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Abstract: In this paper, we present a solution to the close-packed dimer problem on 
a fractal lattice. The dimer model is canonical model in statistical physics related with 
many physical phenomena. Originally, it was introduced as a model for adsorption of dia-
tomic molecules on surfaces. Here we assume that the two dimensional substrate on which 
the adsorption occurs is nonhomogeneous and we represent it by the modified rectangular 
(MR) fractal lattice. Self-similarity of the fractal lattice enables exact recursive enumera-
tion of all close-packed dimer configurations at every stage of fractal construction. 
Asymptotic form for the overall number of dimer coverings is determined and entropy per 
dimer in the thermodynamic limit is obtained. 
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1. INTRODUCTION 
 
Studying liquid mixtures of unequally sized 

molecules Fowler and Rushbrooke [1] in 1937 intro-
duced a lattice model for molecular configurations. In 
this monomer-dimer model, smaller molecules (i.e. 
monoatomic molecules) are allowed to occupy one 
lattice point and are called monomers, while bigger 
molecules (i.e. diatomic molecules) occupy two adja-
cent lattice points and are called dimers. Each lattice 
site is occupied by either a monomer or dimer mole-
cule, and monomer-dimer problem in its simplest 
form can be stated as  the problem of enumeration of 
all distinct configurations that can exist on a lattice of 
a given geometry. It is a hard combinatorial problem 
that has not been solved exactly yet on two- or three-
dimensional lattices, but with some reductions in the 
model, exact solutions are possible. If the number of 
monomers is reduced to zero, and the whole lattice is 
covered with dimers, fully-packed or close-packed 
dimer model is obtained. It has generally been shown 
that the problem of close-packed dimers or perfect 
matchings, as it is called in graph theory, can be sol-
ved exactly for planar lattices [2], and, specifically, 
the number of close-packed dimers on rectangular 
(square) lattice has been determined in [2,3], and 

independently in [4,5,6]. Importance of close-packed 
dimer model in theoretical physics has emerged when 
one of the most elegant solutions for the two-
dimensional Ising model has been established from 
the equivalence of the Ising model and close-packed 
dimer model on the same planar graph [7]. Among 
connections with other systems and models in physics 
and mathematics, we mention just a few: Coulomb 
gas, conformal field theory and associated height 
models [8, 9], topological string A-model [10], span-
ning trees [11,12] and domino tillings[13].  

Besides the rectangular lattice, close-packed 
dimer model has been studied on other translationary 
invariant lattices and graphs with different boundary 
conditions [14−16]. On fractal lattices, one variant of 
dimer model has been considered in [17] and close-
packed dimer model with vacancies in [18]. Fractal 
lattices are scale invariant and are usually considered 
as the intermediate lattices between translationary 
invariant ones and random graphs. They can often 
serve as a representation of some nonhomogeneous 
substrate on which the adsorption occurs. In the past 
decade, the problem of molecular adsorption on sur-
faces has been reinvigorated because of its technolo-
gical applications such as hydrogen storage in carbon-
based substrates.  
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In this article, we study close-packed dimer 

problem on the modified rectangular (MR) fractal 
lattice embedded in two dimensional space. We 
assume that all dimer configurations have the same 
energy and determine the asymptotic form for the 
overall number of dimer configurations and the corre-
sponding microcanonical entropy.  

 
 
2. RECURSIVE ENUMERATION  

OF DIMER COVERINGS ON A FRAC-
TAL LATTICE 

 
In this section, we give a short introduction to 

fractals generally, and present an iterative construc-
tion of MR fractal lattice that is relevant for this 
paper. After that, we introduce a close-packed dimer 
model and develop a recursive method for the enume-
ration of all close-packed dimer configurations on 
MR lattice. 

 
2.1. Fractals and MR fractal lattice  
 
Most of the objects or patterns found in nature 

such as reliefs, coastlines, clouds, lightning, ferns, 
human brain, etc., are so irregular and fragmented that 
they cannot be described in terms of Euclidean 
geometry. This was first recognized by B. Mandel-
brot, who in 1975 designated them as fractals, and in 
his book ‘The fractal geometry of nature’ [19], gave a 
unique description of such objects, as well as strange 
sets and curves that had been studied in mathematics 
(Cantor set, Koch curve, Sierpinski gasket and carpet, 
Menger sponge, .…) . Mandelbrot introduced criteria 
according to which an object can be classified as a 
fractal: (i) it should be sufficiently irregular and jag-
ged, (ii) it should have many details on all length 
scales, (iii) its Hausdorff dimension should exceed its 
topological dimension. Since fractals have fine struc-
ture and details at all length scales, they are scale 
invariant. This means that if we take one small part of 
a fractal and uniformly enlarge it to the size of the 
whole object, they will match. This property is also 
called self-similarity. A small part is similar to the 

whole. Fractals in nature  are self-similar only in ave-
rage so that they are statistical fractals, while fractals 
in mathematics constructed by an iterative procedure 
are strictly self-similar, and are usually referred to as 
deterministic fractals. In construction of fractals in 
mathematics, it is customary to begin with an object 
of finite size and iteratively replace its parts with 
smaller, rescaled copies of the original, until the 
object of finite size with infinitely small details is 
reached. Another way, usually adopted in construc-
tion of fractal lattices in physics, is to start from an 
object of finite size and iteratively replicate it in a 
larger structure until  infinitely large object with finite 
details is obtained.  

Because of their outstanding properties, fractals 
have found diverse technological applications (some 
of them are fractal-shaped antennae, fractal transi-
stors, solar panels). They are also applied in simulati-
ons and analysis of various physical phenomena 
especially in material sciences [20−22], in the theore-
tical modeling of nonhomogeneous media [23], and in 
the theoretical studies of the influence of the 
dimensionality on the nature of phase transitions 
[24,25]. 

In the present paper, we consider modified rec-
tangular (MR) fractal lattice as a model of nonhomo-
geneous substrate for adsorption of diatomic molecu-
les. Modified rectangular lattice is a deterministic 
fractal lattice [24] constructed in self-similar iterative 
manner whose first four steps are depicted in Figure 
1. The first step of construction is a graph of four 
points in the form of a unit square. In the second step, 
two unit squares are joined into rectangle, while in the 
third step two copies of the previous rectangle are 
joined into the square. In each next step, two copies 
of the structure obtained in the previous step are joi-
ned into a rectangular or square shape, and the whole 
lattice is obtained repeating the process ad infinitum. 
Rectangle or square obtained in the r-th step is called 

r-th order generator and denoted by rG . The number 

of lattice points in the r-th order generator is 12 r . 
Fractal dimension of MR lattice is integral and equal 
to 2.  

 

 
Figure 1. Iterative construction of MR fractal lattice. The first four steps are presented, and the process should be repe-

ated infinitely many times 
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2.2. A theoretical model and a method  
 
A dimer is a diatomic molecule, i.e. two units 

called monomers connected by a chemical bond. In 
close-packed dimer model, it is assumed that the 
whole lattice is covered with dimers such that no 
lattice site is stayed vacant. It should be stressed that 
only lattices with even number of lattice points can 
have close-packed dimer coverings, i.e. can be 
completely covered with dimers. If the lattice conta-
ins MN 2  lattice points, then M  dimers can be 
placed on this lattice. The purpose of the present 
work is to determine the number of ways in which 
ܯ ൌ 2௥ dimers can be placed on a r-th order genera-
tor of MR lattice that consists of ܰ ൌ 2௥ାଵ  lattice 
points. Self-similarity of fractal lattice enables us to 
construct recursive relations for the enumeration of 
the configurations. 

In order to develop recursive enumerative 
scheme we refer to Figure 2, where one close-
packed dimer configuration on the 5-th order genera-
tor of MR fractal is presented. Each lattice point is 
occupied by a monomer bonded with adjacent 
monomer into a dimer. One should notice that in this 
hierarchically constructed 5G , that consists of two 

4G , which in turn consist of two 3G  and so on, 

some of the four corner vertices of the generator of 
any order are occupied by the monomers paired into 
dimers by the monomers on the corner vertices of 
the neighbouring generators, while other corner 
monomers and ‘internal’ monomers form dimers by 
the monomers on the same generator. For the sake of 
simplicity, it is useful to apply the so-called coarse-
graining procedure in which we overleap internal 
structure of the generators and associated dimer 
configurations, and represent real dimer configurati-
ons by the coarse-grained configurations which 
depict only the corner monomers. In Figure 3, coar-
se-graining procedure for dimer configuration given 
in Figure 2 is presented. Black circles represent cor-
ner monomers that form dimers with adjacent 
monomers on the same generator, while white cir-
cles represent corner monomers connected into 
dimers by the adjacent corner monomers of neig-
hbouring generators. In the first step of course-
graining procedure, internal structure of the second 

order generators is omitted and is shown as a shaded 

area, while real dimer configurations on each 2G  are 
represented only by corner monomers. In the next 
steps of coarse-graining procedure, dimer configura-

tions on each 3G , 4G  and 5G  are represented by 

their coarse-grained configurations, depicting only 
the corner monomers of the corresponding genera-
tors. As one can see in Figure 3, for a given close-
packed dimer configuration on 5G , there are only 

four possible types of coarse- grained configurations 
on sub-generators. This is also true for any other 
possible close-packed dimer configuration on the 

arbitrary rG . These four types of coarse-grained 
configurations are denoted by f, g, h and k, and they 
represent all real dimer configurations in which all 

‘internal’ monomers on rG are black, while: in f all 
four corner monomers are black; in g two corner 
monomers (that belong to different sub-generators 

1rG , which are outlined by the dashed lines in coar-
se-grained generators in Figure 3) are black and the 
other two are white; in h two corner monomers (that 
belong to the same sub-generator 1rG ) are black 
and the other two are white; in k all four corner 
monomers are white. Other possible combinations of 
black and white corner monomers are not possible 
on this lattice. For example, combination of three 
black and one white and vice versa is not allowed 
because of the parity. Also, one can perceive that all 
close-packed dimer configurations, on generator of 
any order, belong to the coarse-grained configura-
tion of the type f, while other three types are 
supplementary.  
 

 
Figure 2. Close-packed dimer configuration on the 5-th 

order generator of MR fractal lattice  

 

 
Figure 3. Subsequent stages of coarse-graining procedure and designation of the coarse-grained configurations  
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Figure 4. Illustration of recursion relation formation and possible configurations on the unit square as the initial 

conditions that supplement recursion relations  
 
 

Due to the hierarchically constructed lattice, 
each of the four coarse-grained configurations on the 
r+1-th order generator, can be composed of the con-
figurations of the same type on the r-th order genera-
tors. In the first row of Figure 4, we give schematic 
representation of four possible types of coarse-
grained configurations. In the second raw, we illu-
strate how each of these configurations on the r+1-th 
order generators can be composed of configurations 
on the sub-generators. In Figure 4 (a), one can see 

how f -type configuration on 1rG  can be composed 

from either two f- type configurations on rG  or two 

g-type configurations on rG . Denoting by rf  all 
possible real close-packed dimer configurations on 

rG , and taking into account that every dimer confi-

guration of type f on one of the rG  can be conca-

tenated with every configuration of type f on the 

second rG  into one configuration on 1rG , we 

obtain 2
rf close-packed dimer configurations. 

Similarly, from two g–type coarse-grained configu-

rations on two sub-generators rG one can obtain 2
rg  

close-packed dimer configurations on 1rG . The 
number of all close-packed dimer configurations on 

1rG  is then the sum of these two terms, and 
following the illustrations given in Figure 4 (b), 4(c) 
and 4(d) , one can write down recurrence equations: 

22
1 rrr gff  ,                               (1) 

2
1 rr hg  ,                               (2) 

rrrrr kggfh 1 ,                              (3) 

22
1 rrr kgk  .                                           (4) 

All possible dimer arrangements on the first 
order generator for each type of the configuration 
are shown in the third row in Figure 4 and  represent 

initial values of the variables: 21 f , 11 g , 

11 h  and 11 k .  
Iterating recursion relations (1)-(4), starting 

from their initial values, the explicit numbers of 

close-packed dimer configurations on rG  can in 
principle be obtained for any r. In Table 1, we pre-

sent values of rf  on several consecutive MR gene-
rators. As one can see from Table 1, the numbers of 
close-packed dimer configurations grow very fast 
with the lattice size, i.e. generator order r. In order to 

determine functional dependence of rf  on r, the 
system of difference equations (1)-(4) should be 
solved. To accomplish this, we introduce new varia-

bles defined as: rrr fgx  , rrr fhy   and 

rrr fkz  , whose recurrence equations follow 
from equations (1)-(4) and are given by: 

2

2

1
1 r

r
r

x

y
x


 ,                               (5) 

21
1

)1(

r

rr
r

x

zx
y




 ,                               (6) 

2

22

1
1 r

rr
r

x

zx
z




 .                               (7) 

In new variables, equation (1) can be written 
as: 

)1( 22
1 rrr xff  .                              (8)  
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Table 1. The numbers of close-packed dimer configurations rf  on the first six generators of MR lattice ( 21 f ). 

order of generator  r=2 r=3 r=4 r=5 r=6 

rf  5 26 757 575450 337201923781 
 
 

Initial values for the variables x , y  and z
are given by 21111  zyx . Iterating recursion 
equations (5)-(7) we obtain that all three variables 
tend to zero (forming two monotonically decreasing 
sequences: one for odd r and one for even r , for 
each of the variables) when r tends to infinity. Since 

rx becomes negligibly small for 1r , the 
asymptotic form of equation (8) can be written as: 

2
1 ~ rr ff  ,  

which means that f grows exponentially with r2 . 
Assumed asymptotic form for rf  is : 

r

rf 2~ ,                                (9) 

where the growth constant  can be obtained from 

r
r

r

f

2

ln
limln


 .  

Introducing the sequence r
rr fs 2)(ln , 

from equation (8) one obtains the recurrence relation  

)1ln(
2

1 2
11 rrrr xss   ,                           (10) 

with 2)2(ln2)(ln 11  fs . Iterating recursion 
relation (10), together with relations (5)-(7), it is 
found that evaluated sequence of numbers converges 
very quickly, and its limiting value is equal to 

...414750739.0ln  s . Since the number of 
monomers is given by the number of lattice points, 

which is 12  r
rN  for generator of order r, and the 

number of dimers rM  is just a half of the number of 
monomers, equation (9) can be written as a function 

of rN  or rM  as: 

rN
rf )(~  ,                                         (11) 

or  

rM
rf ~ .                             (12) 

From the known number of all close-packed 
dimer configurations, one can obtain the entropy as 

fkS B ln . Setting the Boltzmann constant equal to 
unity, it follows from equation (12) that the entropy 

per dimer in the thermodynamic limit, i.e. 
M

S
M 
lim , is 

equal to the logarithm of the growth constant  , 

that is to ...414750739.0s . Finally, the entropy 
per monomer is one-half of the entropy per dimer. 
    

 
3. RESULTS AND DISCUSSION  
 
In this paper, we have studied the close-

packed dimer model on the modified rectangular 
(MR) fractal lattice. Enumerating the configurations 
recursively, we were able to find out explicit num-
bers of all close-packed dimer configurations on MR 
generator of any order r. Furthermore, we have 
determined the asymptotic form for the number of 
configurations as a function of the number of lattice 
sites. As can be seen from expression (11), the 
asymptotic form is a simple exponential function 
without any correction factors. Entropy per dimer is 
obtained from the overall number of configurations 
and its value can be compared to the result obtained 
for square lattice. This comparison is reasonable 
since MR lattice can be viewed as a square lattice 
from which some bonds are deleted. Each vertex in a 
square lattice has degree four (except boundary ver-
tices for open boundary condition), i.e. there are four 
bonds (edges) attached to each vertex, while MR 
lattice vertices have degree three. This means that 
square lattice has much more bonds than MR lattice 
of the same size and, consequently, there are more 
possibilities to place dimers on the square lattice. 
This geometrical factor reflects on the entropy per 
dimer, which is ...583121808.0sqs for the square 

lattice with both open and periodic boundary condi-
tions [2], larger than ...414750739.0MRs  for MR 
lattice, as expected. 

Finally, we would like to point out  that there 
are many opportunities with this model for future 
work. It would be a challenging combinatorial pro-
blem to establish recurrence equations on  the whole 
family of MR lattices [25]. Also, the model can be 
extended by introducing the interaction weights or 
even monomer-dimer problem can be considered on 
fractal lattices.  
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	
	

ПРЕБРОЈАВАЊЕ ДИМЕРНИХ КОНФИГУРАЦИЈА НА ФРАКТАЛНОЈ РЕШЕТКИ  
 

Сажетак: У овом раду презентујемо рјешење за проблем потпуно пакованих 
димера на фракталној решетки. Димер модел се сматра изворним моделом стати-
стичкe физикe који се може повезати са многим физичким појавама. Првобитно је 
уведен као модел за адсорпцију двоатомних молекула на површима. Овдје подразу-
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мијевамо да је дводимензионални супстрат на коме се дешава адсорпција нехомоген 
и репрезентујемо га модифицираном правоугаоном (МП) решетком. Самосличност 
фракталне решетке омогућава егзактно рекурентно пребројавање свих густо пакова-
них димерних конфигурација на сваком нивоу конструкције фракталне решетке. 
Одређен је асимптотски облик укупног броја димерних покривача и добијена је 
ентропија по димеру у термодинамичком лимесу.  

Кључне ријечи: димерне конфигурације, адсорпција, фрактали, ентропија. 
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