Original scientific papers

UDK 621.311.243:502.131.1(497.2) DOI 10.7251/COMEN2102126T

# REDUCING CLIMATE CHANGE BY INSTALLING A NEW PHOTOVOLTAIC POWER PLANT IN BULGARIA

Plamen Tsankov<sup>\*</sup>

Technical University of Gabrovo, Faculty of Electrical Engineering and Electronics, 4 Hadji Dimitar str., 5300 Gabrovo, Bulgaria

Summary: Three new roof-mounted 10 kWp grid-connected photovoltaic (PV) power plants have been constructed in the Technology Park at the Technical University of Gabrovo, Bulgaria, as part of a project "Competence Center - Intelligent Mechatronic, Eco, and Energy Saving Systems and Technologies". Three different PV modules types have been used: monocrystalline silicon (mono-Si), cadmium telluride (CdTe), and copper indium gallium selenide (CIGS). New three power plants, together with the existing amorphous silicon and poly-crystalline silicon photovoltaic power plants at the TU-Gabrovo enhanced simultaneous testing of five different photovoltaic materials. A small 500 Wp mono-Si photovoltaic thermal hybrid solar collectors (PVT) PV system has also been constructed. The power plants feature a monitoring system for the meteorological and electrical operating parameters, which measures, displays, and stores data on solar radiation, temperature, wind speed, currents, voltages, and electrical power of each power plant. PV plants components' technical characteristics are given in the paper. The schemes describing the basic wiring diagram, disposition of the three PV subsystems on the roof of the building at the technology center have also been presented. The initial comparative software data for monitoring of meteorological and electrical operating characteristics of the three different types of PV subsystems are shown as well. According to the specific ecological equivalent of energy resources and energy for the region of Bulgaria, the data are presented on the saved CO2 emissions from the avoided production and transmission of electricity owing to the operation of photovoltaic power plants.

**Keywords:** monocrystalline silicon, cadmium telluride, copper indium gallium selenide, grid-connected photovoltaic power plant, monitoring system, meteorological and electrical operating characteristics, smart solar logger, carbon emissions, climate change.

## 1. INTRODUCTION

Exploring the possibilities and technical solutions influencing climate change by using renewable energy sources, in particular - photovoltaic (PV) systems, is the most common contemporary scientific research topic [1–5]. The potential for photovoltaic power plants influencing climate change depends on the production share by types of power plants in the specific region.

Bulgaria has taken an active role in the international efforts to help prevent climate change by supporting the concerted actions of the European Union and the wide-ranging package of measures in the energy sector. The widespread use of renewable energy sources (RES) and the implementation of energy efficiency measures are among the priorities of the national energy policy and are complying with the objectives of the new energy policy for Europe. As a result of the introduction of the Feed-in Tariff (FiT) in 2008, photovoltaic power plants' total power exceeding 1 GW were constructed in Bulgaria. In 2014, the FiT was dropped out for all ground-based and roof installed PV power plants over 30 kWp. At present, FiT exists only for small roof and facade photovoltaic systems [6]. This financial motivation, together with the reduction in prices of equipment for PV power plants, has led in recent years to the construction of a large number of small PV power plants capacity of less than 30 kWp on the roofs of buildings and adjacent areas. This has caused current interest and the increased importance of this type of study of PV power plants in Bulgaria, the example of which is given in this publication.

The three new roof-mounted 10 kWp gridconnected photovoltaic power plants have been constructed in the Technology Park at the Technical University of Gabrovo, Bulgaria, as part of a project

"Competence Center - Intelligent Mechatronic, Eco, and Energy Saving Systems and Technologies". Three different PV modules types have been used: mono-crystalline silicon (mono-Si), cadmium telluride (CdTe), and copper indium gallium selenide (CIGS). New three power plants, together with the existing amorphous silicon and poly-crystalline silicon photovoltaic power plants at the TU-Gabrovo, enhanced simultaneous testing of five different photovoltaic materials. A small 500 Wp mono-Si photovoltaic thermal hybrid solar collectors (PVT) PV system has also been constructed. The power plants feature a monitoring system for the meteorological and electrical operating parameters, which measures, displays, and stores data on solar

radiation, temperature, wind speed, currents, voltages, and electrical power of each power plant.

# 2. DESIGN AND TECHNICAL DATA FOR THE PHOTOVOLTAIC POWER PLANTS CONSTRUCTED

The modules of the three roof photovoltaic power plants are mounted on the metal constructions – Figure 1-a). The tilt angle of the photovoltaic modules related to the horizon is  $33^{\circ}$ . As a result of design considerations, the orientation of the photovoltaic modules is deviated by  $18.4^{\circ}$  degrees to the east – Figure 1-b).



Figure 1-a). Roof metal construction for the photovoltaic power plants

Three different PV modules types of the constructed power plants have been used – mono-Si, CdTe, and CIGS. Technical data at standard test conditions (STC) of the three different PV modules types are shown in Table 1 [7,8].

The disposition of the three PV power plants on the roof of the Competence Center building at the



Figure 1-b). Orientation of the photovoltaic systems

Technology Center of the Technical University of Gabrovo is shown in Figure 2.

The roof mono-Si power plant consists of 44 PV modules with maximum power of 10 kWp (Figure 2 and 3). The I-V curves of the mono-Si PV module at different solar irradiation and different cell temperatures are shown in Figure 4.

Table 1. Technical data at STC of the three different PV modules types

|                                                                                                                                          | mono-Si       | CdTe            | CIGS         |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------|--------------|--|--|--|--|
| Parameters at STC*                                                                                                                       | by Risen,     | by Calyxo,      | by Hulket,   |  |  |  |  |
|                                                                                                                                          | model SYP250M | model CX4 100/3 | model 1100E1 |  |  |  |  |
| Nominal power, [Wp]                                                                                                                      | 250.00        | 100.00          | 110.00       |  |  |  |  |
| Voltage at maximum power [V]                                                                                                             | 30.40         | 72.60           | 56.90        |  |  |  |  |
| Current at maximum power [A]                                                                                                             | 8.25          | 1.38            | 1.93         |  |  |  |  |
| Open circuit voltage [V]                                                                                                                 | 37.50         | 72.60           | 73.40        |  |  |  |  |
| Short circuit current [A]                                                                                                                | 8.59          | 1.53            | 2.10         |  |  |  |  |
| Maximum system voltage [Vdc]                                                                                                             | 1000          | 1000            | 1000         |  |  |  |  |
| *Notes – STC at: Solar irradiance: 1000 W/m <sup>2</sup> , Air mass: $\overline{AM} = 1.5$ , PV cell temperature: T <sub>c</sub> = 25 °C |               |                 |              |  |  |  |  |



Figure 2. Disposition of the three PV power plants on the roof of the Competence Center building at the Technology Park of the Technical University of Gabrovo, Bulgaria

The roof CdTe power plant consists of 96 PV modules with maximum power of 9.6 kWp (Figure 2 and 5). Figure 6 shows relative efficiency at different cell temperatures of the CdTe PV module 100 Wp, model CX4 100/3, Figure 7 shows comparative efficiency at different temperatures of the PV cell between CdTe and crystalline (c-Si) silicon material. At PV cells temperatures above 75 °C in the operating zone of Figure 6, the efficiency of the CdTe PV modules is higher than c-Si PV modules.



Figure 3. Mono-Si PV modules power plant



*Figure 4-a) Figure 4-b) Figure 4. I-V curves of the mono-Si PV module at different irradiation – a) and PV cell temperatures – b)* 



Figure 5. CdTe PV modules power plant



Figure 6. Performance at different cell temperatures of the CdTe PV module 100 Wp



Figure 7. Comparative efficiency at different PV cell temperatures between CdTe and crystalline silicon material

The CIGS power plant roof consists of 90 PV modules with maximum power of 9.9 kWp (Figure 2 and 8). I-V curves of the CIGS PV module – model 1100E1, at different solar irradiation and PV cell temperature are shown in Figure 9.

A small 500 Wp mono-Si photovoltaic-thermal hybrid solar collectors (PVT) PV system is also constructed – Figure 2, and connected to a separate grid-connected inverter Fronius Galvo 2.5. The three rooftop PV subsystems are connected to the three sine-wave three-phase gridtied PV string inverters, model SUN2000-10KTL-M0 (Huawei), which converts DC power generated by the three PV subsystems of different type of PV technologies into AC power, feeding it into the power grid. The grid-connected PV string inverters synchronize electrical parameters with the power grid. The disposition of the three grid-tied PV string inverters and their appearance is shown in Figure 10.



Figure 8. CIGS PV modules power plant



Figure 9. I-V curves of the CIGS PV module at different irradiation -a) and PV cell temperatures -b)



Figure 10. Disposition of the three-phase grid-tied PV string inverters and appearance of the model SUN2000-10KTL-M0

| Input                         |               | Output                                  |                                        |  |  |  |
|-------------------------------|---------------|-----------------------------------------|----------------------------------------|--|--|--|
| Maximum PV power              | 14,880 Wp     | Grid connection                         | 3 phase                                |  |  |  |
| Maximum voltage               | 1,100 Vdc     | Rated output power                      | 10 kW                                  |  |  |  |
| Operating voltage range       | (140 ÷ 980) V | Maximum apparent power                  | 11 kVA                                 |  |  |  |
| Start-up voltage              | 200 V         | Rated output voltage                    | 230/400 Vac                            |  |  |  |
| Full power MPPT voltage range | (470 ÷ 850) V | Rated AC grid frequency                 | 50 Hz                                  |  |  |  |
| Rated input voltage           | 600 V         | Maximum output current                  | 16.9 A                                 |  |  |  |
| Maximum input current / MPPT  | 11 A          | Adjustable power factor (PF)            | $0.8 \text{ ind} \div 0.8 \text{ cap}$ |  |  |  |
| Maximum short-circuit current | 15 A          | Maximum total harmonic distortion (THD) | $\leq$ 3 %                             |  |  |  |
| Number of MPP trackers2       |               | Maximum officianay                      | 08 6 0/                                |  |  |  |
| Maximum number of inputs      |               | waxinium enticiency                     | 98.0 %                                 |  |  |  |

Table 2. Technical data of the sine-wave three-phase grid-tied PV string inverters, model SUN2000-10KTL-M0

The roof PV power plants are equipped with a monitoring system for the meteorological and electrical operating parameters, which measures, displays, and stores data on solar radiation, temperature, wind speed, currents, voltages, and electrical power of each power plant. The monitoring system with a smart logger, model Solar-Log 300 [9] – Figure 11, includes remote alarm function and graphic evaluation on PC. The main technical data of the three sine-wave, three-phase grid-tied PV string inverters, model SUN2000-10KTL-M0, are shown in Table 2 [10]. Efficiency curves of the inverters SUN2000-10KTL-M0 at different values of the input voltage are shown in Figure 12.

The electrical connection diagram of the individual strings for the CdTe and CIGS PV module is shown in Figure 13. Grounding is done for the installation.

Communications with the inverters SUN2000-10KTL-M0 and smart logger Smart-Log 300 can be performed with access over a public network (Figure 14), and by access over a local ethernet and Wi-Fi (Figure 15).



Figure 11. The monitoring system of the PV power plants with model Solar-Log 300

Page 132 of 139



Figure 12. Efficiency curves of the inverters SUN2000-10KTL-M0 at different input voltage



Figure 13. Schemes describing basic wiring diagram of the individual strings for CdTe and CIGS PV module



Figure 14. Communications with the inverters and smart logger by access over a public network



Figure 15. Communications with inverters by access over a local ethernet and Wi-Fi

# 2. INITIAL MONITORING SOFTWARE DATA FOR METEOROLOGICAL AND ELECTRICAL PARAMETERS

The monitoring system of the roof PV power plants is performed in two ways: through direct communication with the three-phase sine-wave inverters via RS485, WLAN, Wi-Fi/4G, or via mobile FusionSolar App and detail monitoring from smart logger Solar-Log 300. Figure 16 shows direct communications with inverters SUN2000-10KTL-M0 over Wi-Fi with FusionHome App. The mobile app displays grid-connected, daily, monthly, and annual energy yields. The roof PV power plants were put into operation in May 2020.

The detailed data for the meteorological and electrical operating parameters of the roof PV power plants are received from smart logger Solar-Log 300. The monitoring system by the smart logger measures, displays in real-time and stores data on solar radiation, temperature, wind speed, currents, voltages, electrical power, energy yield, and registered events of each power plant. Figures 17 and 18 show monitoring in real-time of the yield data and energy flow from the PV power plants to the power grid.



Figure 16. Communications with inverters SUN2000-10KTL-M0 over Wi-Fi with FusionHome App



Figure 17. Monitoring of the yield data



Figure 18. Energy flow monitoring

The monitoring system displays details individually for each inverter as status (on-grid or offgrid), the daily change of the input DC voltage, currents, powers, and AC output AC and temperature – Figure 19 and 20. The values can be displayed for a selected period. The monitoring software system visualizes daily, monthly, and annual electricity production of the PV power plants. All the values of the electrical parameters, temperature, solar irradiation, status of the inverters, errors, and events are stored and can be exported to CSV file – Figure 21. When the actual yield differs from the target yield, the monitoring system sends a notification (email message, etc.).



Figure 19. The inverter details of the mono-Si PV modules power plant



Figure 20. The inverter details of the CIGS PV modules power plant

| 00 | AutoSave 🤇 |              | 5.    | Q - =      | l.        |        | exp   | ott_min.xbx | *                   |           | ,P 50     | arch )         |            |          |                             |                                 |           |            |        | 5. <b>P</b> | tamen Isar         | nkov 🧟             |          | - o        | ×     |
|----|------------|--------------|-------|------------|-----------|--------|-------|-------------|---------------------|-----------|-----------|----------------|------------|----------|-----------------------------|---------------------------------|-----------|------------|--------|-------------|--------------------|--------------------|----------|------------|-------|
| F  | ile Hor    | ne inse      | t P   | lage Layou | it Form   | ulas   | Data  | Review      | View                | Help Ac   | robat     |                |            |          |                             |                                 |           |            |        |             |                    |                    | d Share  | Com        | ments |
| 1  | X          | 6            | Ca    | libri      | ~ 11      | - A*   | Α"    | = = =       | 194-                | 🔁 Wrap Te | wt.       | General        |            |          |                             | <b>F</b>                        | ) 🔠       | B          |        | ∑ AutoSum   | * AY               | Q                  | 4        | 1          |       |
| P  | - Ste      | rnat Rainter | в     | 7 ∐ ↔      | · 🖽 • 🗌   | 0 + 1  | 4     | = = =       | <u>E5</u> <u>35</u> | 📑 Merge å | Center +  | <b>108</b> - 1 | ** **      | For      | nditional Fo<br>matting ~ T | irmat as Cell<br>lable - Styles | Insert    | E Delete F | ormat  | Clear +     | Sort &<br>Filter * | Find &<br>Select * | ideas    | Security   |       |
|    | Cipboe     | id l         | 6     |            | Fort      |        | 15    |             | Align               | react     | 15        |                | Remitter   | Fi.      | sty                         | des.                            |           | Cells      |        |             | Editing            |                    | ideas -  | Senskiwity | ^     |
| C  |            | el 1 12      | c (4  | 1 6        | 1         |        |       |             |                     |           |           |                |            |          |                             |                                 |           |            |        |             |                    |                    |          |            | ~     |
|    | 1.1        |              | 198   |            | -         |        |       | 14          | 76                  |           | <i>¥</i>  | 12             | -          | ii ii    | 0                           |                                 | 0         |            | 1      | 14 I.       | - 14 I             |                    |          |            |       |
| 1  | #Date      | Time         | INV I | Pac [W]    | CavSum IV | Status | Error | Pdc1[W] P   | dc2 (W)             | Udc1 [V]  | idc2[V] T | emp (°C)       | dc1 (mA) 1 | dc2 [mA] | Uact IVI                    | Uac2 IVI Ua                     | C3 IVI IN | N P        | ac (W) | DaySum IV   | Scatus             | Error              | Pdc1 [W] | Pdc2 fWl   | Udc1  |
| 2  | 5.6.2020   | 17:25:00     | 1     | 2552       | 50820     | 5      | 0     | 1265        | 1364                | 545       | 543       | 39             | 2316       | 2511     | 244                         | 247                             | 244       | 2          | 1436   | 27740       | 5                  |                    | 1494     | 5          |       |
| 3  | 5.6.2020   | 17:20:00     | 1     | 2547       | 50610     | 5      | 0     | 1262        | 1363                | 545       | 540       | 30             | 2311       | 2518     | 244                         | 247                             | 244       | 2          | 1434   | 27620       | 5                  |                    | 1491     | 6          |       |
| 4  | 5.6.2020   | 17:15:00     | 1     | 3137       | 50400     | 5      | 0     | 1559        | 1664                | 550       | 547       | 39             | 2833       | 3036     | 243                         | 246                             | 244       | 2          | 1755   | 27510       | 5                  |                    | 1815     | 5          |       |
| 5  | 5.6.2020   | 17:10:00     | 1     | 1874       | 50150     | 5      | 0     | 925         | 1015                | 538       | 532       | 39             | 1720       | 1907     | 243                         | 246                             | 244       | 2          | 1071   | 27370       | 5                  |                    | 1122     | 5          |       |
| 6  | 5.6.2020   | 17:05:00     | 1     | 1815       | 49990     | 5      | 0     | 895         | 984                 | 536       | 529       | 40             | 1668       | 1850     | 243                         | 246                             | 244       | 2          | 1033   | 27270       | 5                  |                    | 1082     | 5          |       |
| 7  | 5.6.2020   | 17:00:00     | 1     | 3029       | 49870     | 5      | 0     | 1505        | 1609                | 545       | 540       | 40             | 2757       | 2977     | 243                         | 246                             | 244       | 2          | 1671   | 27210       | 5                  |                    | 1734     | 5          |       |
| 8  | 5.6.2020   | 16:55:00     | 1     | 3991       | 495B0     | 5      | 0     | 1990        | 2106                | 549       | 546       | 40             | 3622       | 3851     | 243                         | 246                             | 243       | 2          | 2192   | 27040       | 5                  |                    | 2262     | 5          |       |
| 9  | 5.6.2020   | 16:50:00     | 1     | 2429       | 49250     | 5      | 0     | 1205        | 1302                | 546       | 539       | -40            | 2203       | 2416     | 242                         | 245                             | 243       | 2          | 1378   | 26860       | 5                  |                    | 1434     | 5          |       |
| 10 | 5.6.2020   | 16:45:00     | 1     | 2304       | 49050     | 5      | 0     | 1141        | 1239                | 539       | 535       | -40            | 2117       | 2311     | 242                         | 245                             | 243       | 2          | 1302   | 26750       | 5                  | 1                  | 1356     | 5          |       |
| 17 | 5.6.2020   | 16:40:00     | 1     | 2343       | 48860     | 5      | 0     | 1161        | 1259                | 538       | \$35      | 41             | 2157       | 2351     | 242                         | 245                             | 242       | 2          | 1313   | 26640       | 5                  |                    | 1368     | 5          |       |
| 12 | 5.6.2020   | 16:35:00     | 1     | 3412       | 48660     | 5      | 0     | 1698        | 1809                | 545       | 543       | 41             | 3110       | 3331     | 242                         | 245                             | 242       | 2          | 1883   | 26530       | 5                  |                    | 1949     | 5          |       |
| 13 | 5.6.2020   | 16:30:00     | 1     | 3137       | 48380     | 5      | 0     | 1558        | 1666                | 541       | 540       | 42             | 2878       | 3081     | 241                         | 245                             | 242       | 2          | 1753   | 26380       | 5                  | (                  | 1815     | 5          |       |
| 14 | 5.6.2020   | 16:25:00     | 1     | 2960       | 48120     | 5      | 0     | 1468        | 1577                | 535       | 532       | 42             | 2742       | 2960     | 241                         | 245                             | 242       | 2          | 1636   | 26230       | 5                  |                    | 1699     | 5          |       |
| 15 | 5.6.2020   | 16:20:00     | 1     | 4492       | 47890     | 5      | 0     | 2241        | 2369                | 538       | 542       | 43             | 4161       | 4368     | 242                         | 245                             | 242       | 2          | 2432   | 26110       | 5                  | 6                  | 2512     | 5          |       |
| 16 | 5.6.2020   | 16:15:00     | 1     | 5304       | 47520     | 5      | 0     | 2644        | 2789                | 541       | 540       | 43             | 4887       | 5158     | 242                         | 245                             | 243       | 2          | 2850   | 25900       | 5                  | (                  | 2942     | 5          |       |
| 17 | 5.6.2020   | 16:10:00     | 1     | 5500       | 47240     | 5      | 0     | 2741        | 2892                | 548       | 544       | 42             | 5001       | 5315     | 241                         | 245                             | 242       | 2          | 3001   | 25750       | 5                  |                    | 3090     | 5          |       |
| 18 | 5.6.2020   | 16:05:00     | 1     | 3479       | 46580     | 5      | 0     | 1728        | 1846                | 541       | 539       | 43             | 3190       | 3416     | 241                         | 244                             | 242       | 2          | 1923   | 25400       | 5                  |                    | 1987     | 6          |       |
| 19 | 5.6.2020   | 16:00:00     | 1     | 5152       | 46330     | 5      | 0     | 2569        | 2712                | 542       | 544       | 43             | 4739       | 4982     | 242                         | 245                             | 2.42      | 2          | 2798   | 25260       | 5                  |                    | 2885     | 5          |       |
| 20 | 5.6.2020   | 15 55 00     | 1     | 5177       | 45850     | 5      | 0     | 2583        | 2724                | 542       | 536       | 44             | 4762       | 5072     | 241                         | 245                             | 242       | 2          | 2825   | 25000       | 5                  |                    | 2917     | 5          |       |
| 21 | 5.6.2020   | 15:50:00     | 1     | 5184       | 45470     | 5      | 0     | 2585        | 2727                | 535       | 534       | 44             | 4823       | 5101     | 241                         | 245                             | 242       | 2          | 2812   | 24790       | 5                  |                    | 2901     | 6          |       |
| 22 | 5.6.2020   | 15:45:00     | 1     | 6131       | 44990     | 5      | 0     | 3056        | 3213                | 540       | 539       | 44             | 5658       | 5955     | 242                         | 245                             | 242       | 2          | 3276   | 24540       | 5                  |                    | 3380     | 6          |       |
| 23 | 5.6.2020   | 15:40:00     | 1     | 6987       | 44470     | 5      | 0     | 3482        | 3654                | 540       | 594       | .43            | 6444       | 6717     | 242                         | 245                             | 242       | 2          | 3733   | 24260       | 5                  |                    | 3848     | 5          |       |
| 24 | 5.6.2020   | 15:35:00     | 1     | 5549       | 43890     | 5      | 0     | 2767        | 2915                | 539       | 543       | 43             | 5130       | 5360     | 241                         | 245                             | 242       | 2          | 2988   | 23940       | 5                  |                    | 3083     | 6          |       |
| 25 | 5.6.2020   | 15:30:00     | 1     | 5753       | 43410     | 5      | 0     | 2862        | 3022                | 536       | 542       | 43             | 5338       | 5571     | 241                         | 245                             | 242       | 2          | 3094   | 23680       | 5                  |                    | 3194     | 6          |       |
| 26 | 5.6.2020   | 15:25:00     | 1     | 7477       | 42930     | 5      | 0     | 3723        | 3911                | 543       | 545       | 43             | 6856       | 7171     | 242                         | 245                             | 242       | 2          | 3956   | 23430       | 5                  |                    | 4082     | 6          |       |
| 27 | 5.6.2020   | 15:20:00     | 1     | 6951       | 42320     | 5      | 0     | 3462        | 3634                | 548       | 548       | 42             | 6312       | 6630     | 242                         | 246                             | 243       | 2          | 3711   | 23110       | 5                  |                    | 3824     | 6          |       |
| 28 | 5.6.2020   | 15:15:00     | 1     | 5937       | 41750     | 5      | 0     | 2956        | 3114                | 545       | 552       | 42             | 5418       | 5637     | 242                         | 246                             | 243       | 2          | 3218   | 22800       | 5                  |                    | ) 3317   | 6          |       |
| 29 | 5.6.2020   | 15:10:00     | 1     | 4889       | 41240     | 5      | 0     | 2433        | 2578                | 547       | 548       | 41             | 4444       | 4697     | 242                         | 245                             | 242       | 2          | 2680   | 22530       | 5                  | 1                  | 2762     | 6          |       |
|    | 1 1 1      | export_m     | in s  | sheet1     | ()        |        |       |             |                     |           |           |                |            |          | 24                          | 14                              |           |            |        |             |                    |                    |          | P          |       |

Figure 21. CSV export data of the monitoring system

## 4. ASSESSMENT OF THE ECOLOGICAL EQUIVALENT OF THE SAVED ENERGY IN BULGARIA

In Bulgaria, a mandatory state "Ordinance  $N_{\underline{0}}$  E-RD-04-3 of 4 May 2016 on the eligible measures for the implementation of energy savings in final consumption, ways of demonstrating the energy savings achieved, the requirements for their assessment methodologies and methods of confirmation" [11] is in force. This state ordinance includes Appendix 3 with Reference values of the conversion factor considering the losses for extraction/production and transmission of energy, including fuels, and Appendix 4 with Reference values of the ecological energy equivalent coefficient for different fuels (Table 3). A Specialized Commission on Electricity at the National Agency for Sustainable Energy Development, together with the author of this publication, has developed, according to the Ordinance, a Methodology for estimating energy savings when installing photovoltaic systems [12].

| Type of energy resource/<br>energy | The conversion factor from FES to PES,<br>considering energy losses | Ecological equivalent coefficient |
|------------------------------------|---------------------------------------------------------------------|-----------------------------------|
|                                    | e <sub>p</sub>                                                      | $\mathbf{f}_{\mathbf{i}}$         |
|                                    | [-]                                                                 | [gCO <sub>2</sub> /kWh]           |
| Industrial gas oil, diesel         | 1.10                                                                | 267                               |
| Fuel oil                           | 1.10                                                                | 279                               |
| Natural gas                        | 1.10                                                                | 202                               |
| Propane-butane                     | 1.10                                                                | 227                               |
| Black coal                         | 1.20                                                                | 341                               |
| Lignite/brown coal                 | 1.20                                                                | 364                               |
| Anthracite coal                    | 1.20                                                                | 354                               |
| Coal briquettes                    | 1.25                                                                | 351                               |
| Firewood, pellets                  | 1.05                                                                | 43                                |
| The heat from district heating     | 1.30                                                                | 290                               |
| Electrical energy                  | 3.00                                                                | 819                               |

 Table 3. Reference values of the conversion factor considering the losses for extraction/production and transmission of energy, including fuels, and Reference values of the ecological energy equivalent coefficient

The initial data analysis of the new photovoltaic power plant monitoring systems in the Technology Park of the Gabrovo Technical University allows calculation of the parameters necessary to assess their impact on reducing carbon emissions and climate change. Figure 22 shows the web-view of the monitoring software for the 30 kWp (mono-Si, CdTe and CIGS) grid-connected power plants on the roof of the Gabrovo Tech Park, showing  $CO_2$  emissions avoided from the launch of the power plant in May 2020 until July 2021, totaling 32.14 tons.



© 2021 Solar-Log GmbH Privacy Policy | GTC | Right of revocation for end customers | Price List | Imprint | Licenses

Figure 22. Monitoring software for the 30 kWp grid-connected power plant on the roof of the Gabrovo Tech Park showing CO<sub>2</sub> emissions avoided from the launch of the power plant in May 2020 until July 2021

The Android (Figure 23 - left) and Web-based (Figure 23 – right) monitoring software for the small hybrid PVT system (Figure 2) are also configured to directly calculate the environmental benefits of its operation. Figure 23 shows an exemplary screenshot indicating the saved kilograms of  $CO_2$  emissions from

the beginning of the system operation, as well as the corresponding number of saved trees or gained kilometers of movement of an airplane or a car with an internal combustion engine. The saved  $CO_2$  emissions from the launch of the power plant in May 2020 until July 2021 are about 950 kilograms.



Figure 23. Monitoring software for the PVT system showing environmental benefits of its operation

#### 4. CONCLUSIONS

With the construction of the new three mono-Si, CdTe, and CIGS power plants presented, together with the existing a-Si and p-Si modules photovoltaic power plants, five different photovoltaic materials can be tested simultaneously in the new laboratory at the Technology Park of the Technical University of Gabrovo. The initial measured and stored comparative data from monitoring software for meteorological and electrical operating parameters of the three different PV module materials of solar radiation, temperature, wind speed, currents, voltages, and electrical power of each power plant confirm the operability and functionality for the future research of the new photovoltaic power plants constructed. Their modern monitoring systems for the meteorological and electrical operating parameters allow for a detailed analysis of the produced electricity and an assessment of the impact on climate change of a similar type of widespread roof-mounted PV power plants in Bulgaria.

The carbon savings achieved by the small rooftop photovoltaic power plants in the current study are relatively small for major impacts on climate change but are useful in assessing the savings potential of different photovoltaic module technologies. The considered technical solutions for roof PV power plants power up to 30 kWp and their results are significant for the current stage of development of photovoltaic electricity in Bulgaria since FiT still applies only for such power plants. A study on the register of newly built photovoltaic power plants in Bulgaria [13] shows that, in 2020, 759 new ones were built, out of which 727, or 96%, have a capacity of up to 30 kWp.

The technical solutions developed in this study and the results obtained can be useful for the correct choice of the photovoltaic modules technology and other elements of the photovoltaic power plants, as well as for assessing their impact on climate change in Bulgaria and other regions with similar weather conditions, and the profiles of energy sources in their electricity systems.

#### 5. ACKNOWLEDGEMENT

This work was supported by the European Regional Development Fund within the OP "Science and Education for Smart Growth 2014 – 2020", Project CoC "Smart Mechatronic, Eco – and Energy Saving Systems and Technologies" № BG05M2OP001-1.002-0023.

#### 6. REFERENCES

[1] T. A. Pavlović, Tsangrassoulis, N. Dj. Cekić, P. Ts. Tsankov, D. Lj. Mirjanić, I. S. Radonjić Mitić, *Photovoltaic Solar Energy Conversion*, In: Pavlović T. (eds) The Sun and Photovoltaic Technologies. Green Energy and Technology. Springer, Cham., 2020, 49–193.

[2] S. Wurster, C. Hagemann, *Expansion of Renewable Energy in Federal Settings: Austria, Belgium, and Germany in Comparison*. The Journal of Environment & Development, Vol. 29–1 (2020) 147–168.

[3] K. Gugler, A. Haxhimusa, M. Liebensteiner, *Effectiveness of climate policies: Carbon pricing vs. subsidizing renewables*, Journal of Environmental Economics and Management, Vol. 106 (2021) 102405.

[4] Z. Yang, P. Liu, L. Cheng, D. Liu, B. Ming, H., Li, Q. Xia, *Sizing utility-scale photovoltaic power generation for integration into a hydropower plant considering the effects of climate change: A case study in the Longyangxia of China*, Energy, Vol. 236 (2021) 121519.

[5] E. Santoyo-Castelazo, K. Solano-Olivares, E. Martínez, E. O. García, E. Santoyo, *Life cycle assessment for a grid-connected multi-crystalline silicon photovoltaic system of 3 kWp: A case study for Mexico*, Journal of Cleaner Production, Vol. 316 (2021) 128314.

[6] P. Tsankov, M. Yovchev, Technical and Economic Development of the Photovoltaic

*Electricity in Bulgaria*, Contemporary Materials, Vol. X–2 (2019) 119–131.

[7] Calyco – Datasheet for CdTe PV modules CX4 100/3.

[8] Hulket – Datasheet for CIGS PV modules 1100E1.

[9] https://www.solar-

log.com/manuals/manuals/en\_GB/SolarLog\_Manual \_3x\_EN. [Accessed: 1 August 2021].

[10] Inverters SUN2000-(3KTL-10KTL)-M0 – User Manual, Huawei Technologies, 2019.

ORDINANCE [11] N⁰ E-RD-04-3 of 4.05.2016 appropriate measures for on the implementation of energy savings in final consumption, ways of demonstrating the energy savings achieved, the requirements for their assessment methodologies and methods of confirmation, Official Journal of Republic of Bulgaria, no. 38 of 20 May 2016, in force since 20 May 2016, amended. and add., no. 79 of 25 September 2018.

[12]

https://portal.seea.government.bg/bg/Methodics/Methodics/Methodics [Accessed: 1 August 2021].

[13]

https://portal.seea.government.bg/bg/ByProducerAn dEnergyObject [Accessed: 1 August 2021].

#### ନ୍ଧର

### СМАЊЕЊЕ НИВОА КЛИМАТСКИХ ПРОМЈЕНА ИНСТАЛИРАЊЕМ НОВЕ ФОТОНАПОНСКЕ ЕЛЕКТРАНЕ У БУГАРСКОЈ

Сажетак: Три нове кровне фотонапонске (ПВ) електране од 10 kWp повезане на дистрибутивну мрежу изграђене су у Технолошком парку на Техничком универзитету у Габрову, Бугарска, а у склопу пројекта "Центар компетенција – интелигентни мехатронички системи, еколошки системи и системи за уштеду енергије и технологије". Коришћена су три различита типа фотонапонских модула: монокристални силицијум (моно-Si), кадмијум-телурид (CdTe) и бакар-индијумгалијум-селенид (ЦИГС). Нове три електране, уз постојеће фотонапонске електране на аморфни силицијум и поликристални силицијум у ТУ-Габрово, побољшале су синхронизовано тестирање пет различитих фотонапонских материјала. Изграђен је и мањи, моно-SI фотонапонски термо-хибридни систем соларних колектора (ПВТ) вршне снаге од 500 Wp. Електране имају систем за праћење метеоролошких и електричних параметара рада који мјери, приказује и похрањује податке о сунчевом зрачењу, температури, брзини вјетра, струјама, напонима и електричној снази сваке електране. У раду су наведене техничке карактеристике компоненти фотонапонских постројења. Приказане су и шеме које описују основну шему инсталација и распоред три фотонапонска подсистема на крову зграде у технолошком центру. Приказани су и почетни упоредни софтверски подаци за праћење метеоролошких и електричних радних карактеристика три различита типа фотонапонских подсистема. Такође, приказани су и подаци о емисијама СО2 из производње и преноса електричне енергије избјегнутих захваљујући раду фотонапонских електрана, при чему су подаци добијени на основу специфичног еколошког еквивалента енергетских ресурса и енергије за подручје Бугарске.

**Кључне ријечи:** монокристални силицијум, кадмијум-телурид, бакар-индијумгалијум-селенид, фотонапонска електрана повезана на дистрибутивну мрежу, систем за надзор, метеоролошке и електричне радне карактеристике, паметни соларни уређај за биљежење података, емисије угљеника, климатске промјене.

હ્યજી

Paper received: 20 August 2021 Paper accepted: 20 September 2021