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Summary: In this paper sufficient conditions for both practical and finite time
stability of linear singular continuous time delay systems were introduced. The singular and

singular time delay systems can be mathematically described as Ex(¢)=A4x(7) and
Ex(1)= Ayx(t)+ 4x(t—7), respectively. Analyzing finite time stability, the new delay
independent and delay dependent conditions were derived using the approaches based on
Lyapunov-like functions and their properties on the subspace of consistent initial conditi-
ons. These functions do not need to be positive on the whole state space and to have negati-
ve derivatives along the system trajectories. When the practical stability was analyzed, the
approach was combined with classical Lyapunov technique to guarantee the attractivity
property of the system behavior. Furthermore, an LMI approach was applied to obtain less
conservative stability conditions. The proposed methodology was applied and tested on a
medical robotic system. The system was designed for different insertion tasks playing
important roles in automatic drug delivery, biopsy or radioactive seeds delivery. In this
paper we have summarized different techniques for adequate modeling, control and
stability analysis of the medical robots. The model of the robotic system, with the tasks
described above, the entire system can be decomposed to the robotic subsystem and the
environment subsystem. Modeling of the system by the method mentioned has been proved
to be suitable when the force appears as a result of the interaction of the two subsystems.
The mathematical model of the system has a singular characteristic. The singular system
theory could be applied to the case described. It is well known that all mechanical systems
have some delay. In that case a theory of singular systems with delayed states may be
applied, as well. For the second phase in which there is no interaction, the dynamic behavi-
or can be analyzed by the classic theory.
Keywords: time delay systems, singular systems, robotics in medicine.

1. INTRODUCTION

It was noticed that the characteristics of the
dynamic and static state should be considered at the
same time for some systems. Singular systems (also
referred to as degenerate, descriptor, generalized,
differential-algebraic or semi-state systems) are
systems whose dynamic is governed by the
complexity of algebraic and differential equations.
Recently, many researchers have paid much atten-

* Correspondig author: ddebeljkovic@mas.bg.ac.rs

tion to singular systems and they have accomplished
numerous valuable conclusions.

The complex nature of singular systems gene-
rates many difficulties in the analytical and numeri-
cal solution of such systems, particularly during the
control tasks.

Recently, the singular systems have been one
of the major research fields of control theory.

During the past three decades singular
systems have attracted significant attention due to
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the comprehensive applications in economics, as the
Leontief dynamic model, in electrical applications
using the theory described in [1], in mechanical
models as in [2], efc. Singular systems in control
theory have been initially discussed in [3] and [4].
The investigation of time delay systems has been
carried out over many years. Time delay is very
often encountered in various technical systems, such
as electric, pneumatic and hydraulic networks, che-
mical processes, long transmission lines, etc.

It has been observed that a variety of singular
systems is characterized by the phenomena of time
delay. Such systems are called singular differential
systems with time delay. These systems have many
special characteristics. In order to mathematically
describe those systems in more accurate manner, and
to control them more effectively, this specific class
of the singular systems was investigated in details.
In this article, a new approach to the stability of the
singular time delay systems is presented.

2. SYSTEM MODELING

In this section a procedure for the system
modeling is described. A mathematical model of the
presented medical robotic system was used to vali-
date the main results and stability investigation.

The mathematical equations of the system
were analyzed further and new delay-independent
and delay-dependent conditions were implemented
in practical stability analysis.

2.1. System description

The surgery module consists of 2 degree-of-
freedom (DOF) ultrasound probe driver and SDOF
needling module, Figure 1.

The ultrasound (US) module can be translated
and rotate independently by two DC servomotors
fitted with high-resolution optical encoders and
gearboxes.

In this study, we analyzed 5SDOF needling
module which consists of a gantry and needle driver.

Gantry connects the needle-driving module to
the positioning platform.

The gantry has two translation motions and
one rotational motion (pitching). Needle driver
subsystem consists of a hollow needle (cannula) and
solid needle (stylet) driven separately by two DC
servomotors.

The cannula rotates continuously or partially
using another tiny DC motor. The main task of these
parts is to deliver the exactly prescribed dose of
radioactive seeds into human prostate with high
precision level.

=L

Figure 1. Video-guided robotic system for insertion tasks. The proposed methodology was tested on this system.
Surgery module: consists of 2DOF ultrasound probe driver and 5DOF needling module. Needling module consists of
gantry and needle driver. Mathematical model of the system was singular system as in equations (3-4)



Dragutin Lj. Debeljkovié, et al., Non-Lyapunov stability of singular systems: classical and modern approaches...

Contemporary Materials, IV—-1 (2013)

Seeds are delivered through cannula.

During the operation, stylet is pushing the
seeds through cannula according to control algo-
rithm and the prescribed surgery plan. Also, the
system is designed to take ultrasound images during
the operation, to update the real-time radiation dose
distribution, seed position and number of needles to
be inserted into prostate, depending of surgery plan.

Dedicated software for 3D imaging and con-
trol is developed to support surgery procedure, [5-6].

2.2. Mathematical modeling

The following notation has been used:
Real vector space
Complex vector space
Identity matrix

R
C
1

F = (fl-j ) e R™" Real matrix

(b)

-
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F' Transpose of matrix F
F>0 Positive definite matrix
F>0 Positive semi definite matrix
AF) Eigenvalue of matrix F

[F]= | A mar max(ATA) Euclidean matrix norm of F

As suggested [7], the most accurate mathema-
tical model for the medical robots should include
dynamics of the system due to interaction between
the robot and the surface.

General guidelines for mathematical modeling
together with the basic equations are presented.

The model of the manipulator with its constra-
ints is shown in Figure 2.

Generally speaking, open kinematic chain
with n joints is analyzed.

The generalized coordinates vector, denoted

by q(t), has property a(r)e®R", the contact force
vector is denoted by f (t) .

()

(@)

Figure 2. Model of the constrained robotic system: a) fixed base, b) manipulator c) contact surface, T— contact point, f
— contact force

Force f(r)e®R" appears when end-effector

touches constraint surface c.
The differential equation which describes the
influence on the contact force to the system is

M (a(0)ii(0)+g(a(e)-a())=7() + 7 () E(0).
(1)

M (q(t))eﬂ%”x” denotes inertia matrix fun-

ction and g(q(¢),q(¢))eR” is vector function

which describes Coriolis, centrifugal and gravitatio-

nal effects. T(r) is torque vector of the joints,
T(t) e,
JT (1)) € 5™ ) is defined as Jacobian matrix

function and D(-)is a gradient of constrained fun-

ction.
The general dynamic equations for the robotic
system in contact with environment is, as in [8]:

[M(q(t)) Oj[q(t)}:{—g(q(t),c’l(t))+JT(q<r>)DT(h<q>)A(t) )
0 0)l40) #(n(a))
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Equation (2) consisted of n differential
equations and one algebraic equation with (n+1)

unknown value, n generalized coordinates and scalar
multiplier ().
¢(h(q)) is an equation of contact surface,

and h( ) is a vector function.

Now it is possible to present the equation of
the robotic system (1) which is in contact with the

working environment in its state space form (3) with
state vector x(r)and vector d(z) as a disturbance

Ex(t)=Ax(t)+Bu(t)+d(z), (3)

where corresponding matrices have been defined as
in [7].

Corresponding matrices are
equation (4).

For the purpose of further analysis, we consi-
dered disturbance vector d=0.

given by

I 0 0 0 r0 0 0
E=|0 M(q,) 0], 4= i(g—JTDT/‘L(t))h) 0 JID"|, |, B=| 1|, u(t)=67(r), d(r)=|At(r)]| (4)
oq
0 0 0 0 0
DJ |, 0 0

When time delay of moving system parts was
taken into the account, the system (3) was represen-
ted as

Ex(t)=Ayx(t)+ Ax(t—7)+Bu(t)+d(¢).(5)

System (5) represents the dynamics of the
medical robot in Figure 1 with time delay in working
regime. Further analysis was performed in free
working regime, i.e. when all inputs have zero valu-
es.

3. STABILITY CONCEPTS

As far as practical problems are concerned, a
matter of interest is not only the system stability
(e.g. in the sense of Lyapunov), but also the bounds
of system trajectories. A system could be stable but
completely useless because it possesses undesirable
transient performances. Thus, it may be useful to
consider the stability of the systems with respect to
certain subsets of state-space, which are a priori
defined for a given problem.

Besides that, it is of particular significance to
consider the behavior of dynamical systems only
over a finite time interval. These bound properties of
system responses, i.e. solutions of system models,
are important from the engineering point of view.

Realizing this fact, numerous definitions of
the so-called technical and practical stability have
been introduced in literature. Generally speaking,
the definitions were essentially based on the predefi-
ned boundaries for the perturbation of initial condi-
tions, and the allowable perturbation of the system
response. In the engineering applications of control

systems, this fact becomes important and sometimes
crucial for the purpose of quantitative characterizing
of the systems. In that case, the possible deviations
of the system response need to be investigated in
details. Thus, the analysis of these particular bound
properties of the solutions presents an important
step, which precedes the design of control signals,
with finite time or practical stability taken into acco-
unt. In this article time continuous systems have
been considered.

The various notations of stability over a finite
time interval for continuous time systems and con-
stant set trajectory bounds were introduced in
[9-11]. Another approach is based on a classical
theory mostly used in deriving sufficient delay inde-
pendent conditions of the finite time stability
systems.

In the former case a new definition has been
introduced based on the attractivity properties of the
system solution which can be treated as analogous to
the quasi-contractive stability as in [12—14].

In the following section, we have presented a
novel approach to the stability of singular time delay
systems.

The results have been directly expressed in
terms of matrices E, 4y and 4, naturally occurring in
the system model, equation (5).

In this approach there is no need to introduce
any canonical form in the statement of the theorems.

The geometric theory of consistency leads to
the natural class of positive definite quadratic forms
on the subspace containing all solutions [15]. This
fact makes the construction of the Lyapunov and
non- Lyapunov stability theory possible even for the
linear continuous singular time-delay systems

(LCSTDS).
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Moreover, the attractive property is equivalent
to the existence of symmetric positive definite solu-
tions in a weak form of the Lyapunov matrix
equation [15], incorporating conditions which refer
to the solutions boundedness.

3.1. Preliminaries

The general expression of singular control
systems with time delay can be written in its diffe-
rential form as:

E(t)x(t)=f(t,x(1),x(1=7),u(t)), 120
x(t)=0(t), —7<t<0
where x(r)eR" is a state vector, u(¢)eR" is a con-

E(t)eR™is a

, (6)

trol  vector, singular matrix,

0 eC’:([—T,O], R”) is an admissible initial state fun-
ctional, C’:([—r,O], R”) is the Banach space of con-

tinuous functions mapping the interval [-z, 0] into

R" with topology of uniform convergence.
The vector function satisfies:

f(:):IxR"xR"xR" > R", (7

and it is assumed to be smooth enough to assure the
existence and uniqueness of solutions over a time
interval:

3=[19. (o +7)| eR, (8)

as well as the continuous dependence of the soluti-
ons denoted by x(z, 1),x,) with respect to ¢+ and the

initial data.

Quantity 7 may be either a positive real number or
the symbol +«, so that the finite time stability and
practical stability can be treated simultaneously,
respectively.

In general, it is that

f (t, 0, 0) =0, for an autonomous system, which

not required

means that the origin of the state space is not
necessarily required to be an equilibrium state.

Let R" denote the state space of a system
given by (6) and "()" the Euclidean norm.

Let V:3xR" - R", be the tentative aggrega-
te function, so that V(t,x(t)) is bounded and for
which || x(¢) || is also bounded.

Define the Eulerian derivative of V(t,x(t))
along the trajectory of the system (6), with:

V(t,x(1) = %;(t))—k[gmd v (ex(1)] @ £(). 9

where matrixIT, [16], is solution of the following
matrix equation:

[grad V(t,x(t))]T =[gmd V(t,x(t))}T PE, (10)

Obtaining this solution may be a tedious task
since matrices in (10) are functional, [16].

For time-invariant sets it is assumed: .S‘( ) is a
bounded open set.

The closure and boundary of 5'( ) are denoted

by 5( ) andas( ) respectively, so: 65( )= .S_‘( )\5( )
Let S, be a given set of all allowable states

of the system Vs e 3.
Set S,, S,cS; denotes the set of all

allowable initial states.
Sets S,, S, are connected and a priori

known. A () denotes the eigenvalues of matrix ().
Amax and A, are the maximum and mini-

mum eigenvalues, respectively.

For the further analysis we consider a linear
continuous singular system with state delay, descri-
bed by:

Ex(t)=Agx(t)+A4x(1-7),

min

an

with a known compatible vector valued function of
the initial conditions

x(t)=0(1), —7<t<0, (12)

where 4, and 4, are the constant matrices of appro-

priate dimensions.
Moreover, we shall assume thatrank E=r <n.

3.3. Basic definitions

Definition 1. Matrix pair (E, 4,) is said to be
regular if det(sE—4,) is not identically zero, [17].
Definition 2. The matrix pair (E, 4,) is said

to be impulsive free if degree det(sE—4,)=rank E,
[17].

The linear continuous singular time delay
system (6) may have an impulsive solution.
However, the regularity and the absence of impulses
of the matrix pair (E, 4,) ensure the existence and

uniqueness of an impulse-free solution of the
system.

The existence of the solutions is defined in the
following Lemma.
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Lemma 1. Suppose that the matrix pair
(E, 4,) is regular and impulsive free, then the solu-

tion to (11) exists and is impulse-free and unique on
[0,00[, [17].

As a necessity for the system stability investi-
gation there is a need to establish a proper stability
definition.

Therefore, the following definition can be
written.

Definition 3. (a) LCSTDS (11-12) is said to
be regular and impulsive free, if the matrix pair
(E, 4,) is regular and impulsive free. (b) LCSTDS

(11-12) is said to be stable, if for any &>0 there
exists a scalar & (&) >0 such that, for any compatible

initial conditions(z), sup ||(p(t)||$5(g) the solu-
—-7<t<0

tion x(¢) of system (6) satisfies || x(t) || <g, Vi>0.

Moreover, if lim"x t)||—>0, the system is
[—©

said to be asymptotically stable, [17].

4. MAIN RESULTS

Definition 4. Singular time delayed
system (11-12) is a finite time stable with
respect to {a, B, 3, R}, a<p, and R>0,
if sup @' (t)E'RE¢(t)<a

implies
te[-7,0] P
x (t)E"REx(t)< B, Vte3.

Finally, by using matrix inequalities, we can
derive the sufficient condition under which the
system (11-12) will be regular, impulse free and
finite time stable.

Theorem 1. Singular time delayed system
(11-12) is impulse free and finite time stable with
respect to {

.38 ([
PE=E'R*TIR'E , there exist a positive scalar

a<f if, letting

>0 and two positive definite matrices
MeR™, M=1" >0, ,and 2R such that the
following conditions hold:
PE:ETPT>0’ (13)
- {(AgPT +PA, +Q)~pEP PA,J o
A,TPT -0 ’ (14)

and:

—, Vted
ﬂ'min (H) ﬂ’min (H) a
Proof. Let wus consider the

Lyapunov-like, aggregation function:

V(x(0)=x" (1) PEx(1)+ [ ¥ (8)0x(9)ds

. (16)
Denoting by V(X(t))

V . i
(X(t)) along the trajectory of system (11-12), it
can be written:

(4% (), o (Q)}W B
(1)

following

time derivative of

V(x(1))=x"(t)PEx(t)+x" (t)PEyk(t)+% j X' (9)0x(9)d9
=x" (t)(45P" + P4, )x(t)
+x () PAx(t—7)+x" (t—7) A P"x(1)
+x' (1) 0x(1)-x" (1—7)Ox(1—7)
=g ()re’ (o)
(17)
where:

(40P" +PA,+Q) PA,

¢ (0)=[x" (1) ¥ (t-7)]; r:[

A PT -0
. (18)
From (13) and (16) it can be derived:
V(x(1) =& ()TE(e)
<ol o
_ . @PE 0
¢ 0zs0-2 05" Do
¢ (1)25(1)+pox" (1) PEX(1)
<px' (1)PEx(t) < px' (t)PEX(t +goj 9)0x(9)d9
. p[xf (1)PEx(1)+ j X (9)Qx(9)d.9]
=V (x(1))
(19)
since ¢ (1)24() <0
Multiplying (19) by € ' it is obtained:
i e Py (x 0
(7T (x(@)) <0 o0

Integrating (20) from 9to ¢, with €3 it
follows:

(x(0) <V (x(0))

Consequently:

21
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Furthermore, it can be calculated that:

(22) V(x(t)) =x" (t)PEx(t)+ j x' (9)0x(9)d9>x" (1) PEx(t)

-7

V(X(O)) =x (0)PEx(O)+jle (9)0x(9)d3

Since:

o =x" (1)E"R* TIR*Ex(1) > A, (T1)x" (¢) E" REx(¢)
PE=E P =E RZHRZE, (23) ‘ 25)
from (22) and first condition of Definition 4, From (25) it is obvious:

it follows: 1

7 (M) V(x(r))

PPN . x' (1)E"REX(t) <
7 (x(0))=x"(0)E"R*TIR Ex(0)+:[x (9)0x(9)d8 ’ 26)

< A (TT)X" (0)E"REX(0)+ A, (Q) Jq o' (9)9(9)d9  so combining (21), (24) and (26), leads to:

< (M)t 2 (0)-] 4 = (2, (M) 454, (0))

(24)
A (I)+7-4
x (Z)ETREX(Z) < L eWV(x(O)) <qe’ == () m (©)
ﬂ’min (H) ﬂ’min (H) (27)
Condition (15) and inequality (27) imply: The finite time stability of the system with
T(NE'REx(t)< B, Vie3. respect to Definition 4 was investigated.

X ( ) X( ) P © 28) For the numerical stability analysis, Theorem

QED. 1 was used.

The numerical values of matrices A;y and A4;;

are as follows:
5. DYNAMIC ANALYSIS

In this section, the dynamic analysis of the
system (3) was performed.

[0 1 o 0 0 0 0 0O 0 0 0 1 0o 0 0 0 0 0o 0 0
0 396 0 0 0 0 0 0 0 o0 0 2335 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 o0 0o 0 0 1 0 0 0 0 0 0
0 0 0 39¢6 842 2692 -1Sed 0 0 0 | 0 0 0 233 842 428 153 0 0 0
J U I 0 1 0 o 0 o |  _jo 0 0 o0 0 1 0 0 0 0
D710 0 0 -327¢3 28e2 -46e4 024 0 0 0 U700 0 0 -33¢4 0181 46e4 032 0 0 0
0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 1 0 o0
0 0 0 0 4le2 0 44e3 295 0 0 0 0 0 0 -04de-l 0 24e2 23e4 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
o 0o 0o o0 0 0 0 0 0 -42e6] o 0o o0 o 0 0 0 0 0 -32¢5]
System matrices Ao and A;; were calculated For this example it was adopted o = 0.8
for the system with feedback, as in Fig.3. and f=3.42.
lcfﬁ(p)
| System model
>
90:90> ﬂg Robot dynamics 4.9, 1,

fref
Figure 3. Block diagram of the system in contact with the environment and with appropriate feedback control signals
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The singular matrix £ was calculated from (4)
using described modeling procedure.

Using control low:

u(t)=-KCx(1), (29)

where K is system gain matrix and C system out-
put matrix.

det(AL —KC—SE) ZK}A_][l(S? —S)Zdet((AOL +A1L67‘YT)—CK—SE) ZdCt((AOL +21L)—CK—SE)

where A4; :(AOL ZIL).

It is to be noted that the eigenvalues are not
constant values, but they depend on the specific
value of time delay. Simulating system for 7= 200
ms, one sets possible eigenvalues that guarantee
system stability is o (1) = {8.3, 2.8e5, 7.2¢5, 1.2,
6.4e5, 1245, 12,4, 2.4e5, 4234, 4.1¢e6 }.

Adopting the adequate matrices from the con-
ditions of Theorem 1, using equations (13), it is pos-
sible to calculate scalar g for which the system
stability holds. It can be noticed that Ay, (IT) =
4.4¢7. In this case, it was derived that the stability
holds for g > 0.5, and system is finite time stable
fort € 0, 4s].

Figure 4. shows the representative system
norms of both stabilized and non-stabilized systems,
whereas Figure 5. represents the corresponding tra

K is diagonal matrix and their elements are
position and velocity gains, K = diag{Kp,Kv} .

Gain values for each segment can be calcula-
ted using actuators characteristics.

Detailed explanations for this procedure can
be found in [18].

Using the control law (29), (4) and (30), it is
possible to calculate eigenvalues of the system (5).

(30)

jectories of the system related to the ones presented
in Figure 4.

It can be noticed that the system shows its
finite time stability up to 4 s.

It was observed that the non-stabilized system
(open loop system) was finite time stable at the
interval [0, 1.3 s] and at interval [1.3 4 s] with
respect to = 3.42 (Figure 4., magenta curve).

Applying stabilization control law (29) resul-
ted both in the asymptotic stability and the finite
time stability on the interval [0.0 4.0 s], for all
points as it was requested as a synthesis goal.

Finally, it was observed that when condition
of Definition 4 and previously calculated conditions
from Theorem 1 was not satisfied, the system
showed instable behavior.

Figure 6 represents the case of the system tra-
jectories for some £, as in condition (28).

am

p=3.42

N

Norm of the stabilized trajecotry
Norm of the non-stabilized

trajectory |

Finite time stabile
system

Time [s]

Unstabile system

Figure 4. The norms of the stabilized closed-loop system trajectories and non-stabilized system
trajectories — a representative case -
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Finite time stabile
system

Stabilized trajectory
Non-stabilized trajectory

o
&

DA

i 1:{4"."."2‘4"1"rL.'ﬂ.":fw"r—.'*:ﬂ"’”!N-qmsfﬂ'*"'mh\f_"lv*m"w/mﬂ“ﬂ"’*

=

-2 4

'T‘mlc [s]

i

Umtahilc system

Figure 5. The trajectories of the closed-loop stabilized system and non-stabilized
system — a representative case corresponding to the ones in Fig. 4 -

<28, il

*©(0, IIx8Ei

Figure 6. Representative system trajectories and norms

For £, the system is finite time unstable on
te[0, 3], since the condition (28) does not hold for
chosen .

If we choose new value £, system is finite
time stable for any choice of ¢, no matter if delay is
present or not.

Similarly, for some f;, analyzed in the sense
of Theorem 1, it was observed that the system is
stable on te[4, oo[.

6. CONCLUSION

Generally, this paper extends some of the
basic results in the area of the non - Lyapunov
stability to the particular class of LCSTDS. Furt-
hermore, a part of this result is a geometric counter-
part of the algebraic theory in [1] supplemented with
appropriate criteria to cover the need for system
stability in the presence of actual time delay terms.
A novel sufficient delay-dependent criterion for the

finite time stability, based on LMIs approach, has
been established. The theory was validated and
implemented on the robotic system for automatic
drug delivery. The mathematical modeling, control
and stability of the system were tested using the
proposed approach.
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TOR

HEJLAITYHOBCKA CTABUJIHOCT CUHI'YJIAPHUX CUCTEMA: KITACUYAH
N MOJIEPAH ITPUJIA3 CA ITPUMEHOM Y AYTOMATCKOJ UCIIOPYII1 JIEKOBA

Caxxerak: Y OBOM paJly M3BE/ICHU CY JOBOJBHH YCIIOBH IPAKTHYHE CTAOMITHOCTH H
CTaOWJIHOCTM HAa KOHAYHOM BPEMEHCKOM HHTEpBally 3a KJacy JIMHEapHUX BPEMEHCKU
HENPeKUJHNUX CHHTYJIAPHHUX CHCTEMa ca YMCTHM BPEMEHCKMM KallibemeM. CHHIYIapHU
CHCTEMH M CHUHTYJIADHH CHCTEMH Ca YHCTHM BPEMEHCKUM KalIlCHeM MOTY OMTH MaTeMa-
THUYKW ONHKCAHU jenHaunHama tuna: EX'(f) = Ax(¢) u EX'(f) = Aox(f) — A1x(f - 7), cnencrae-
HO. AHanu3upajyhu cTabMIHOCT Ha KOHAYHOM BPEMEHCKOM HMHTEPBAy W3BEACHH CYy HOBU
YCIIOBH, Y TO 3aBUCHHU U HE3aBUCHH O] BPEMEHCKOT KallibeHha.

[Mpennoxxenu npuia3 ce 3acHUBa Ha ynoTpeOu JbamyHoBibeBUX (QyHKLHUja U HBHXO-
BUM OCOOMHAMa Ha IMOTIPOCTOPY KOH3MCTEHTHHX IOYETHHUX (QyHKIMja mim ycioBa. Oe
¢yHKIMje He MOpajy OUTH MO3UTHBHO Ofpel)eHe y 1enoM NpocTopy cTama, HUTH HEeraTHB-



Dragutin Lj. Debeljkovié, et al., Non-Lyapunov stability of singular systems: classical and modern approaches...
Contemporary Materials, [IV—1 (2013) Page 32 of 32

HO ozpehene nyx TpajexTopuja cucrema. Kana ce pasmaTpa npakTHYHa CTaOWIIHOCT, OBaj
npwia3z ce KOMOHMHYje ca KJIaCHYHOM JballyHOBCKOM TEXHHMKOM KOja rapaHTyje OCOOMHY
NpHBIaYeHha CUCTeMa. Y HUJbY A00Hjamba Makbe KOH3EpBATHBHUX pe3ynTaTa, kopuuiheHa je
u JIMU merona. [IpemioxkeHn METOR NPUMEHEH j€ M TECTHPaH Ha jeJTHOM MEAUIHCKOM
poboTckoM cuctemy. CHCTeM je An3ajHUpaH 3a pa3iMuuTe HaMeHe, Kao LITO Cy ayTOMaTcKa
UCIIOpyKa MeIMKaMeHarta, OMOICHja MJIM UCIIOPYKa paJHOaKTHBHHX 3pHala yHyTap 00oe-
JIOT TKUBA. 3a TaKkaB CHUCTEM pa3BHjeHA je moceOHa TeXHHWKa MOJICIUpama, YIpaBlbamka U
aHaJIM3e CTAOMIHOCTH OIHMCAHOT CHCTeMa. Y CBPXY MaTeMaTHYKOI MOJEIHPAaha, CUCTEM j&
JEKOMIIOHOBaH Ha MEXaHMYKH JIe0 M Ha pajHy OKOJIMHY KOja NMPECyAHO yTHYe Ha J(MHa-
MHYKO IOHamame. OBakaB MPUCTYI Ce II0Ka3a0 aJeKBATHUM y CIIydajy Kaja CIOJballibe
CWJIC YTHYY Ha JMHAMHUKY cucTeMa. J[oOMjeH MaTeMaTH4Kh MOJIEN CE€ aHaIM3hpa Kao CHH-
TyJIapHH CHUCTEM ayTOMAaTCKOI yIpaBjbama. Y Cilydajy Kaja ce YTHIa] CHOJballlbUX CUIla
MOX€ 3aHEMapHTH, AMHAMUYKO IOHAIIAke Ce aHaJM3HMpa KIACHYHUM METo/ama TeopHje
yIpaBJbamba.

Kbyune peun: cucremu ca KallbelheM, CHHTYJIapHA CUCTEMH, METUIIMHCKH POOOT.
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