ		
ሺ௟ାଵሻ ൌ ቀ݀ଶ

ሺ௟ሻቁ
ଶ
ቀ݀ଷ

ሺ௟ሻቁ
௣ିଶ

ቀܧଵ
ሺ௟ሻቁ

௣

.                  (19) 

Analyzing the system of non-linear difference 
equations (14)-(17) and equation given by (19) for 
݌ ൌ 2, and similarly for other two fractals, we esta-
blish the following asymptotic form (as ݈ → ∞) of 
equation (18): 

ܼ௟~ ൝	
௘ߤ௘߱ே೗ܥ

ሺே೗ሻ഑	,			for even	݈				

௢ߤ௢߱ே೗ܥ
ሺே೗ሻ഑,								for odd	݈		

 

where ܥ௘ and ܥ௢ are some constants (scaling amplitu-
des) and ௟ܰ ൌ 4 ∙ ሺ݌ሻ௟ିଵ is the number of lattice sites. 

Scaling exponent ߪ  is ߪ ൌ
ଵ

ଶ
 on all three fractals. 

Asymptotic form (20) is the same as those obtained in 
[12] in the case of fully flexible polymers, but now ߱ 
௘ߤ ,  and ߤ௢  are functions of stiffness parameter ݏ  . 
Dependence of ߱ , ߤ௘  and ߤ௢  on ݏ for all three frac-
tals is graphically presented in Figure 4. Connectivity 
constant ߱  determines leading exponential factor in 
partition function, an generally is defined as ݈݊߱ ൌ
limே→ஶ

௟௡௓

ே
. From equation (18) it follows that 

݈݊߱ ൌ limே೗→ஶ
௟௡ாభ೗
ே೗

 , which can be obtained by 

numerical iteration from equation (19). This quantity 
is crucial since free energy in the thermodynamic 
limit is proportional to it.  
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Figure 4. Scaling parameters as functions of stiffness parameter s on three considered fractals: ߱ሺݏሻ is shown on the 

left and ߤ௘ሺݏሻ and ߤ௢ሺݏሻ are shown on the right 
 

 
Figure 5. Free energy of semi-flexible HWs as function of stiffness parameter s on three considered lattices 

 
 
 

4. THERMODYNAMICS 
 

To obtain thermodynamic quantities, we start 
from the free energy ܨ ൌ െ݇஻݈ܼܶ݊  which in the 

thermodynamic (TD) limit is ݂ ൌ limே→ஶ
ி

ே
 . From 

equation (20) we obtain ݂ ൌ െ݇஻݈ܶ݊߱ ൌ ߝ
௟௡ఠ

௟௡௦
. 

Free energy of our model in the TD limit on all three 
fractals is shown in Figure 5. It is clear from the 
figure that free energy is continuous and differentia-
ble function of s on all three lattices . 

Mean number of bends is given by definition 

as 〈ܭ〉 ൌ
ଵ

௓
∑ ௄௪ݏܭ  , and can be expressed as 

〈ܭ〉 ൌ
డ௟௡௓

డ ୪୬ ௦
. Internal energy is proportional to the 

mean number of bends : ܷ ൌ 〈ܧ〉 ൌ 〈ܭ〉ߝ ൌ ߝ
డ௟௡௓

డ ୪୬ ௦
 , 

which in the TD limit is given by ݑ ൌ ݏߝ
డ

డ௦
ሺ݈݊߱ሻ. 

Persistence length in our model can be defined as the 
mean number of steps in one direction, i.e. ݈௣ ൌ

limே→ஶ
ே

〈௄〉
 , where ܰ	 is the total number of steps in 

the cycle equal to the number of lattice sites. Persi-
stence length can be expressed as ݈௣ ൌ

ఌ

௨
 . Depen-

dence of internal energy and persistence length on s 
are presented in Figure 6. We see that internal 
energy is increasing function of stiffness parameter s 
(decreasing function of stiffness) on all there frac-
tals. At low temperatures or large bending energy, 
that is for small s, conformations with smaller num-
ber of bends dominate, but for larger value of s con-
formations with larger number of bends become 
more probable, and mean energy is higher. For the 
same reason the persistence length is monotonically 
decreasing function of s.  
For low stiffness parameter, mean number of bends 
is small so that there are long straight segments of 
polymer.    
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Figure 6. Internal energy of our model in the TD limit as function of stiffness parameter s, on lattices  

with ݌ ൌ 2,3, and  (left). Persistence length as function of stiffness parameter (right)  
 

    
Figure 7. Specific heat (left) and entropy (right) in the TD limit as functions of stiffness parameter s on lattices  

with ݌ ൌ 2,3, and   
 

Finally, specific heat and entropy of our 
model are presented in Figure 6 . There is peak in 
specific heat in TD limit on all three fractal lattices, 
and on lattice with ݌ ൌ 4 one small peak for ݏ ൌ 0. 
0264 additionally appeared. Entropy per monomer 
increases with stiffness, but while in the case ݌ ൌ 2 
entropy is zero for zero stiffness, for ݌ ൌ 3  and 
݌ ൌ 4  there is residual entropy for zero stiffness. 
This means that ground state is almost non degene-
rate for ݌ ൌ 2 , whereas for ݌ ൌ 3  and ݌ ൌ 4  it is 
highly degenerate, with exponentially large number 
of conformations. 

 
 
5. DISCUSSION AND CONCLUSIONS 
 
In this paper, we have proposed and analyzed 

a model of semi-flexible polymers in disordered 
media, represented by fractal lattices. These lattices 

are embedded in ݀ ൌ 2 space, and can be viewed as 
square lattice from which some bonds are deleted. 
We established asymptotic form of partition fun-
ction, given by equation (20), and further determined 
various thermodynamic quantities such as free and 
internal energy in the thermodynamic limit, persi-
stence length, specific heat, and entropy. Values of 
these quantities for different values of stif-fness 
parameter s are obtained by numerical iteration for 
each of the considered fractals, and their graphical 
presentation is given in Figure 5., Figure 6., and 
Figure 7. We can observe how physical properties of 
the model are changed by the gradual change of the 
underlying lattices. From Figure 6. it is obvious that 
internal energy of the model is largest for ݌ ൌ 2 and 
decreases with p. Consequently, persistence length 
increases with p. This is understandable if we have a 
look on geometry of lattices. For each value of p, 
there is an asymmetry in the number of bonds in the 
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horizontal and vertical direction. For lattices shown 
in Figure 1. there are more vertical than horizontal 
bonds, and these discrepancy is more pronounced 
for larger p. On lattices with larger p, conformations 
generally have smaller number of bends, since they 
are forced in vertical direction by the lattice. But, 
although many vertical bonds are missing from our 
lattices in comparison with square lattice, there is 
still a large number of horizontal steps in conforma-
tions that prevent ordered state such exists on square 
lattice. Since entropy and specific heat are continuo-
us, smooth functions of s, there is no finite order 
phase transition in our model. Compact phase is 
disordered one. Similar results are found on other 
fractal lattices [13]. 
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 

 
ПОЛУФЛЕКСИБИЛНИ КОМПАКТНИ ПОЛИМЕРИ У НЕУРЕЂЕНОЈ СРЕДИНИ  

 
Сажетак: Затворене Хамилтонове шетње са отпором ка закретању разматране 

су на прва три члана фракталне фамилије добијене генерализацијом модифициране 
правоугаоне (МП) фракталне решетке. Овај модел је предложен у циљу описивања 
конформационих и термодинамичких особина полуфлексибилног прстенастог поли-
мера заточеног у лошем и неуређеном (нпр. претрпаном) растварачу. Надметање 
између термалних ефеката и ефеката крутости полимера може довести до фазног 
прелаза између отопљене глобуле и кристалне фазе полимера. У раду је одређена 
статистичка сума модела у термодинамичком лимесу, и анализирана је у функцији 
параметра крутости s (Болцманова тежина), чије вриједности за полуфлексибилне 
полимере попримају вриједности у интервалу (0,1). Остале величине, као што су 
дужина перзистенције, специфична топлота и ентропија добијене су нумерички и 
представљене графички као функције параметра s. 

Кључне ријечи: полуфлексибилни полимер, неуређена средина, компактна 
фаза, дужина перзистенције, специфична топлота.  
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