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Abstract: We have studied lattice self-avoiding polygons with attractive interaction
between contacts which are nonconsecutively visited nearest neighboring sites. The lattice
of choice is 3-simplex fractal lattice and the model represents a ring polymer in non-
homogeneous solution whose quality depends on the interaction parameter. It has already
been shown, by the renormalization group approach, that polymer on this lattice at any
nonzero temperature can exist only in the extended phase. Universal critical exponents,
which do not depend on the interaction strength, have also been determined. In this paper we
are concerned with two nonuniversal quantities: the connectivity constant related with the
free energy of the model and the mean number of contacts related with the internal energy.
We have shown that the connectivity constant is an unboundedly increasing function of the
interaction strength, while the mean number of contacts is an increasing function
asymptotically approaching a limiting value equal to one half, which is the mean number of
contacts in the case of Hamiltonian walks on the same lattice. This limiting value is expected,
since in the limit of infinite interaction (or zero temperature) each self-avoiding walk on 3-
simplex lattice becomes maximally compact and occupies all lattice points, i.e. becomes
Hamiltonian walk.
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Behavior of a linear polymer in dilute solution
is well studied topic in polymer science. At high
temperatures, i.e. good solvent regime, excluded-
volume effects prevail, and polymer is in an extended
phase with swollen conformations. At low
temperatures, i.e. bad solvent regime, attractive
interaction between monomers prevails, and polymer
is in a collapsed phase with compact conformations.
Transition between high and low temperature phases
(collapse transition) happens at some intermediate,
the so called O-temperature, and exactly at this
temperature polymer behaves as an ideal polymer
chain [1,2].

Self-avoiding walks (SAWSs) on a lattice are
random walks that never visit the same lattice point
more than once [3]. Closed self-avoiding walks, i.e.

self-avoiding walks whose starting and ending points
coincide are called self-avoiding polygons (SAPs)
[4]. In its simplest form, SAWSs and SAPs are used to
model linear and circular (i.e. ring) polymers,
respectively, in good solvents. The property of non
self-intersection mimics the excluded volume effects
in a real polymer. Introduction of an attractive
interaction between contacts, i.e. nearest neighboring
lattice sites visited non-consecutively by the self-
avoiding walk, converts the ordinary SAW model
into the interacting SAW (ISAW) model, and
similarly the SAP into the interacting SAP (ISAP).
These interacting models are able to capture collapse
transition, and have been extensively studied on
lattices with translational invariance in two and three-
dimensional space [5-18].

Studies of ISAW model on translationally
invariant lattices assume that the polymer is
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immersed in a homogeneous solution. Usually,
various types of inhomogeneities dispersed in
solution spoil its translational invariance, so that
fractal lattices, with no such symmetry, become more
convenient. Moreover, fractal lattices are scale
invariant (a property that enables exact application of
the renormalization group technique) which has led to
many exact results regarding universal properties
(properties that do not depend on the interaction
parameter and some particular lattice details) of the
model on various fractal lattices [19-24].
Specifically, it has been shown that 3-simplex fractal
lattice and two-dimensional Sierpinski Gasket lattice
do not allow for the collapse transition, implying that
the polymer on these two lattices can exist only in the
extended phase for all finite values of the interaction
parameter [19,20]. It has also been shown that the
studied model on these two lattices belongs to the
same universality class, and universal critical
exponents in the extended phase - metric exponent v
that determines the gyration radius of a polymer and
entropic exponents y and « that govern the scaling
laws of the partition function of the walk and polygon
models, respectively, have been determined
[19,22,25,26].

In this paper we give our contribution to the
understanding of the ISAP model behavior on 3-
simplex fractal lattice by studying two non-universal
quantities. Precisely, analyzing the generating
function of the model, we have obtained the
connectivity constant and the mean number of
contacts per monomer, related with the model’s free
energy and the mean number of contacts,
respectively, per monomer, in the thermodynamic
limit. We determine how each of these quantities
depend on the interaction parameter. Numerical study
of the comprehensive ISAP model, in the whole
temperature range, as presented here, should shed
light on relationship between ISAP model and other
theoretical models applicable only in some specific
temperature domains.

The paper is organized as follows. ISAP model
is defined in section 2. Relevant fractal lattice,
method for the calculation of the quantities of interest
and obtained results are presented in section 3.
Finally, summary and conclusions are given in
section 4.

2. ISAP MODEL

A self-avoiding polygon representing one
possible conformation of circular polymer on the
square lattice is shown in Figure 1. Visited lattice sites
represent monomers (or collection of monomers)

along the polymer backbone, while the steps of the
polygon represent chemical bonding between them.
Attractive interaction between monomers that are
nearest neighbors but not chemically bonded is
incorporated through an interaction energy ¢ (¢ < 0)
between contacts.

Figure 1. Self-avoiding polygon with N=26 steps and
M=7 contacts. This polygon contributes to the term x26u”
in the generating function (4)

This interaction is marked with wiggly line in Figure 1.
Assuming that each polygon consists of exactly N steps
(has perimeter N), partition function in canonical
ensemble is given as

Zy = Sp, e FECN), &)

where Py stands for polygon of length N, E(Py) is
the energy of each such polygon, and g = 1/kT.
Denoting the number of contacts in each
configuration as M (Py), the energy of this polygon is
E(Py) = M(Py)e. Associated Boltzmann weight is
ePMPNIel = yM(PN) \where it has been taken into
account the fact that € < 0, and interaction parameter
u = ePlel has been introduced. Then, sum (1) can be
written as

ZyW) = Tpy uMW) = Fumer (MM, (2)
where Cy(M) is the number of self-avoiding
polygons of length N and M contacts, normalized per
lattice site. It is convenient to work with variable
polymer length controlled by the fugacity x > 0

assigned to each step of the polygon (or visited lattice
site). Associated grand canonical partition function is

G(x,u) = Y=o Zy(@)x". 3)

In mathematics, this power series represents a
generating function for a sequence of numbers {Z}.
With (2), expression (3) can also be written as

GO u) = Y=o Ime Cy (M)uM xV. 4)



Dusanka Mardceti¢, et all., Nonuniversal properties of self-interacting polymer in non-homogeneous ...

Contemporary Materials, XI1-1 (2021)

Page 52 of 56

Each polygon with M contacts and N steps has a
weight uMx", so that the generating function is the
total weight of all possible polygons from minimal
length to maximal infinite length.

It is conjectured that the asymptotic, large N
behavior, of partition function (1) in high temperature
regime is given by
Zy(W~ApW)" N3, (5)
where the base pu is called connectivity constant, a
non-universal quantity which depends on the
interaction parameter u as well as on the lattice
details. Assuming that relation (5) holds, it can easily
be shown that the radius of convergence of power

series (3) is x.(u) = —_and in this context X IS

rw '’
called critical fugacity. Also, from the definition of

free energy F = —%an, and relation (5), it follows

that the free energy per
thermodynamic limit is given as

f= lim%=—llnu, (6)

N—oo B
which elucidates the physical meaning of the

connectivity constant. Exponent « in the asymptotic
relation (5) is universal, and depends only on the
lattice dimensionality. It determines the leading
singular behavior of the generating function G, and it
can be shown that the following relation holds
G (x)~const(x, — x)?>~% as x - x. from below.
The mean number of contacts by definition is

(M) = = S50 Zpmar MCy (M)uMx, )

monomer in the

and can be obtained from the generating function as
dlnG

(M) =——, (8)
while the mean number of steps is

(N) = = 350-o NZy )x", 9)
and is given by

M) =G0z (10)

It is assumed that partial derivatives in (8) and (10),
for each u, are calculated at the corresponding value
of x.. Combining equations (8) and (10), the mean
number of contacts per step is given as
_n_ugy
TNy T x Z_G ’
and this quantity determines internal energy per step
in the thermodynamic limit, which is equal to me.

(11)

3. ISAP MODEL ON 3-SIMPLEX LATTICE

Deterministic 3-simplex fractal lattice is
constructed iteratively. In the first step of
construction three points are joined into the form of

the unit triangle. The obtained structure is called the
first order generator or initiator. In the second step,
three unit triangles are joined into the form of triangle
in such a way that the vertices of neighboring
triangles are split. Repeating this procedure infinitely
many times, full fractal lattice is obtained. The
structure obtained in the arbitrary r-th step of
construction is called r-th order generator and it is
denoted as G,. First three generators are shown in
Figure 2. The number of lattice sites in G, is 3.

2 b S5

=3
Figure 2. First three steps of the iterative construction of
3-simplex fractal lattice

A - AL
Lk

Figure 3. Schematic representation of all self-avoiding
polygons on an arbitrary order generator of 3-simplex
lattice. Each polygon on generator G,,., consists of three
open self-avoiding walks, denoted by B, one through each
G,.. For B walk through upper G, two possible different
realizations through its sub-generators G,._, are
schematically shown

We will utilize self-similar structure of the 3-
simplex lattice, and following [20] determine the
generating function (3) of ISAP model recursively. We
notice that each polygon on G,.,, can be formed from
open self-avoiding walks through its sub-generators
G, . One such polygon on G,,;, and its three
composing parts, open self-avoiding walks through
each G,., are schematically shown in Figure 3. Self-
avoiding walks that start at one apex of any generator
of order r and end at any of the other two apexes of
the same generator are denoted as B type of the
walks. These are walks of different length which
include both, walks that visit and walks that do not
visit the third apex of the generator. The overall
weight of all polygons on G,,, is product of the
overall weights of its composing parts through G,.. If
the weight of all walks of type B on G, is denoted by
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B,., then the weight of all polygons on G,.,4 is equal
to (B,)3. Normalizing this weight per lattice site of
G, and summing over generators of all order r, we
obtain the generating function

Grw) =2 2° + B2 5 (Br(r,w). (12)

The first term, §x3 , is the weight per site of the only

one polygon on the unit triangle. For determination of
the weights of walks B on G, we will set recursive
equations on the basis of Figure 3. Two possible
situations on encircled G, are schematically
represented in the upper right part of the figure. The
first scheme represents all walks of type B on G, that
traverse only two of its sub-generators G,._,, and the
weight of all such walks is (B,_;)?. The second
scheme represents all walks of type B on G, that
traverse each of its three sub-generators G,_;, and
one can notice that if the walks B through sub-
generators denoted as 2 and 3 visit their third apex,
then an additional interaction between apexes of these
two neighboring triangles occurs. In order to account
properly for this interaction, among all walks of type
B on sub-generators 2 and 3, we will distinguish those
walks that visit the third apex of these generators and
denote them as C (see Figure 4), while their weights
on G,_, will be denoted as C,_,. If the additional
interaction was not present, the weight of all walks in
second scheme would be (B,_;)3. Since among all
walks of type B through generators 2 and 3, only
walks of type C contribute to this interaction, we will
subtract their contribution from the weight (B,_;)3
and add an additional term with the new interaction
incorporated. It then follows that recursion relation
for the weight B, can be written as

B, =By +Bj_; — B 4G}y +uB,_ 174, (13)
that is
By =B+ B} + (u—1)B_1CF_;.

A
2

X X X u X X u X

(14)

Figure 4. Schematic representation of walks of type B , as
well as their subset, the walks C, together with their
weighted initial conformations on the unit triangle

This equation involves weights C,_;, for which, by
the similar reasoning, recursion relation is established
Cr=BF Gy + (w—1C . (15)

Initial values for relations (14) and (15) are
defined on the unit triangle. In order that each
polygon of perimeter N has weight x, to each vertex
visited by the walks B on the unit triangle, a weight x
is assigned. Also, weight u is assigned to contacts.
Initial weighted walks are shown in Figure 4, from
which their starting weights are given as

B; = x? + x3u, (16)
and
C, = x3u. (17)

Interaction parameter u enters not only initial values,
but also recursion equations (14) and (15). But,

defining new variable A4, as \/(u—1)C, =4, ,
these equations become

By = Br_1(Br_y + Bf_1 + A7), (18)
and

Ap = Ar1(BF 1 + AF_y), (19)

so that interaction parameter is removed. It now
enters initial conditions only, which are given with
expression (16) for variable B, and with

A =x3uu—1,

for variable A.

(20)

3.1. Calculation and results

In order to determine connectivity constant, we
first notice that the generating function (12) can be
obtained as G =lim B. , where PB. is defined

r—00

recursively as

1
Py =PF+ W(Br)3a (21)

with the initial value P, = §x3. Iterating equation

(21), together with recurrence equations (18) and (19),
starting from their initial values, for each u > 1 we
determine radius of convergence x.(u) of the

generating function and find connectivity constant u as
ulu) = XL(u) . Numerical results for some chosen
values of u are given in Table 1, and overall results are
shown graphically in Figure 5.

Table 1. Numerically calculated values of the connectivity constant u for some values of the interaction parameter wu.

The last digit is rounded off.

u

1.0

15

2

5

10

50

100

200

500

u

1.618034

1.749171

1.869979

2.483085

3.288930

7.086544

10.00648

14.14508

22.36178




Dusanka Mardceti¢, et all., Nonuniversal properties of self-interacting polymer in non-homogeneous ...

Contemporary Materials, XI1-1 (2021)

Page 54 of 56

i u
35| -
L | ]
30} "
[ ]
Inp |} .
25|
L n
20| -
15 | [ ]
n
10 - .
05 .-""'/
0_0 I 1 1 1 I 1 n 1 I 1 n 1 1 1 n ]
0 1 2 3 4 5 8 7 8
Inu

Figure 5. Logarithm of the connectivity constant u versus
logarithm of the interaction parameter u

As one can see in Table 1 and Figure 5,
connectivity constant is a monotonically increasing
function of the interaction parameter u. Two limiting
values of u should be commented on. Firstly, the case
u = 1 corresponds to |¢] = 0 or T = oo, that is, to
non-interacting SAW model, for which connectivity
constant has been calculated exactly to be u(u =

1) = é [25]. Our numerical value agrees with the

exact value, and it is calculated with more than twenty
significant figures, although only seven are presented.
Secondly, limit u —» o corresponds to T — 0 or
le] » o, that is zero temperature or infinite
interaction energy limit. At zero temperature, free
energy is equal to internal energy, and in the
thermodynamic limit it can be expressed as f =
—ml|ée| , where m is the mean number of contacts.
Combining this expression and equation (6), relation
Inu=mlnu can be established. In the next

paragraph it would be shown that m — %when u-

1
o, Thus, relation u~ uz should hold in this limit,
from which it follows that connectivity constant
increases with u without a bound.
Mean number of contacts, m , given by
equation (11) can be obtained as the limit m =
lim m,., where

rr—00
!

U Pry
m, =—-—"*

L (22)
In this expression B, is a new variable which stands

for the partial derivative of P. with respect to u , i.e.
, oP, o , _ oP, .
P = T and similarly P, = o Recursion
relations for the new variables are obtained after
taking the partial derivatives of equation (21), and are

given as

, 1
r+iu — Pr’u + 37 (Br)zB;u: (23)
and
! 1 !
15+1,x =Py + 37 (Br)ZBrxv (24)
' 9By ' 9By
where B, = o and By, = <, are another two new

variables. Recursion relations for these variables are
obtained from relation (18), which in turn need two
more variables A;,, and A, defined similarly as
previous variables. In this way, iterating altogether
ten recursive equations, starting from the initial
values, we obtain mean number of contacts
numerically. Results are presented in Table 2 and
Figure 6. It should be mentioned that in order to get
five significant figures in the value of m, critical
value x. should be calculated with more than twenty
significant figures.

Table 2. Numerically calculated values of the mean number of contacts m for some values of the interaction

parameter u. The last digit is rounded off.

u |1 5 10 50

200 500 1000 1500

m | 0.13383 0.33064 0.41348 0.49299

0.49937 0.49985 0.49995 0.49997

From the Table 2 and Figure 6, one can
perceive that the mean number of contacts is
monotonically increasing function of the interaction
parameter u, which asymptotically tends to the
limiting value equal to 0.5. Increasing the value of u,
walks with larger number of contacts, with large
weights, become more probable, and in the limit u —
oo only compact walks with maximal number of
contacts contribute to the partition function. These
self-avoiding walks with maximal number of contacts
visit each site of the lattice, so they are Hamiltonian
walks by definition. If the coordination number of
lattice is g, and we consider a compact polygon or
compact open walk, then starting from some visited

lattice site (which is not starting or ending point in the
case of the open walk) there are gq—2
nonconsecutively visited nearest neighboring sites.
These are contacts shared by two sites, so that the

maximal number of contacts per lattice site is qT_Z.
Coordination number of each lattice site of 3-simplex

lattice is 3 (except the three apexes of the largest
generator), so that, theoretically, maximal number of

contacts is % . Our calculation shows that this is
exactly the u — oo limit of the mean number of
contacts of the studied ISAP model on 3-simplex

lattice. Moreover, this also confirms correspondence
between the ISAW model on 3-simplex lattice in the
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limit of zero temperature or infinite attractive
interaction and the Hamiltonian walk model on the
same lattice.

0.55

0.50 - .
| |
045
m -
040 |
035
|
030 |
025
o20| ™
015
[ ]
0_10 1 " 1 " 1 " 1 " 1 " 1
0 20 40 60 80 100
u

Figure 6. Mean number of contacts m as a function of the
interaction parameter u. Horizontal dashed line set at the
value m* = 0.5 denotes asymptotic limiting value of m

4. SUMMARY AND CONCLUSIONS

In the present paper we have studied
Interacting Self-Avoiding Polygon model on
3-simplex fractal lattice. The model represents a
circular polymer in dilute solution which is non-
homogeneous and represented by 3-simplex fractal
lattice. We have determined dependence of the
connectivity constant and the mean number of
contacts on the interaction parameter. We have found
that the connectivity constant increases boundlessly
with the interaction parameter, while the mean
number of contacts increases with the interaction
parameter, but asymptotically reaches its limiting
value of 0.5. This limiting value is the mean number
of contacts in the case of Hamiltonian walks on 3-
simplex lattice, which confirms that the zero
temperature or infinite interaction strength limit of the
ISAW model is Hamiltonian walk model. ISAW
model on 3-simplex lattice does not undergo a
collapse transition at any finite temperature, and
compact phase is possible only at absolute zero. It
would be very instructive to conduct similar research
on some fractal lattices for which it has been proven
that the collapse transition exists for non-zero
temperature. Such studies could explore the compact
phase and resolve the issue of whether the
Hamiltonian walk model corresponds to ISAW model
in all compact regime, or only at zero temperature.
Also, a correspondence between presented theoretical
model and a real polymer behavior in non-
homogeneous media could be properly examined.
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TOR

HEYHUBEP3AJIHE OCOBMHE CAMOMHTEPAT' YJYRET ITIOJIUMEPA Y HEXOMOI'EHOM
OKPYXEBY MOAEJIOBAHOM 3-CUMIIJIEKC ®PAKTAJIHOM PEIHETKOM

Caxerak: IlpoyuaBamm cmo

caMmoHernpecujerajyhe mojauroHe ca MPUBJIAYHOM

UHTEpPaKIKjoM U3Mely KoHTakaTa feUHICAHUX KAa0 HEeY3aCTOIHO HocjeheHu CycjeJHu YBOPOBH
Ha pemeTkd. Pemerka mo n3bopy je 3-cumiuiekc (pakTaijHa penieTka, i MOJEN MpelNCcTaBiba
NPCTCHACTU TIOJUMEP Y HEXOMOI'CHOM pacTBapady l1II/IjI/I KBAJIMUTET 3aBUCU OJ UHTCPAKIIUOHOT
napameTpa. [IpiuMjeHOM MeToIe peHOpMalTH3alioHe TPpYyIIe, 10 caja je TIOKa3aHo Aa ce MOoJMMeEp
Ha TOj peIIeTKU U OUIIO KOjOj HEHYNITO] TEMIIEPATYpH MOXKE HAIa3UTH CaMo y MPOIIUPEHO] (a3u.
VYHUBep3aIH KPUTHYHH EKCIIOHSHTH, KOjH He 3aBHCe OJ jauMHE HMHTepakuuje, Takohe cy
oapehenun. Hac y oBoM paay 3aHMMajy ABHj€ HEYHUBEP3aJHE BEJIMYMHE: KOHCTAHTA TIOBE3aHOCTH
Koja ozapelyje ci1000aHy eHeprujy MoJielia U cpeliibi Opoj KOHTakaTta Koju ojpelyje yHyTpaimy
eHeprujy. [Toka3zanu cMo J1a je KOHCTaHTa OBE3aHOCTH HeOrpaHu4eHo pactyha QyHkuMja jaunHe
WHTEpaKIyje, NOK je CcpemmHu Opoj KoHTakara pactyha (yHKIMja Koja ce acHUMITOTCKU
MpUOJIMKaBa TPAHUYHO] BPUjETHOCTH jEJHAKOj jellHa MOJIOBMHA, LITO j€ 3alpaBo CpPelmbH Opoj
KOHTaKara 3a ciiyd4aj XaMUJITOHOBHX IIETHH Ha MCTOj penieTku. Ta rpaHnvHa BPUjeIHOCT je H
OUEeKHMBaHa, jep y JuMecy OecKOHauHe WHTepakuuje (WM HyNTe TeMIIepaType) CBaka
camoHernpecujenajyha meTmha Ha 3-CHMIUIEKC PEUICTKH TOCTajeé MaKCHMMAaJIHO KOMIIAKTHA M
MOCjeTH CBE YBOPOBE PEIETKE, Tj. HOCTaje XaMUITOHOBA IIETHA.

KibyuyHe pujeun: moaumep, camoHenpecujenajyhu nosuros, ¢gppakrai, HeyHHBep3aaHe

0ocoOuHE.
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