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Summary: A model of the AFM (atomic force microscope) with certain tip-
nanostructure interaction, cantilever elasticity and damping of its oscillations is proposed.
Stable and unstable motion of the AFM tip interacting with the graphene sheet is investi-
gated by the Lyapunov exponent computation. In our approximation, a hundred Si atoms
(top of the AFM tip) interact with C atoms of the nanostructure. This interaction is de-
scribed by Lennard-Jones potential, and the distance between the top and the center of the
cantilever mass is a constant. Complex influence of the initial tip-nanostructure distance
and nanostructure size on stability has been examined. We discuss a possible new mode of
the AFM operation based on the Lyapunov exponent computation. Maxima and minima of
the Lyapunov exponent show where certain parts of the elementary cells are placed.
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1. INTRODUCTION

Atomic force microscopy (AFM) serves as a
tool for imaging surfaces with atomic resolution and
surface atoms manipulation. AFM modes of opera-
tion are static (contact and non-contact) and dynamic
(contact, non-contact and tapping). The mode is stat-
ic if we measure deflection of the cantilever dragged
across the sample surface. The mode is dynamic if
we measure the cantilever amplitude, phase and fre-
quency modified by tip-sample interaction. In con-
tact mode, the surface atoms repulse the tip scanning
the sample in close contact. In non-contact mode,
the surface atoms attract the scanning tip 5-15 nm
away. In tapping mode, or intermittent contact
mode, the cantilever is driven to oscillate with the
amplitude of 100-200 nm [1,2].

Nonlinear interaction between AFM tip and
the sample that we investigate can lead to chaotic
behavior [3-7]. We usually try to minimize instabili-
ties in tip motion, but an AFM can be based on
chaos, using local flow variation (LFV) method of
time series analysis. LFV is a non-linear time series
analysis method using phase space warping concept.
Small changes of system parameters are related with
feature vectors for chaotic and periodic motions.
LFV characterizes changes of the probability distri-
bution of trajectories in a subsystem phase space [8].
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We propose here a model of AFM tip interact-
ing with graphene and compute the Lyapunov expo-
nent for different values of initial position and gra-
phene size. The problem of stabilization and the pos-
sibility of a chaotic mode of operation will be consi-
dered.

2. THE MODEL

Motion of the AFM tip is influenced by inte-
raction with graphene sheet, elastic force and damp-
ing. Graphene sheet containing (2+2N)-(4+4N)
C atoms is placed in yz plane. The distance between
the top of the AFM tip and the center of the canti-

lever mass is a constant. We solve the equation of
the tip motion:

d2;7 /ux(x - éxO) ﬁxVx
m— g =-VU- u,(y=yo) || BV, | D
/’lz(Z_ZO) ﬁsz

Here m is mass of the cantilever containing

5-10" Si atoms (100 of them are interacting with
the nanostructure), U is Lennard-Jones potential,
describing interaction of Si and C atoms,
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,ux=4~103, ,uy:,u2=2-104, x, = x(0),
Vo =1(0), z, =z(0) (initial position of the top),
£=03, B, =p,=6.=0.1 and V' denotes ve-
locity of the AFM tip. Units for time, distance, mass,
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force and spring constant are: 10"%s, nm,
107 kg, 107> N and 10> N /m. The top is above

of its equilibrium position at # =0 and elastic force
moves the tip to the nanostructure.
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Figure 2.1. Motion of the tip is very complex if it is close to the nanostructure. Here y(0)=z(0)=0.2,N =4.

3. THE LYAPUNOV EXPONENT

In the analysis of some nonlinear systems
with three or more dimensions strange things were
observed with solutions or trajectories of the system
whose initial or assumed solutions already exist,
very little is different. What exactly was observed
was that the difference in the two trajectories (solu-
tions) grows exponentially with time, although the
initial point of both two trajectories differ only neg-
ligibly. Growth rate differences determined the ex-
ponent L function which is known as the Lyapunov
exponent. This phenomenon of rapid growth differ-

ence of two solutions to small changes in the initial
point is called sensitivity to initial point. Specifical-
ly, a system is chaotic, if Lyapunov exponent is
positive, i.e., greater than zero, and if the aperiodic
behavior of the solution itself, otherwise the system
is not chaotic. Sensitivity is necessary for the chaos,
but not enough.

We consider time series x(50j), where

7=12,...,3000, compute changes of x(50j)
(j>2800) caused by small changes of x(0), and
find averaged Lyapunov exponent.
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Figure 3.1. Dependence of the Lyapu- Figure 3.2. Dependence of the Lyapu- Figure 3.3. Dependence of the Lyapu-
nov exponent on the initial tip- nov exponent on the nanostructure size ~ 10v exponent on the nanostructure size
graphene distance with y(0)=1.4, with x(0)=21, y(0)=0.7, z(0)=0.6 with x(0)=4.2, y(0)=1.9, z(0)=-0.8
z(0)=1.3 and N=3. The motion can be (blue) and x(0)=18, y(0)=-0.1, z(0)=- (blue) and x(0)=3.8, y(0)=1.5, z(0)=-
stabilized by increasing of the tip- 0.1 (red). 0.4 (red).

nanostructure distance.

4. IMAGING THE NANOSTRUCTURE

For certain values of x(0), z(0) and N we

ponent show where certain parts of the elementary
cells are placed. We find that AFM can be used in
chaotic regime (positive Lyapunov exponent) as
well as in regular regime (negative Lyapunov expo-

find values of the Lyapunov exponent in an interval
of y(0). Maxima and minima of the Lyapunov ex-

nent).
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Figure 4.1. Lyapunov exponent with
x(0)=18, z(0)=0.5 and N=2. The max-
imums at y(0) = 3a, 7a and 11a are
showing positions of three hexagon
centers (a=0.142 nm is the distance
between neighbouring C atoms).

Figure 4.2. The Lyapunov exponent

with x(0)=19, z(0)=0 and N=4. We

can see two maximums on the edges

and four maximums placed at y(0)=
6a, 9a, 12a, 15a.
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Figure 4.3. The Lyapunov exponent
with x(0)=13, z(0)=1.136 and N=4.
We can see two maximums on the
edges and nine maximums showing
central points between neighbouring

C atoms.
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Figure 4.4. The Lyapunov exponent with
x(0)=0.2, z(0)=3.3 and N=6. Maxima
show positions of C atoms and minima

show positions of hexagon centers. Con-

sidered oscillations are chaotic (Lyapu-
nov exponent is positive).

Figure 4.5. The Lyapunov exponent
with x(0)=13.0, z(0)=3.3 and N=6.
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Figure 4.6. The Lyapunov exponent
with x(0)=17.0, z(0)=3.3 and N=6
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Figure 4.7. Here x(0)=30, z(0)=1.8,

N=2.
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Figure 4.8. Here x(0)=30,

Figure 4.9. Here x(0)=30,

2(0)=1.365, N=4.

2(0)=1.117, N=3.

5. CONCLUSION

Motion of the AFM tip is considered by com-
putation, using a model where tip-nanostructure inte-
raction, described by LJ potential, elastic force and
damping are included. We find that the operation of
AFM can be based on regular and chaotic oscilla-
tions of the tip and the Lyapunov exponent computa-
tion. Maxima and minima of the Lyapunov exponent
show where certain parts of the investigated nano-
structure elementary cells are placed. Stabilization is
not necessary as in conventional approaches. Appli-
cation of the proposed alternative AFM mode is very
simple in comparison with LFV method presented
earlier by Liu and Chelidze.
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FOXR

MMPUKA3NUBAIBE HAHOCTPYKTYPE PAUYHAKEM JbAITYHOBJBEBOI' EKCIIOHEHTA

Caxerak: [Ipemmoxen je momen A®PM-a (MHKpOCKON aTOMCKHX CHIIa) ca
onpehernM MehymjeoBameM IIMIJPKA W HAHOCTPYKType, oipeeHOM elacTHdHOImIhy
HOCa4ya W MNPUTYIICHEM HEroBux ocluanuja. McrpakeHo je cTaOMIHO W HECTaOMIIHO
kperatbe ADOM-oBor mMibka koju Mehyajenyje ca JucroM rpadeHa npu 4yemy ce padyHa
JbamyHOBJbEB €KCIIOHEHT. Y Hallloj alpoKCHUMAalHjH, CTO aroMa cuiunujyma (Bpx AOM-
OBOT LIMJbKA) Melyajernyje ca yrJbeHUKOBHM aToMHMa HaHOCTpykType. To Mehynjenosame
je onucano Jlenapa-lloHCOBUM IOTEHIIMjaIOM a YAaJbeHOCT BpXa Of LIEHTpa Mace Hocada
jé KOHCTaHTHa. Pa3MOTpeH je KOMIUIEKCaH YTHIQ] MOYETHE YAAbEHOCTH MLIMIbKA Of
HAHOCTPYKType ¥ YTHILA] BEJIMYMHE HAHOCTPYKType Ha cradumHocT. JluckyTrupamo
MoryhHocT HOBOT HaunHa (yHKIHMOHHCama ADPM-a koju OM OMO 3aCHOBaH Ha pavyyHamby
JbarryHOBJbEBOT EKCIIOHEHTa. MakCUMyMH M MHUHHMyMH JbamyHOBJEEBOTI €KCIIOHEHTa
MOKa3yjy Taje ce Haiase onpel)eHn I1jenoBH eJeMeHTapHuX henmja.

Kibyune pujeun: AOM, HaHOCTPYKTYpa, JbalryHOB/FEB €KCIIOHEHT.
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