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Abstract: The general ECE theory is developed of field interaction and particle in-

teraction on the classical and quantum relativistic level using the minimal prescription. The 

theory conserves total energy (momentum and charge) current density, and is based on the 

development of the tetrad postulate of Cartan geometry into the EEC wave equation and 

fermion equation. The latter is developed for any kind of interaction between fields or be-

tween particles or particles and fields. In ECE theory all of these interactions are phenomena 

of spacetime represented by geometry. The general theory is applied to reproducible and re-

peatable experimental data from low energy nuclear reactions.   

Keywords: ECE theory, general interaction between fields and particles, low energy 

nuclear reaction.  

 

 

 

1. INTRODUCTION  

 

In papers of this series [110] it has been 

shown that the received opinion on particle interac-

tion becomes wildly erroneous when conservation of 

energy and momentum are correctly considered [13].  

The fundamental theory of particle interaction 

in the received opinion has collapsed. In order to 

remedy this disaster for standard physics a new ap-

proach was suggested in [14,15] based on the ECE 

wave equation [110]. The latter was derived in the 

early papers of this series from the tetrad postulate 

of Cartan geometry [11]. In [15,16] the fermion 

equation was derived from the ECE wave equation. 

The fermion equation is equivalent to the chiral rep-

resentation of the Dirac equation but dispenses with 

the need for Dirac matrices. It uses the two by two 

tetrad matrix. The fermion equation does not lead to 

unphysical negative energy, so has this great advan-

tage over the Dirac equation. In Section 2 the fer-

mion equation is developed into a general ECE the-

ory of field field, particle field, and particle particle 

interaction using a generalized minimal prescription. 

This general theory can be applied to a wide range 

of problems. It conserves total energy (momentum, 

and total charge) current density. It is a unified field 

theory and it is generally covariant, and can be used 

with all four fundamental fields: gravitation, elec-

tromagnetism, weak and strong nuclear. It can also 

be applied to particle particle interaction or matter 

field (matter field interaction, or particle) matter 

field interaction, for example scattering, chemical 

reactions, annihilation and transmutation, fission and 

fusion. In Section 3 it is applied to specific examples 

of low energy nuclear reaction (LENR). The ex-

perimental data in LENR are generally accepted to 

be reproducible and repeatable, and LENR devices 

giving a new source of energy are expected to be 

available in the near future. So it is important to un-

derstand LENR with ECE theory, the first generally 

accepted and generally covariant unified field the-

ory.  

 

 

2. GENERAL ECE THEORY  

 

This section should be read as usual in con-

junction with the background notes posted along 

with this paper on www.aias.us.  The background 

notes provide comprehensive scholarly detail of 

which this paper is a synopsis.  

Consider two particles of four momenta 
p   

and 


1p  :  


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

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In the semi classical development:  

  ip ,      (2) 
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where:  














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
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1

tc


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In the minimal prescription the interaction is 

described by:  


1ppp  .     (4) 

So:  

1EEE  ,      (5) 

1ppp


 ,     (5a) 

where E is the total relativistic energy:  

2mcE  ,      (6)  

and where p


 is the relativistic momentum:  

vmp


 .      (7)

  

The Lorentz factor is defined by:  

2/1
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



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




c

v
 ,      (8) 

where v is the velocity of a particle of mass m and 

where c is the speed of light in vacuo. eq. (7) implies 

[12] the Einstein energy equation:  

42222 cmcpE  ,     (9) 

which can be written as:  

   2222422 pcmcEmcEcmE          (10) 

The relativistic kinetic energy [12] is defined 

as:  

 
2

22
22 1

mcE

pc
mcmcET


  .            (11) 

So the relativistic kinetic energy is:  

2
2

1
mvT 














,                           (12) 

and reduces in the non-relativistic limit:  

1 ,                                                    (13) 

to the classical non relativistic kinetic energy of the 

particle:  

2

2

1
mvT  ,                            (14) 

From Eqs. (4) and (9):  

    422

1

22

1 cmppcEE  ,             (15) 

This is the classical relativistic description of 

particle interaction with the minimal prescription. 

From eq. (15):  

   21

2422

1 ppccmEE  ,              (16) 

so:  

 
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1

2
2

1
mcEE

ppc
mcEET




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is the relativistic kinetic energy of a particle of mass 

m interacting with a particle of mass m  

It can be expressed as:   

 

1

2
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1 
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
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vv
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where:  
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c
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where v1 is the velocity of particle m1.  

This classical relativistic theory is a limit of 

the ECE fermion equation, which is derived from 

Cartan geometry. The concepts of particle masse m 

and m1 are limits of the more general R factor of the 

ECE wave equation as described [14,15] and preced-

ing papers. In general, ECE theory allows mass to 

vary. The analysis [13] shows that the concept of 

fixed particle mass in the received opinion is com-

pletely untenable. 

It is well known that the Dirac equation can 

be used to describe phenomena such as the g factor 

of the electron, the Landé factor, the anomalous 

Zeeman effect, electron spin resonance (ESR), nu-

clear magnetic resonance (NMR), magnetic reso-

nance imaging (MRI), the Thomas factor, spin orbit 

coupling and the Darwin effect. However the ap-

proximations used to claim these results are very 

carefully selected. This selection of approximation is 

illustrated next on the classical relativistic level. The 

fermion equation produces all these phenomena 

given the same selection of approximation. With 

contemporary computers such approximations are 

not needed and a much more thorough analysis can 

be initiated.   

The approximations start by writing eq. (15) 

as:  

 

1
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Add mc
2 
to both sides:  

  2
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1 mc
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
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Assume that:  

EE 1 .                (22) 

In the denominators on the right hand side of 
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eq. (21) assume that  

E+E1~E             (23)  

to obtain:  

  2
422

122

1 mc
E

cm

E

pp
cmcEE 


     (24) 

Next assume that in the classical non relativis-

tic limit:  

22 mcmcE  .               (25) 

Use this approximation in eq. (24) in the fol-

lowing selected manner:  

 21
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               (26) 

When quantized these are the approximations 

used by Dirac and his contemporaries. They are not 

very satisfactory because they are selected approxi-

mations, i.e. are not used consistently through the 

equations. A factor of two has appeared and this is 

the basis of the claim that the Dirac equation gives 

the g factor and Thomas factor. In reality, the factor 

two has been very carefully selected from the theory 

to give the “right” result.  

Next, eq. (26) is rearranged as:  
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
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In the second term on the right hand side of 

this equation it is assumed that:  

22

1 ~,2 mcEmcE  ,               (28) 

to obtain:  
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Therefore the relativistic kinetic energy of the 

interacting particles is  
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Finally assume that:  
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to obtain:  
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Comparing eqs. (32) and (17) it is seen that 

eq. (17) has been approximated by use of eq. (26), so 

eq. (17) becomes:  
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ppc
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This equation is further approximated by:  

22

1 ~ mcEmcEET  ,              (34) 

to give Eq. (32).  

 In order to quantize this theory the fermion 

equation [110] is used:  

     RL mcppcEE  2

11 

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     LR mcppcEE  2

11 
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where the right and left spinors are defined by:  
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It follows that:  

       LL cmppppcEE  42
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  (38) 

and similarly for 
R . The carefully selected ap-

proximations described already on the classical level 

are implemented as follows, giving a range of phe-

nomena in this general theory of interaction.  

Write eq. (38) as:  
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2
 to each side:   

      LL mc
EE

cm
pp

EE

c
ppmcEE 




























 2

1

42

1

1

2

1

2

1



  (40) 

Approximate in the same way as described al-

ready on the classical level to find that 

LL TH  ˆ ,                 (41) 

where:  

2mcET  ,                 (42) 

and 
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






  ,   (43) 

is the hamiltonian operator. In the momentum repre-

sentation of quantum mechanics:  







ip                 (44) 

where ħ is the reduced Planck constant. The hamil-

tonian operator is therefore:  

21
ˆˆˆ HHH  ,                 (45) 
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where:  

   111
2

1ˆ pipi
m

H
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
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

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and  
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1
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E
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
  .    (47) 

Consider for the sake of illustration the inter-

action of the U(1) electromagnetic potential A
μ 

with an electron. Then the 1Ĥ operator is claimed in 

the received opinion to give the g factor of the elec-

tron, the anomalous Zeeman effect, ESR, NMR and 

MRI. As we have argued, this claim is based on very 

carefully selected approximation designed to intro-

duce the critical factor two. The second hamiltonian 

2Ĥ gives the Thomas factor, spin orbit coupling and 

the Darwin term.  

All these phenomena will have their equiva-

lents in the general ECE theory being developed 

here. In addition there is no need to adhere to the 

approximation procedures of an earlier era because 

of available computational methods. So a multitude 

of new phenomena emerge from the theory, even on 

this semi classical level.  

In eq. (43):  

    1
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  .              (48) 

so the first type of hamiltonian becomes:  
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m
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  ,               (49) 

and operates as follows:  

LL TH  1
ˆ ,                 (50) 

to give energy eigenvalues. Note carefully that:  

  LL pp  


11 ,                (51) 

using the Leibnitz theorem. Similarly:  
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and  
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Using:  
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 pp LL                (54) 

the hamiltonian operator becomes:  
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(55) 

This result may be applied to a large number 

of phenomena within the approximation procedure 

used. For example, the minimal prescription for the 

interaction of an electron with a classical U(1) elec-

tromagnetic field is:      

 eApp  .               (57) 

On the ECE level the minimal prescription is:  

aaa eApp                  (58) 

and the ECE level leads to a large number of new 

insights [110], bringing into consideration the spin 

connection.  It has been shown in [18] that the U(1) 

description collapses completely when antisymmetry 

is correctly applied, so is used here for illustration 

only. Eq. (58) means that for each state of polariza-

tion a, the minimal prescription applies. On the U(1) 

level the hamiltonian operator (56) becomes:  

m

Ae

m
H

22
ˆ
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2

2

1 
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 
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e
i 2

2
 

A
m

e 
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2
               (59) 

and this operator generates interaction energy eigen-

values. It can be used to describe Aharanov Bohm 

effects and to describe the interaction of the back-

ground potential of ECE theory with an electron.   

In order to describe the absorption of a photon 

on the U(1) level the following equation is used:  

 keA  .                (60) 

Here:  









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c
A


,


, 








 k

c
k


,


,              (61) 

where ϕ is the scalar potential, A


 is the vector po-

tential, ω the angular frequency and k


 the wave 

vector. In [19] was shown that the conventional the-

ory of absorption collapses due to neglect of conser-

vation of momentum, but in this theory total mo-

mentum is conserved.  

In the generally covariant form of this theory, 

the concept of mass is replaced by the curvature R 

using the Hamilton Jacobi equation:  

   22cmkpkp o 
  ,              (62) 

as in [15] where Eq. (62) was written as:  

22

1

2 cmRpp o 


.                          (63) 

Consider the four momentum 


1p  of particle 

1 interacting with matter wave 2 defined by the 
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wave four vector 


2k . Particle 1 is also a matter 

wave by the Planck / de Broglie postulate:  


11 kp  .                           (64) 

In [15] it was shown that the interaction is de-

scribed by:  
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1
2 1 0om c
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  
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                          (65) 

where the R2 parameter is:  

2

2
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
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
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R ,                 (66) 

and is defined by the concept of interacting mass:  
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.      (67) 

This concept was introduced to account for 

the findings of [13], which show that the concept of 

fixed particle mass is untenable completely. In Eq. 

(65) therefore m10 denotes the measured mass. eq. 

(66) can be written as:  

2

2
1 0

m c


  
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where 

  2/12

10

2

22 mmM  ,               (69) 

and is an example of the ECE wave equation:  

  0aR q  ,                            (70) 

which is factorized in [16,17] to the fermion equa-

tion. This method is further developed in the accom-

panying note 226(2).   

Therefore in this general ECE theory it is pos-

sible to think of a quantum of spacetime energy be-

ing absorbed during a reaction. This idea generalizes 

the Planck concept of a quantum of electromagnetic 

energy, the photon. A low energy nuclear reaction 

(LENR) can be exemplified as follows:  

ZnCupNi  6364
.               (71) 

Here 
 64

Ni has 36 neutrons and 28 protons, and 
63

Cu has 34 neutrons and 29 protons. So 
64

Ni is 

transmuted into 
63

Cu with the release of two neu-

trons. The theory must explain why this reaction 

occurs at low energies. The classical description re-

sults in a scattering process:  

       fpfNiipiNi  6464
,              (72) 

and no transmutation. The proton p would be re-

pelled by the 
64

Ni nucleus, and no neutrons would be 

released. However, in LENR, nickel is observed to 

be transmuted to copper with the release of usable 

energy. Total energy must be conserved, so there 

must be a source of energy that is not accounted for 

in received physics. In the theory of [14] on 

www.aias.us :  

 kpp  ,                (73) 

and the reaction (71) is described by the Hamilton 

Jacobi equation:  

   22cmkpkp o 
  ,              (74) 

where mo is the measured mass of the free nickel 

atom. Using the method of [14], eq. (74) may be 

written as:  

2

1 0om c
R 

  
       

,                          (75) 

where:  

2

1 











mc
R ,                (76) 

and where m is the interacting mass:  

2/1

2

2

2









 k

cc
m


.               (77) 

This is a property of spacetime, and ω and k


 

are the angular frequency and wave number of the 

proton matter wave, a property of spacetime. The 

total mass of the nickel atom during interaction 

therefore increases to:  

  2/122

ommM  ,               (77) 

and this critical mass has concomitant energy:  

2McEo  ,                (78) 

so that a nuclear reaction occurs. The process may 

be thought of as an absorption of a quantum of 

spacetime by the nickel nucleus, so that dissociation 

occurs with the release of neutrons. In Section 3 fur-

ther examples of LENR are discussed.  

 

 

3. LOW ENERGY NUCLEAR REACTIONS  

 

By analysing of linear equation for relativistic 

quantum mechanics and application to the transmis-

sion coefficient of quantum tunnelling graphical 

analysis and discussion will be done.  

We start the graphical analysis with the 

transmission coefficient T (eq.(41)) for the rectangu-

lar barrier. The coefficient depends on wave vectors 

k and K barrier half-width a. In the 3D plot of Fig. 1 

the K dependence is plotted for three values of k 

with constant a. One sees that T is maximal for k 

http://www.aisa.us/
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and K going to zero. In Fig. 2 both a and k have been 

varied. It can be concluded that T is at maximum 

when k a  as well as K are minimal; this corresponds 

to quantum waves with lowest energy. 

Since k and K depend on the energy E and 

height of the potential well V0 (rqs. (44,45)), it is 

more conclusive to study the dependence on these 

parameters. For Fig. w the parameters were chosen 

so that T is near to zero T in the range E < V0 which 

corresponds to the classical limit. Above V0 the 

transmission oscillates as can be expected from 

wave mechanics. For a different parameter set (Fig. 

4), T is quite high in the “forbidden” region, show-

ing the quantum mechanical tunneling behavior. 

This can also be seen from Fig. 5 in a 3D represen-

tation.  

In the remaining figures the relativistic effects 

are studied. According to eqs. (44,45) the total en-

ergy E depends on γ, therefore it is of interest to 

study the dependence T(γ) or T( v / c ) .  The latter is 

graphed in Figs. 6 and 7 for a = 0.1 and a  =  1, for 

three values of V0 each, all constants set to unity. 

This shows the principal behaviour of the transmis-

sion coefficient. It depends highly on the potential 

barrier. In all cases T drops to zero for v → c. For 

high V0 values it is constant in a broader range, de-

noting that relativistic effects decrease with increas-

ing V0. 

Fig. 8 describes tunnelling of an electron 

through another electron. We had to use atomic 

units in the calculation, otherwise the arithmetic ex-

plodes because of the high values of mc
2
. V0 is in-

terpreted as the Coulomb barrier and kept fix now at 

a value of  

0.18797
1

0 
electronr

V  

in atomic units. The curves are shown for three mass 

values, where the electron mass is m = 1 .  The tun-

nelling probability decreases drastically with 

slightly enhanced masses. Mass is a very sensitive 

parameter. This can also be seen from Fig. 9 where 

we have graphed the mass dependence directly with 

v/c as a curve parameter. For v → c the transmission 

coefficient degenerates to a delta function at m = 0. 
Finally we considered proton-proton tunnel-

ling (Fig. 10). This is impossible because the trans-
mission is practically zero for m > 4 and the proton 
mass is 1836 electron masses. The Coulomb barrier 
is similar as for an electron as the particle radius for 
both particles is in the same order of magnitude. 
Tests showed that the barrier value is not decisive, it 
is the particle mass. 

 

 
Figure 1 .  Transmission coefficient T(k) for three k val-

ues and a  = 1 

 

 

 
 

Figure 2. Transmission coefficient T ( k , a) for five values 
of K. 

 

 

 

 
 

Figure 3. Transmission coefficient T(E) for m =   = 1 ,  
a  =  1 .  
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Figure 4. Transmission coefficient T ( E )  for  

m =   = 1 ,  a  =  0.1. 

 

 

 

Figure 5. Transmission coefficient T(E, a )  for  

m =   = 1 ,  V0 = 10. 

 

 

 

Figure 6. Relativistic transmission coefficient T (v/c) for  

c = m =  = 1, a = 1 

 

 
Figure 7. Relativistic transmission coefficient T(v/c) for  

c =  m =   = 1 ,  a =  0.1. 

 

 

 
Figure 8. Relativistic transmission coefficient T(v/c) for 

electron-electron tunnelling, electron mass is m  = 1 .  

 

 

 
m  

Figure 9. Mass dependence of the relativistic transmis-

sion coefficient T(m) for electron-electron tunnelling, 

electron mass is m = 1.  
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Figure 10. Relativistic transmission coefficient T(v/c) for 

proton-proton tunnelling, proton mass is m = 1836. 

 

 

4. CONCLUSION 

 

This paper presents general ECE Theory that 

can be applied on different fields as conserves of 

total energy (momentum and total charge) current 

density is. It is unified field theory and it is generally 

covariant, and can be used with all four fundamental 

fields: gravitation, electromagnetism, weak and 

strong nuclear.  The ECE Theory in this paper is 

applied on a quantum of spacetime energy being 

absorbed during a reaction on use of nickel nucleus. 
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 

 
 ОПШТА ECE ТЕОРИЈА ИНТЕРAКЦИЈА ПОЉА И ЧЕСТИЦА:  

ПРИМЈЕНА НА НИСКОЕНЕРГЕТСКЕ НУКЛЕАРНЕ РЕАКЦИЈЕ  (LENR) 

 

 

 
Сажетак: Општа ECE теорија изведена је из интеракције поља и интеракције 

честица на класичном и квантном релативистичком нивоу уз коришћење минималне 

прескрипције. Теорија чува укупну густину енергије / замаха и наелектрисања / струје 

те је заснована на развоју четворовалентног постулата Картанове геометрије у EEC 

таласну једначину и Фермијеву једначину. Ова друга је развијена за било коју врсту 

интеракције између поља или између честица или честица и поља. У ECE теорији све 

ове интеракције су појаве простора и времена, представљене геометријски. Општа 

теорија је примијењена на експерименталне податке који се могу репродуковати и 

поновити, из нискоенергетских нуклеарних реакција.    

Кључне ријечи: ECE теорија, општа интеракција између поља и честица, 

нискоенергетске нуклеарне реакције.  
 

 


