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Abstract: Diffusion in natural, technological and biological systems is very common and
most important process. Within these systems, which contain complex media, diffusion may depend
not only on internal geometry, but also on the chemical interactions between solid phase and trans-
ported particles. Modeling remains a challenge due to this complexity. Here we first present a new
hierarchical multiscale microstructural model for diffusion within complex media that incorporates
both the internal geometry of complex media and the interaction between diffusing particles and sur-
faces of microstructures. Hierarchical modeling approach, which was introduced in [1], is employed
to construct a continuum diffusion model based on a novel numerical homogenization procedure. Us-
ing this procedure, we evaluate constitutive material parameters of the continuum model, which in-
clude: equivalent bulk diffusion coefficients and the equivalent distances from the solid surface. Here,
we examined diffusion of glucose through water using the following two geometrical/material confi-
gurations: silica nanofibers, and a complex internal structure consisting of randomly placed nanos-
pheres and nanofibers. This new approach, consisting of microstructural model, numerical homogeni-
zation and continuum model, offer a new platform for modeling diffusion within complex media, ca-

pable of connecting micro and macro scales.

Keywords: diffusion, hierarchical modeling, complex media, microstructural model, equiva-

lent continuum model, numerical homogenization.

1. INTRODUCTION

In common continuum theories of diffusion
through homogenous media Fick’s law is used as the
fundamental relation:

J=-DVc (1)

where J is the mass flux along concentration gra-
dient Vc with diffusion coefficient (diffusivity) D.
However, in complex media, phase interface may
occupy a substantial portion of diffusion domain so
that diffusion transport is affected by molecular inte-
ractions with the surface, and predictions following
equation (1) may become inaccurate. MD (molecular
dynamics) modeling and experiments have shown
that diffusive transport of molecules and particles in
nanochannels is affected by their proximity to a sol-
id surface [2], [3]. Using MD analysis, it is shown in
[2] that molecular diffusivity depends on both con-
centration and confinement effects. Therefore, mod-
eling of these transport regimes needs novel ap-
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proaches that could bring molecular scale informa-
tion into complex macroscale models of nanofluidic
devices. An ideal scenario is to properly transfer MD
information to macroscopic models. Hierarchical
(multiscale) modeling approach, introduced in [1]
and which couples MD and Finite Element Method
(FEM), offers this possibility.

In this paper we introduce a multiscale hierar-
chical model for diffusion at the microstructural lev-
el (further termed as ‘microstuctural model’), within
a small reference volume (RV), Figure 3b. The im-
plemented method is effective, robust and generaliz-
able to a variety of problems where diffusion go-
verns transport. Further, we formulate a ‘continuum’
model which employs the results obtained by the
microstructural model for diffusion within the RV.
Our method relies on the fundamental condition of
the equivalency of mass-release kinetics between the
continuum and microstructural models for a given
region of space and over a prescribed concentration
range. The continuum model is based on constitutive
parameters, which include equivalent ‘bulk’ diffu-
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sion coefficients (characterizing free, or Fickian,
diffusion within the solvent) and equivalent dis-
tances from an imaginary surface (describing surface
effects within the microstructure, [1]). Constitutive
parameters, depending only on the structural geome-
try and the material properties of the diffusing con-
stituents, are evaluated for three orthogonal coordi-
nate directions — enabling modeling of general 3D
diffusion conditions.

2. METHODS

2.1 MD simulations and scaling function for
diffusion coefficient

Molecular Dynamics (MD) has been used for
several decades [4]. It is based on statistical mechan-
ics, where motion of particles is described according
to the Newtonian mechanics:

mivi = F. (2)

where m;,V;and F, are mass, acceleration and re-

sulting force (including interaction forces from the
neighboring particles and external forces), respec-
tively. The interaction forces include bonded (repul-
sive-attractive, bending and torsion) and non-bonded
(electrostatic, van der Waals) terms. The Force Field
(FF) represents a functional form of behavior of
chemical structures and is evaluated from potential

energy function, E=E __ +E of CHARMM

intra inter !

FF [5] which is used in our MD models. MD simula-

tions  for  calculating diffusion coeffi-
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-cients in nanochannels were carried out [1], [6] us-
ing NAMD 2.6 [7] with a TIP3P water model [8]
and NVT (fixed number of particles N, pressure P,
volume V) ensembles. CHARMM compatible
amorphous silica force field [9] was employed to
model the silica nanochannel, which is modeled by
charged hydrophilic amorphous silica phase to
match the silica properties after the fabrication
process. Glucose diffusion coefficients were calcu-
lated from 30 ns trajectories by using the mean
square displacement <r?>:

<r*>=2dDt (3)

where the factor d = 1, 2, 3 depends on the dimen-
sionality of the space, and t is time. The diffusivity
along the surface normal (z-direction) was evaluated,
from the surface up to the middle of the nanochan-
nel. The diffusivity results include dependence on
distance from the wall and glucose concentrations
(Figure 1 — left panel).

The MD calculated diffusivity is normalized
with respect to the “bulk” value D, corresponding

to diffusivity far from the surface, where influence
of the surface is negligible. Hence, we have

D =SD,, 4)
where
S§=S(hc), 0<s<1 (5)

is the scaling function which depends on the dis-
tance from the wall surface h and concentration c.
Calculated scaling function is shown in Figure 1 —
right panel.

Diffusivity scaling

3 4

2
Distance, nm

Figure 1. Calculated glucose diffusivity (left panel)) and scaling functions of the proximity to the silica surface for sev-
eral concentrations (right panel); according to [1].

Experimental investigations showed that
D(=D,,,) for glucose depends on concentration,

although data are quite different (see [1] and refer-
ences given therein). For examples shown here we
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have chosen the glucose D according to the largest
data set of [10] that spans over a wide range of con-
centrations, from 0 to 3.36 M, with linear depen-
dence D(c).

2.2. Finite element model

We here consider unsteady diffusion where
the diffusion coefficient depends on both concentra-
tion and spatial position of a point within the model.
FE solution procedures for nonlinear diffusion prob-
lems have been well established and successfully
used in various applications (e.0.
[11],[12],[13],[14]). The basic mass balance equa-
tion, which also includes Fick’s law in equation (1),
is transformed into the incremental-iterative system
of linear balance equations for a finite element [14]:

(il\/l +n+1K(i1)JAC(i) _ n+1Q5(i71) 4 n+1Q\/(i) i (D s
At

1 ;

_M(mlC(lfl) _nc)
At

(6)

where C is the vector of nodal concentrations; the
left upper indices n and n+1 denote values at the

start and end of the time step n of size At ; the indic-
es i and i-1 correspond to the current and previous

equilibrium iteration; Q° and Q' are surface and
volumetric nodal fluxes for the element; and com-
ponents of the matrices M and K are

M,J=jN,NJdv )
\Y

n+1KI(Ji—1) _ J‘ n+1D(i_1)N|,iNJ‘idV (8)

\

Here N, and N, are the interpolation func-

tions, and "D is the diffusion coefficient cor-

responding to the last known concentration "¢
at a point within the finite element. Assembly of eg-
uations (6) and solution procedures are performed in
a usual manner that is well described in the compu-
tational mechanics literature (e.g. [11]).

In our models we have incorporated concen-
tration and interface effects, according to equation
(4) into the FEM model. Implementation of the ex-
pression (4) is illustrated in Figure 2. Note that li-
near interpolation between scaling curves is used.

A B Concentrations
e 4 Cs
Diffusion Scaling
coefficient function C,
C1
------- S(c,h
D(c) i (c.h) D=S(c.h)*D(c)
]
|
€ Concentration ¢ h Distance h
P-%¢]
Wall

Figure 2. Determination of diffusion coefficient at a spatial point P using dependence on concentration and surface
effects. The “bulk” value is first determined from the curve D(c), A; then the scaling function is evaluated from family
of curves shown in B. Linear interpolation curves S(c,h) is adopted (between points A and B in the figure); according to
[15].

2.3. Generalization of the hierarchical model
to porous media

Here we outline a generalization of the hierar-
chical model to diffusion in complex porous media,
consisting of distributed solid constituents within
fluid. For simplicity of presentation of this generali-
zation, we assume a medium with solid fibers, as
sketched in Figure 3.

The main idea here is to determine equivalent
diffusion parameters of a homogenous porous me-
dium which capture the internal structure of a com-
posite medium in a way that diffusion properties are
preserved. To achieve this, we first take a reference
volume around a material point (in a form of a cube)
around that point, Figure 3a, and discretize it into
finite elements (Figure 3b). Here we take the real
internal microstructure and calculate diffusion in
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three orthogonal directions. In this FE model it is
possible to properly take into account the surface
effects, as sketched in Figure 3c. Namely, for a point
A in the medium we calculate distance from the
closest fiber surface of an s-group, and evaluate scal-
ing function S, as described above for diffusion
within a nanochannel. We assume that scaling func-
tions are different for the normal and tangential di-

rections, hence we have three scaling functionsS:,
s s - . .
Sﬂ, Sg in the local fiber directions &,7,&, so that

the diagonal diffusion matrix (tensor) D;, D,, D’

in the local coordinate system is

D; = S; Doy
D;” = S; Dy 9)
Df = S; Doy

3

FE model of reference volume

where D, is the bulk modulus. The diffusion ten-
sor in the global coordinate system Xx,y,z can be ob-
tained by tensorial transformation of the second-
order tensor,

DS TSDS TST

xyz - éns (10)
where the components of the transformation matrix
contains cosines of angles between local and global
axes:

Ty =cos(x;, <)

ij=1,2,3 (11)

Here Xx; and §j stand for global (x,y.z) and

local coordinate (&, 7,¢) systems.

X
Figure 3. Concept of extension of hierarchical model to porous medium with fibers. a) Fibrous medium with reference
volume at a material point P; b) Reference volume discretized into finite elements; c¢) Geometry of the internal struc-
ture — fibers of an s-group, with diameter ds and with mutual distance L, and point A at distance hg from the fiber sur-
face.

2.4. Numerical homogenization procedure and
continuum model

We introduce a novel numerical homogeniza-
tion procedure to determine the appropriate diffusion
properties of a continuum model with a given micro-
structure. The basic condition governing this proce-
dure is the equivalence of mass fluxes (through any
surface in the diffusion domain) for the microstruc-

tural and continuum model, at any time during diffu-
sion process. Considering mass release curves for
diffusion through an RV around a spatial point, we

have that the mass flux J; in direction x; is given as

dm
() ©
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This derivative is geometrically represented as
the tangent to the mass release curve m(t); for the

direction x,, therefore the fluxes are equal for both

a) AT
& 4
2
y 4
y s

ch 1/ //C out

s dz

q,+(2q,/ox)dx

______ ——--, 9q,*(cq,/oy)dy

models if their mass release curves are the same.
This interpretation of flux equality through an RV is
analogous to the mass balance condition in a diffe-
rential volume used in continuum mechanics.
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—
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/
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Figure 4. Calculation of diffusion in equivalent homogenous porous medium. a) Reference volume; b) Reference volume
in deriving mass balance in differential form (analogy with RV for numerical calculation of equivalent material para-

meters), d,,d,,q, are surface fluxes, and ¢}, is volumetric flux; c) Initial and final mass release curve, coinciding

with the true mass release curve shown in Figure 4b; d) Assumption about dependence of diffusion coefficient D, , on

concentration — the slope of the line D, (c) is the same for the true and equivalent model.

Next, we calculate diffusion through the ref-
erence volume using equivalent quantities of a por-
ous homogenous medium within the RV. The poros-
ity n is evaluated from the internal structure of the
RV. For each diffusion direction i (i.e. X,y,z), the
steps are as follows:

1. Calculate mass release using initial diffu-

sion using given Dy, ().

2. Perform changes on the value D, until the
mass release curve is close enough to the true curve,
when the value is (D, ). .

3. Using (50 )i calculate initial mass release

curve taking into account equivalent values of the
transformation matrix T and equivalent distance

from the solid surface (h, ) .

4. Search for the distance h when differ-

ence between the calculated and true mass release
curves is within a selected error tolerance.

In the above calculations of the equivalent
transformation matrix and initial equivalent distance

(ﬁo)I a weighted procedure, which takes into ac-

count volumes belonging to FE nodes, is imple-
mented (details not given here).

The presented concept of evaluation of para-
meters related to equivalent homogenous porous
medium represents a numerical homogenization pro-
cedure. It can be extended to non-homogenous me-
dia, by varying equivalent parameters, or to stochas-
tic characteristics. Application of introduced numer-
ical homogenization method (NHM) is illustrated in
the Results section.
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3. RESULTS

3.1. Effect of fiber direction in RV on mass
release results

We are considering diffusion in x direction
through RV (Figure 5). RV is a cube with

a=0.04[ um], whose entrance surface is connected
to a reservoir of volume V, =7.850-10° z , with ini-
tial concentration C;, =2.5 mol /I; while the oppo-

site surface has a constant concentration ¢ (=0).

We investigated examples with two different porosi-
ties: 0.951 and 0.558, and with angles of fibers 0, 30,
60 and 90 degrees, with respect to direction of diffu-
sion. Values for fiber’s diameter and angles of fi-
ber’s direction used in simulations are shown in Ta-
ble 1. As a result we provided mass release curves,
separately for cases of Fickian diffusion and diffu-
sion with surface effects (Figure 6 and 7).

v
_w X

<,
a)

It can be concluded, from results shown in
both Fig. 6 and Fig. 7, that deviation from starting
mass release curve, which corresponds to the case
where direction of fibers is parallel to direction of
diffusion, increases with increasing of angle, and is
largest when the angle is 90 degrees (diffusion direc-
tion is orthogonal to direction of fibers). Additional-
ly, deviations are larger for diffusion with surface
effects. It can also be concluded that the deviations
are larger for smaller porosities, e.g. with increasing
solid phase in the RV.

Table 1. Change of fiber’s direction and diameter for two
considered porosities of RV.

0° 30° 60° 90° [ Porosity &
D, (um) | 0-005 | 0.00482 [ 0.00482 | 0.005 | ~0.951
D,(um) | 0015 | 0.0145 [ 0.0145 | 0.015 | 0558

0)

Figure 5. a) Reference volume with 4 arbitrary placed fibers; b) Field of unit mass flux for first step of simulation, dif-
fusion with surface interaction, RV with 4 fibers whose direction is orthogonal to direction of diffusion.
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Figure 6. Mass release curves for different direction of fibers, porosity = 0.951: a) Fickian diffusion; b) Diffusion with
surface interaction effects.
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Figure 7. Mass release curves for different direction of fibers, porosity = 0. 558: a) Fickian diffusion; b) Diffusion with
surface interaction effects.

3.2. Dependence of equivalent parameters on
concentration range and concentration
gradient

For given solvent and diffusing particles we
show that material parameters of the continuum
model (equivalent diffusion coefficients and equiva-
lent distances from surface) depend only on the
geometry of the microstructure and its material cha-
racteristics [16]. To demonstrate this statement, we
take a reference volume (RV) with solid silica nano-
fibers (as shown in Figure 5), with fibers diameters
of 10nm, angle of fiber direction of 75 degrees (with
respect to diffusion direction) and porosity of 80%.
For this model we change the boundary conditions
to achieve various mass release curves.

In Figure 8a are shown three mass release
curves which differ significantly, obtained by chang-

ing inlet reservoir volume V,, for one order of mag-

nitude (from 1.57x10°to 7.85x10°[ ul ]). Equiva-

lent diffusion coefficient D and equivalent distance

h are given in Table 2; they are practically the same
for all mass release curves.
Another way to change mass release curves

is to change initial concentration C, . We have
changed C, from 0.01 to 2.75 Molar, while keeping
V., unchanged. Mass release curves are shown in

Figure 8b, while the calculated D and h are given
in Table 3. Again, we see that equivalent diffusion

coefficient D and distance from surface h remain
essentially unchanged.

Table 2. Material parameters D, u ﬁx for four reservoir volumes V;, , (initial concentration ¢, =2.75 mol /1).

No. Vin [yl] D, [ymz / hour] FX [ym]
1 7.850-10° 5.4864-10" 2.2373-10°
2 1.570-10° 5.4864-10" 2.2373-10°
3 7.850-10° 5.4864-10" 2.2373-10°
4 1.570-10° 5.4864-10" 2.2373-10°

Table 3. Material parameters I5X and ﬁx for three initial inlet concentrations C, (with constant V, = 7.850~10_9yl ).

No. C,, [mol/1] D, [;zm2 /hour] h, [um]
1 2.15 5.4864-10" 2.2373-10°
175 5.4864-10" 2.1971-10°
3 0.01 5.4864-10" 2.0765-10°°
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Figure 8. a) Mass release curves for volumes of inlet reservoir from Table 2. (zl): 1.570-10°%,7.850-10 "«

1.570-10"°; b) Mass release curves obtained for inlet reservoir volume vV, = 7.850-10° 4, and four initial concen-

trations of the inlet reservoir C, (Molar): 2.75, 1.75, 0.75 u 0.01.

3.3. Dependence of equivalent parameters
on dimension of RV

In this example we have doubled dimen-

sions of the RV and calculated D and h . Geometry
of two RVs used in this example is shown in Figures
9a and 9b. For those two models we used the follow-
ing data:

1. Model 1: cube side a, = 0.04[ zm], vo-

lume of RV: V! =7.850-10"° 1l , number of fibers in
RV is N, =2%2 = 4,
l, =0.04[ um].

length of fibers is

a)

2. Model 2: cube side a, =2a, =0.08[ um],
volume of RV: V? =8V', number of fibers in RV
N,=4N, =4*4 = 16,
I, = 0.08[ um].

Tables 4 and 5 demonstrate that these material
parameters are independent of the RV size. We ob-
tained similar results for an RV consisting of

spheres, but those results are not given here (given
in [16]).

length of fibers is

Figure 9. RV of two models used for investigating dependence of equivalent parameters on dimension of RV: a) Geome-
try of model 1; b) Geometry of model 2.

Table 4. Material parameters D, and FX for two sizes of the RV (forc, =275 Mol /1 \V, = 7.850‘10_9yl )

No. a [um] D, [ymzlhour] h, [um]
1 0.04 5.5128-10" 2.1615-10°
2 0.08 5.4864-10" 2.1827-10°
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Table 5. Material parameters 5X u h, for two sizes of the RV (for ¢, =0.01 Mol /I, V_ =7.850-10"4ul)

No. a [um] D, [,um2 / hour] h, [zm]
1 0.04 5.4864-10"" 2.0730-107°
0.08 5.4864-10"" 2.0450-10°°
3.4. Effect of the total fiber’s areain RV on  js  changing linearly from D, =5.9616-10’

values of equivalent parameters

Here we present the effects of total fiber’s
area in RV on equivalent parameters of continuum
model. We consider RV with the same dimensions
and input parameters as in the previous examples.
The cube side isa=0.04um, inlet reservoir is with

V, =7.850-10" 41 volume and with initial concen-

tration C,, =2.75 mol /I ; while the inlet reservoir
is with infinitely large volume. Diffusion coefficient

[um?/hour] for C=0, to D, =1.9006-10" [um?*/hour]
for C=2.75 [molar]. In order to check the influence
of total fibers’ surface area we used tree different
configurations of internal microstructure, consisting
of fibers whose direction is orthogonal to direction
of diffusion. All examples are approximately with
80% porosity. Input parameter for each example,
together with the calculated values of total surface
areas and total volume of solid phase in the system,
are given in Table 6.

Table 6. Input parameters for three examples of internal microstructures, together with calculated values of total sur-

face area and total volume of solid phase in RV.

Dgp 1m Fiber’s mesh P, 4m’ A um’ Porosity
Example 1 0.00500 4x4 0.010050 1.2566e-5 0.803891
Example 2 0.00675 3x3 0.007634 1.2566e-5 0.800347
Example 3 0.01000 2x2 0.005026 1.2566e-5 0.805556

a) b)

c)

Figure 10. RV with fibers orthogonal to direction of diffusion. Field of concentration for continuum model and for first
time step of simulation. a) Example 1, 16 fibers with 5 nm diameter; b) Example 2, 9 fibers with 6.75 nm diameter; c)
Example 3, 4 fibers with 10 nm diameter.

Results for equivalent diffusion coefficient of
free diffusion and equivalent distance from the sur-
face for diffusion in x direction, calculated using
numerical procedure of homogenization are shown

in Table 7. According to results for D" from table 7

it can be concluded that equivalent diffusion coeffi-
cient of free diffusion depends on porosity (results

for ﬁgﬁ are approximately the same for all three ex-
amples). Results for equivalent distance from the

surface H, show that H_ depends on the total
surface area in the system (H, decreases with in-

creasing of total surface area). Decreasing of H

leads to the slower kinetics of diffusion process
which is one of the proofs showing that that the sur-
face interaction in nanoconfined space substantially
affects diffusion process.
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Table 7. Equivalent diffusion coefficient of free diffusion and equivalent distance from the surface for diffusion in X
direction, calculated using numerical homogenization procedures for examples from Figure 6.4.7.

De" D" Surface Area [ m’] H
Example 1 4.33908e+7 2.78251e+6 0.010050 1.6768E-3
Example 2 4.33800e+7 2.77214e+6 0.007634 1.9002E-3
Example 3 4.34844e+7 2.87622e+6 0.005026 2.2727E-3

3.6. Validation of microstructure model

We have calculated diffusion in a porous
material, with a nanospheres geometry using our
microstructural model. This corresponds to the dif-
fusion conditions described in [17]. Calculation was
performed by neglecting surface effects (Fickian
diffusion) and for various porosities, using an RV.
Our curve for the ratio of the effective diffusion

coefficient D to the bulk value D,, D/ D, shows

very good agreement with values obtained by analyt-
ical homogenization procedure in [17]. Dependence

1

D/ D, on porosity ¢ was earlier obtained accord-

ing to a self-consistent analytical method [18], and
can be expressed in a simple form:
_ 2¢
D/D,=——
° 3-¢ (6)

Results of this simple formula are displayed
by dashed line in Fig. 11; deviation from our solu-
tion and [17] becomes apparent for smaller porosi-
ties.

0.8

B @O Analytic (Boutin, Geindreau, 2010) [R11]

w— === Analytic (Hashin, 1968) [R12]

Microstructural model

06
D/D,

04

0.2 e

0 02 04

0.6 0.8 1

Porosity

Figure 11. Ratio of the effective diffusion coefficient D with respect to the bulk value Do , in terms of porosity. Our

microstructural structure consists of spheres. Surface interaction is neglected, hence Fickian diffusion is assumed. Two
analytical solutions are shown, according to [17],[18].

3.7. Diffusion through reference volume with
spheres

In RV with cubic shape (cube side is
a=0.04um ), we uniformly placed 27 silicon

spheres (Figure 12). Diameter of sphere is
D, =0.009um , sphere network is 3x3x3, and po-
rosity of internal microstructure is 89.8%. Volume
of inlet reservoir is V,, =7.85-10° ul and concen-

tration is 2.75 molar, while outlet reservoir is with
infinitely large volume.

Field of concentration and unit mass flux at
first step (t=0.004s) of simulation for diffusion with
surface effects are shown on Fig. 13a and Fig. 14a,
while the same field in planes X-Y at distance
Z=0.02 pm are shown on Fig. 13b and Fig. 14b.

For the example shown in Figure 12 we per-
formed numerical homogenization procedure, both
for Fickian diffusion and diffusion with surface ef-
fects.
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porosity is 89.8%.

Figure 12. Internal microstructure of reference volume, consisting of 27 spheres

diffusion in X direction, microstructural model with spheres, a) first step of simula-

Figure 13. Field of concentration

0.02 m.

, t=0.004s; b) plane X-Y at distance Z

tion

1.5e+6

1.5e+6

1.3e+6

Figure 14. Field of unit mass flux, diffusion in x direction, microstructural model with spheres: a) first step of simula-

0.02 um.

= 0.004s; b) plane X-Y at distance Z=

t

tion,
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Figure 15. Mass release curves for internal microstructure shown in Figure 12. a) Curves for microstructural model
with D(c), continuum model with estimated D(c), and continuum model with final D(c); b) Curves for microstructural
model with D(h,c), continuum model with estimated D(h,c), and continuum model with final D(h,c).

Mass release curves for Fickian and diffusion
with surface effects, for either microstructural, initial
and final continuum models, are displayed in Fig.
15a and Fig. 15b.

4. SUMMARY AND CONCLUSIONS

In summary, we have first formulated a mi-
crostructural hierarchical diffusion model, which
includes surface interaction effects, for a general
microstructural geometry. In this model, the interac-
tion effects are incorporated through scaling func-
tions (evaluated using MD), which represent the ra-
tios between the real and bulk diffusion coefficients.
The scaling functions, expressed in terms of distance
from the solid surfaces and concentration, are calcu-
lated in the local coordinate system of the solid sur-
face. Therefore, two domains of diffusion are distin-
guished: the bulk diffusion domain (with Fickian
diffusion) and the domain near surfaces, with non-
Fickian hindered diffusion. In both domains, diffu-
sion is calculated by using the FE method. The sur-
face effects become apparent when comparing the
slower mass release kinetics (with surface interac-
tions) with purely Fickian mass release (without sur-
face effects).

This microstructural model is then employed
within a novel numerical homogenization procedure
to establish the equivalent continuum diffusion
model. The procedure is general since it is applica-
ble to an internal, structural geometry of any com-
plexity, and can include different solid material sets
with different material properties. The procedure
relies on the condition that mass release curves of
the two models must be equal. Constitutive diffusion
parameters of the continuum model are determined

for the three coordinate directions and include the
traditional bulk diffusion coefficients, and also
equivalent distances from the solid surfaces to ac-
count for surface interaction effects on diffusion.
Furthermore, these constitutive parameters can de-
pend on the local concentration.

Numerical homogenization procedure pre-
sented in this work is analogous to homogenization
procedures previously presented in linear and nonli-
near solid mechanics, heat transfer and diffusion,
where different types of RV were used (e.g.
[19],[20],[21]). Previous homogenization procedures
have limitations due to the special assumptions made
regarding microstructure (e.g. periodicity) as well as
relying on various asymptotic expansions of analytic
forms. Our method is not only general, but also in-
cludes concentration-dependent parameters within a
wide range of concentrations over which diffusion
occurs.
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TOR

HYMEPUYKO MOJEJIMPABE TUDY3UIE V KOMIIO3UTHOM
MEJUIYMY CA YKIbYUEHUM YTULIAJEM ITOBPIIIMHA

Casxerak: /udysmja npeacraBiba jenaH o4 HajOUTHHjUX TpoOLEca y MPHUPOIHHUM,
TEXHOJIOIIKAM M OWOJIOIIKMM CHCTEMHMa. Y OKBHPY OBHX CHCTEMa, KOju Cy OOmKa
CIOKEHOT MenWjyma, Ha Iudy3wjy He YTHUe caMO YHYTpallmba TIeOMEeTpHja MHKpPO-
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CTPYKType cucTema, Beh W XeMmHjcka MHTepakuuja m3Mel)y Mojekyia Koju ce kpehy u
NOBpIIMHA coiupa y cucreMy. Crora, MOACNUpame TPAHCIIOPTAa MaTephje Kpo3 OBe
CJIOXKEHE MeJHjyMe IPeCTaB/ba BEIUKH H3a30B 32 HAyYHHKE JaHAIIET BpeMeHa. Y OBOM
pany hemMo mpBO MpEenCTaBUTH TEeHEPaIM3alUjy XHJEPapXHjCKOr MoJela MOBE3UBAHmEM
BHUILIE CKajla, KOJU YKJby4yje YTHLA] YHYTpallkhe IeOMeTpHje KOMIUIEKCHOI Meaujyma H
MehycoOHy mHTepakuujy usmely MolieKyina W MOBpIIMHA COJNWAA, Ha MHKPOCTPYKTYpHE
Mojene audysuje y KOMIUIEKCHUM MeaujymMuMa. Ha OCHOBY mpuHIMIA XHjepapXHjcKor
MoJena, KOjU je NpBM MNyT mpexactaBibeH y [1], momohy mnpoueaype Hymepuuke
XOMOT€HHM3alMje BPIIM CE I'eHepucame KOHTHHYYM nudysuoHor mojena. Kopumrhemem
XOMOTEHH3aIHje ce 3aTUM oapeljyjy KOHCTUTYTHBHH MaTEpHjaHU ITapaMeTpH KOHTHHYYM
MoJiena, y Koje CIa/iajy: eKBUBAJICHTHH IU(Y3HOHN KOShHUIHjEHTH ciaoboaae audys3uje u
eKBHBAJICHTHA pacTojama Of THOBpImIHHEe conuma. Ha kpajy pama he Outm mpukazanu
npuMepn nTudy3nje MoJIeKyiia TIyKo3e Kpo3 BOJEHH PAacTBOP KOPUIINEHEM JBE pazIHIUTe
KOHHUTypanuje: JOMEH ca CHJIMKOHCKMM HaHOBIAKHUMa Kao M JIOMEH Ca CIOKCHOM
YHYTpPAaIllbOoM MHKPOCTPYKTYpPOM KOja C€ CacTOju W3 IIPOM3BOJFHO pacropelheHnx
HaHOBJIakaHa M HaHocgepa. OBJEe ONWCAHW MPUCTYI, KOjU C€ CACTOJU M3 MHKPO-
CTPYKTYPHOT MO/IeNa, HyMepU4Ke XOMOTeHH3alje U KOHTUHYYM MO/IelNa, MPeCTaBiba HOB
HAuMH MOJeNupama TUQy3uje y CI0KEHHM MeaujyMUMa, CIOCO0aH Ja MOBEXe Ipolece
KOjH Ce MOCMaTpajy Ha MHKPO ¥ MaKpOCKaJH.

Kbyune peunm: jaudysuja, XujepapXujcKd  MOJEN, CIOXKEHH  MeEAUjyM,
MHKPOCTPYKTYPHH MOJICJI, CKBUBAJICHTHH KOHTHHYYM MOJEJ, HyMEpHUYKa XOMOT€HH3alIHja.
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