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Abstract: Hamiltonian cycles with bending rigidity are studied on the first three
members of the fractal family obtained by generalization of the modified rectangular (MR)
fractal lattice. This model is proposed to describe conformational and thermodynamic pro-
perties of a single semi-flexible ring polymer confined in a poor and disordered (e.g.
crowded) solvent. Due to the competition between temperature and polymer stiffness, there
is a possibility for the phase transition between molten globule and crystal phase of a
polymer to occur. The partition function of the model in the thermodynamic limit is obtai-
ned and analyzed as a function of polymer stiffness parameter s (Boltzmann weight), which
for semi-flexible polymers can take on values over the interval (0,1). Other quantities, such
as persistence length, specific heat and entropy, are obtained numerically and presented

graphically as functions of stiffness parameter s.
Keywords: semi-flexible polymer, disordered media, compact phase, persistence

length, specific heat.

1. INTRODUCTION

Synthetic polymers such as polyethylene can
be quite flexible. Flexibility of polyethylene is
primarily caused by almost free rotation about single
covalent bond. Strictly speaking, there are three
values of torsion angle that are energetically favora-
ble, allowing for trans, gauche +, and gauche- rotati-
onal states [1]. The former two can easily be excited
by thermal energy, so that linear polymer in solvent
looks like a coiled thread of cotton. Typical confor-
mations of a flexible polymer in good solvent condi-
tions are that of random coil type.

One measure of polymer flexibility is the per-
sistence length [,,, which can be defined as a length
along the backbone of a polymer over which the
polymer segments become orientationally uncorrela-
ted. More intuitively, it is a length of polymer seg-
ments that appear straight. For flexible polymers
l, < L, where L is the contour length of polymer.

Biopolymers usually have complex chemical
structure which make them rigid over the range of
length scales much smaller than the contour length.
Such polymers (e.g. DNA, actin) belong to the class
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of semi-flexible polymers for which the persistence
length is comparable with the contour length, i.e.
l,~L. Conformational and thermodynamic properti-
es of semi-flexible polymers are less known compa-
red to their flexible counterparts. For flexible
polymers, it is well known that: (i) in good solvent
conditions they adopt swollen, coil like conformati-
ons, (ii) they undergo collapse transition at 8 tempe-
rature, (iii) bellow the 8 temperature in poor solvent
conditions, they are in compact, liquid like state with
globular conformations. Rigidity of polymer affects
the behavior in all three regimes. In compact phase,
with which we are primarily concerned, semi-
flexible polymer takes elongated, toroidal conforma-
tions [2,3]. It is confirmed that semi-flexible
polymers in compact phase can exist in either of two
phases: disordered — liquid-like phase or ordered -
crystal phase. But the order of phase transition and
the characterization of phases are questions that are
far from being settled[4-8].

In this paper, we apply model of weighted
(biased) Hamiltonian walks on fractal lattices to
describe compact conformations of a semi-flexible
polymer adsorbed on a non-homogeneous substrate.
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A model is applicable to biopolymers that are
usually confined in small and crowded space such as
eukariotyc cell or even adsorbed on surfaces (DNA
wrapped around the histone [9,10] ) .

2. MODEL AND LATTICES

Semi-flexible polymers are quite rigid, they
resist to bending. It costs energy to bend a portion of
a polymer. To incorporate this property in our
model, we introduce an energy penalty for each bend
in the conformation represented by Hamiltonian
walk (HW). Hamiltonian walks are self-avoiding
random walks that visit every lattice site, a property
that mimics compactness of conformations. Con-
formations have different energy, depending on the
number of bends in the walks. If € > 0 is the energy
of each bend, then the conformation w with K,
bends will have the energy equal to E,, = ¢K,,. Par-

Ew
tition function of the model is Z =Y, e k8T ,
where the sum runs over all possible conformations
(HWs). Inserting energy of conformations into the

partition function leads to Z =Y, s | where
&

s =e ksT is the Boltzmann factor or weight associ-
ated with each bend. We call s the stiffness parame-
ter, and we see that it is determined by the energy ¢
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of each bend and temperature 7. There are two
opposite limits: (i) rigid rod limit for which € = o
or T=0 so that s=0, and (i) fully flexible
polymer for which e =0 or T = o0 so that s = 1.
For semi-flexible polymers 0 < s < 1, which can
be achieved by keeping one of the parameters fixed
while varying another. It should be noted that stif-
fness (rigidity) of polymer decreases with such defi-
ned stiffness parameter s.

Our model is restricted to lattices [11], which
in this case are taken to be modified rectangular
(MR) fractal lattice and other two lattices which can
be obtained by simple generalization of MR lattice.
All three considered lattices are parameterized with
an integer p which take values p = 2,3 and 4. Case

p = 2 correspond to MR lattice. Construction of
fractal lattices is iterative, starting from the common
initiator which is a unit square. Then p unit squares
are connected in the rectangle to obtain first order
generator. In the next step, p rectangles are connec-
ted into a square, and so on. Fractal lattice in each of
the cases is obtained repeating the process ad infini-
tum. First four steps of construction for fractals with
p = 2 and p = 3 are depicted in Figure 1. Structure
obtained in the [*" step of construction is called [**
order generator.

oooooo

oooooo
......

......

oooooo
......
oooooo

oooooo

L e
L SR S}
.

L
L S ¥

L
.

L N L
-

......

=2 =3 =4

Figure 1. First four steps of the iterative construction of MR fractal lattice with p = 2 and lattice withp = 3

3. ASYMPTOTIC FORM OF PARTITION
FUNCTION

Partition function of our model is Z =
Y s¥w, where s can be seen as overall weight of
particular Hamiltonian walk, and the partition fun-
ction is then the total weight of all walks. One closed
HW on the fifth stage of construction of MR lattice
is shown in Figure 2. There are 44 turns in this walk,

so that its contribution to the partition function on
that generator would be s*#. It would be a formida-
ble task to find all closed walks and their weights on
generators of higher order in that way. So we utilize
self-similarity of fractal lattices and adopt a coarse-
graining method according to which we
schematically represent generator of arbitrary order
and walks on them. This enables us to determine the
weights recursively. For example, fifth order genera-
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tor of MR lattice in Figure 2. is shown on right hand
side in coarse-graining scheme, where all substructu-
res except fourth order generator are left out. Now,
due to self-similarity, this picture actually represents
two consecutive generators for arbitrary [. Complete
cycle from the left side becomes two ‘step’ walk in
coarse-graining scheme on the right side, and all
Hamiltonian cycles on [*" order generator of MR
lattice would be represented by the same coarse-
graining cycle. ‘Step’ denoted by B; represent all
Hamiltonian walks that enter and leave (I — 1)t"

3

order generator through the vertices that belong to
different generators of order (I — 2), and whose
entering and exiting direction makes an angle of
180°. Assuming that Bl(l_l) denotes overall weight
of all walks represented by step B; on (I — 1)t"
order generator, partition function on [*" order gene-

2
rator of MR lattice can be written as Z( = (Bl(l)) .

Weight Bl(l) should be determined recursively,
which involves different types of steps or configura-
tions on generators .

Bi1 B

Figure 2. An example of closed compact conformation (thick line) on 5th order generator of MR fractal. All lattice
points are visited (compactness) only once ( self-avoidance). Vertices are colored white if the walk makes right angle
turn on them. The same walk is represented in coarse-graining scheme on the right

Al Ao
B B> B3
D D> Ds3
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Figure 3. Different types of configurations that are possible on generators of any order for fractals
withp =3 andp = 4

Due to the lattice geometry and connectivity,
applying symmetry considerations, we find that the-
re are 9 symmetrically non-equivalent configurati-
ons that are possible on MR fractal (p = 2) and 11
configurations possible on fractals with p = 3 and
p = 4. All eleven are represented schematically in
Figure 3. Configurations denoted by D; and E; can-
not exist on p = 2 fractal. Weights of configurations
that appear on fractal with p = 2 satisfy following
recurrence equations

+1) _ pOp® 40+ _ pOpO
A = pOp® 40D — pOp®, (1)

(+1) _ 4OV p0+D) _ 40,0 pU+1) _
BV = (4P, B = aPaD, B =

2
l

(aPY". )

2
Dl(l+1) — (BZ(Z)) + ZDZU)EZ(D, D§l+1) — Bz(l)B;JEl) +
i Ey” + DVEL 3)

2
E1(1+1) _ (Dél)) ,E2(1+1) _ Dl(l)Dél), )

while on fractal with p = 3 they are given by
A§l+1) _ Bl(l)Dl(l)Dg(,l) ’ Agl+1) _ Bl(l)Déz)Dgl)’ )
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Bl(z+1) _ Agl) (Agl))z, Bz(z+1) _ (Agl))z A(Zl), B§l+1) = (Agl)) 3, (6)
p0+D = 280pOPD 4 2pOpDED 4 (Dz(z))z ED, (7
D" = 50500 + BB D + DOV EY + DD EY + D DB, ®
D§l+1) _ 231(1)33(1)[)1(1) + (Dl(l))Z E3(z) + 2D1(l)D3(l)E1(l) ’ 9)

+1) _ (O h O o0+ _ OO0 0D _ (nO) 4O
EY = (0) b ES*Y = pPpPpP  E{Y = (0P) .

On p = 4 recurrence equations are similar to
the case p = 3 but more cumbersome, so that they
are omitted here. On all three fractals recurrence
equations satisfy the same initial conditions:

Agl) =s*, Agl) =s3, Bl(l) =52, 32(1) =s3,
BV =s*, DV =52, DV =5,DV =1,
El(l) =s?, Ez(l) =s3, Eél) =s*.

Partition functions of the model can be written

as:
2040 = (50’ an
70+ = (Bl(”)2 p{h (12)
2o = () 00

(13)

for fractals with p = 2,3 and 4 respectively. In order
to obtain asymptotic form of the partition function, it
is more convenient to introduce new rescaled varia-
bles whose values for arbitrary [ are defined as:
al’ = AY/EP for i=12; b =BP/EL for
i=123 ; dY =DpY/EY for i=123 and
el.(l) = Ei(l) /El(l) for i = 2,3. Recurrence equations
for new variables on fractal with p = 2, that follow
from equations (1)-(4) are:

a+n _ b

v _ 50 0
pok

ENCT "

2 2
p+D) _ (%) +D _ agoagl: p0+D (%)
1 > F2 > M3 B
d; (dgl)) d,

(15)
X0

2
0,0
g _ (1) w27e” iy pOn0raf rafef!
= =

(dgl))z s N2 (dgl))z >
(16)
0
I+1 d
;= (17)
2

(10)

For fractals with p = 3 and p = 4 reccurence
equations for the variables a;, a, and e, are the same
as for p = 2, while recurrence equation for the varia-

2
ble e; is e§l+1)=(e§l+1)) . Recurrence equations for

variables b; and d; are different from those given by
equations (15) and (16) and more complicated. In
new variables, all three partition functions can be
written as

Z(+1) _ (bil))z (dgl))P—Z (El(l))p’ a8)

and for all three p considered, recurrence equation
for the variable E; can be written as

2 -2 p
ED = (aP) (aP) (L) (19)
Analyzing the system of non-linear difference
equations (14)-(17) and equation given by (19) for
p = 2, and similarly for other two fractals, we esta-
blish the following asymptotic form (as [ - o) of
equation (18):

7 { Cea)l"lugvl)ov , forevenl
~

Coa)Nlu((,Nl)a, for odd [
where C, and C, are some constants (scaling amplitu-
des) and N; = 4 - (p)'~! is the number of lattice sites.
Scaling exponent o is o :% on all three fractals.

Asymptotic form (20) is the same as those obtained in
[12] in the case of fully flexible polymers, but now w
, Ue and u, are functions of stiffness parameter s .
Dependence of w , i, and p, on s for all three frac-
tals is graphically presented in Figure 4. Connectivity
constant w determines leading exponential factor in
partition function, an generally is defined as lnw =

limN_)mmTZ. From equation (18) it follows that

Inw = limNﬁoomTEl” , which can be obtained by
numerical iteration from equation (19). This quantity
is crucial since free energy in the thermodynamic
limit is proportional to it.
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Figure 4. Scaling parameters as functions of stiffness parameter s on three considered fractals: w(s) is shown on the
left and p,(s) and p,(s) are shown on the right
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Figure 5. Free energy of semi-flexible HWs as function of stiffness parameter s on three considered lattices

4. THERMODYNAMICS

To obtain thermodynamic quantities, we start
from the free energy F = —kgTInZ which in the
thermodynamic (TD) limit is f = limN_)oog. From
equation (20) we obtain f = —kgTlhw = ellnT(:.
Free energy of our model in the TD limit on all three
fractals is shown in Figure 5. It is clear from the
figure that free energy is continuous and differentia-
ble function of s on all three lattices .

Mean number of bends is given by definition

as (K):lZWKsK , and can be expressed as
z

(K) = gll—:i. Internal energy is proportional to the

alnz
dlns’

which in the TD limit is given by u = ssi(lnw).

mean number of bends : U = (E) = e(K) = ¢

Persistence length in our model can be defined as the
mean number of steps in one direction, i.e. [, =

limpy_, e (1\]7) , where N is the total number of steps in

the cycle equal to the number of lattice sites. Persi-
stence length can be expressed as [, = 5 . Depen-

dence of internal energy and persistence length on s
are presented in Figure 6. We see that internal
energy is increasing function of stiffness parameter s
(decreasing function of stiffness) on all there frac-
tals. At low temperatures or large bending energy,
that is for small s, conformations with smaller num-
ber of bends dominate, but for larger value of s con-
formations with larger number of bends become
more probable, and mean energy is higher. For the
same reason the persistence length is monotonically
decreasing function of s.

For low stiffness parameter, mean number of bends
is small so that there are long straight segments of
polymer.
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Figure 6. Internal energy of our model in the TD limit as function of stiffness parameter s, on lattices
with p = 2,3, and 4 (left). Persistence length as function of stiffness parameter (vight)
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Figure 7. Specific heat (left) and entropy (right) in the TD limit as functions of stiffness parameter s on lattices
withp = 2,3, and 4

Finally, specific heat and entropy of our
model are presented in Figure 6 . There is peak in
specific heat in TD limit on all three fractal lattices,
and on lattice with p = 4 one small peak for s = 0.
0264 additionally appeared. Entropy per monomer
increases with stiffness, but while in the case p = 2
entropy is zero for zero stiffness, for p = 3 and
p = 4 there is residual entropy for zero stiffness.
This means that ground state is almost non degene-
rate for p = 2, whereas for p =3 and p = 4 it is
highly degenerate, with exponentially large number
of conformations.

5. DISCUSSION AND CONCLUSIONS

In this paper, we have proposed and analyzed
a model of semi-flexible polymers in disordered
media, represented by fractal lattices. These lattices

are embedded in d = 2 space, and can be viewed as
square lattice from which some bonds are deleted.
We established asymptotic form of partition fun-
ction, given by equation (20), and further determined
various thermodynamic quantities such as free and
internal energy in the thermodynamic limit, persi-
stence length, specific heat, and entropy. Values of
these quantities for different values of stif-fness
parameter s are obtained by numerical iteration for
each of the considered fractals, and their graphical
presentation is given in Figure 5., Figure 6., and
Figure 7. We can observe how physical properties of
the model are changed by the gradual change of the
underlying lattices. From Figure 6. it is obvious that
internal energy of the model is largest for p = 2 and
decreases with p. Consequently, persistence length
increases with p. This is understandable if we have a
look on geometry of lattices. For each value of p,
there is an asymmetry in the number of bonds in the
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horizontal and vertical direction. For lattices shown
in Figure 1. there are more vertical than horizontal
bonds, and these discrepancy is more pronounced
for larger p. On lattices with larger p, conformations
generally have smaller number of bends, since they
are forced in vertical direction by the lattice. But,
although many vertical bonds are missing from our
lattices in comparison with square lattice, there is
still a large number of horizontal steps in conforma-
tions that prevent ordered state such exists on square
lattice. Since entropy and specific heat are continuo-
us, smooth functions of s, there is no finite order
phase transition in our model. Compact phase is
disordered one. Similar results are found on other
fractal lattices [13].
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MNOJIY®JIEKCUBUJIIHU KOMITAKTHU ITOJIMMEPU ¥V HEYPEBEHOJ CPEJAMHU

Caxerak: 3aTBopeHe XaMUJITOHOBE IIETHE Ca OTIIOPOM Ka 3aKpeTamy pa3MaTpaHe
Cy Ha TpBa TPH WiaHa (pakTanHe damunuje noOujeHe TeHepan3aIijoM MOTUPHUIIPaHe
mpaBoyraone (MII) ¢pakramae pemerke. OBaj MOJEN je MPEINIOKEH Y MUJbY ONMHCHBAHA
KOH(OPMALMOHUX M TEPMOJMHAMUYKHX OCOOHMHA IOy (HICKCHOMIHOT IIPCTEHACTOT ITOJIH-
Mepa 3aTOYEHOTr y JOIIeM W HeypeheHoM (HOp. mpeTpmaHoM) pactBapady. Haamerame
n3mel)y TepmanHux edekara u edekara KpyTOCTH MOJMMEpa MOXE JIOBECTH A0 (asHor
npesa3a u3Mel)y oTorsbeHe TJ100yine U kpuctanHe ¢ase monumepa. Y paay je oapehena
CTAaTHCTHYKA CyMa MOJiella Y TePMOJAMHAMHUYKOM JIMMECY, U aHaIU3UpaHa je y QyHKIUjU
napamerpa kpyTtoct s (BonMaHOBa TeXWHA), YMje BPHUjSIHOCTH 3a MOJY(ICKCHOMITHE
nonuMepe Tonpumajy BpujenHocti y uHtepBany (0,1). Ocrane BennuuHe, Kao LITO CY
JOy’)KMHa Tep3UCTeHIHje, crienn(ryHa TOIUIOTa M €HTPONHja N0OWjeHe Cy HyMEpPHUYKH U
npezcTaBibeHe rpaguuky Kao (GyHKIH]jE ITapaMeTpa s.

Kibyune pujeun: noxyuekcnOMIHE TOIMMeEp, HeypeheHa cpeanHa, KOMITaKTHA
(aza, Ty>)KuHa TIEP3UCTEHIIN]E, CTICII(PHIHA TOTIIOTA.
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