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КАРАКТЕРИСТИКЕ БОЈЕ ПОЛИМЕТИЛМЕТАКРИЛАТА  
ИНКОРПОРИРАНОГ СА НАНОЧЕСТИЦАМА ЗЛАТА 
 

 
 
Сажетак: Циљ овог рада  био је да се испита утицај додавања различитих концентрација 
наночестица злата (AuNPs) на параметре боје наномодификованог основног материјала 
полиметилметакрилата (PMMA) протезе као и њихово међусобно поређење. Користили смо AuNPs 
произведене новим технологијама – методом ултразвучне спреј пиролизе (УСП), из раствора 
прекурсора  Ау (III) ацетата. Додавањем високо диспергованих AuNPs, у PMMA (ProBase Hot, 
Ivoclar Vivadent, Liethenstein) извршено је формирање нанокомпозита. Експерименталне узорке 
подијелили смо у четири групе. Три експерименталне групе са различитим концентрацијама AuNPs 
(I група – 0,12 wт.%, II група – 0,43 wт.%, III група – 0,74 wт.%) и једна контролна група. Укупно 
је направљено 24 узорка и распоређено у сваку групу по шест узорака (н = 6). Додавањем високо 
диспергованих AuNPs у PMMA добили смо наномодификовани полимерни композит. Резултат 
показује да је вриједност L * (light) узорка PMMA-AuNP1 нешто нижа од контролног узорка, док 
PMMA-AuNP2 и PMMA-AuNP3 имају веће вриједности. Контролни узорак има највишу C * 
вриједност, тако да је најзасићенији (најсвјетлији). Контролни узорак такође има највећу 
вриједност б * (више жутих нијанси), док остала три узорка имају нижу b * вриједност (више 
плавих нијанси). Такође, угао боје h је мањи од контролног узорка за сва три експериментална 
узорка (ближе оси црвене боје а +). На промјену боје у базним смолама значајно је утицало 
додавање наночестица злата (p ˃0,05). Разлике у боји ∆Е * су у опсегу 2,6–4,9. Додавање AuNP-а у 
тестираним концентрацијама нема статистички значајан утјецај на промјену транслуценције 
нанокомпозита PMMA/AuNPs. 

Кључне ријечи: наночестице злата, PMMA, протеза акрилна смола, особине боје. 
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Abstract: We use Newton’s second law of motion assuming combination chaos with stochasticity. For 
a measured time series, one can compute appropriate force and then better understand and roughly 
predict the behavior of the observed complex system. The force parameter describing instability is of the 
highest importance. We consider some mechanical experiments and the average global temperature.  
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1. INTRODUCTION 

It is no secret that throughout history, the 
laws of physics have often been attempted to be 
applied to systems such as society, economics, etc. 
In 1994, Dirk Helbing proposed a social force 
model for pedestrians, using Newton’s second law. 
There are readjusting force (determined by the 
difference between desired walking speed and 
actual velocity), repulsion from borders, mutual 
repulsion between moving pedestrians and 
fluctuating force (accounting for non-predictable 
individual behavior). Force in this model is a 
measure of the internal motivation of the individual 
to perform a certain movement. An unexpected 
result is found– more stochasticity does not always 
correspond to more disorder in the system [1,2]. 
Force in the social impact theory describes the 
social influence of individuals persuading and 
supporting others [3]. Tomaš Zeithamer describes 
the time dependence of the price of goods using 
Newton’s second law with damping force [4]. 

Complex systems are hardly predictable 
because of stochastic processes and sensitivity to 
initial conditions and force parameters. We will 
show that the exceptional instability in a short time 
interval makes possible the rough prediction of 
future oscillations. Our basic assumptions here are 
(i) applicability of Newton’s second law on non-
mechanical as well as mechanical systems and (ii) 
the combination chaos (short-term predictability) 
with stochasticity (unpredictability) [5]. 

We aim to improve understanding and rough 
prediction of complex systems by making an 
accurate transformation of experimental data to the 
force parameters as functions of discrete time. 

First, we consider the artificial time series 
and investigate the influence of very large 
instability, in a short time interval, on the future-
driven nonlinear oscillations which are 
occasionally damped and amplified. Then our 
approach to measured time series is explained. 
Finally, we apply the proposed method to the 
results of mechanical experiments, important in the 
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investigation of earthquakes, and the annual 
average global temperature.

2. ARTIFICIAL TIME SERIES

Nonlinear, driven and damped, or amplified, 
oscillations of a particle of unit mass we describe 
by the following differential equation of motion.

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝑎𝑎𝑎𝑎 + 𝑎𝑎2𝑎𝑎2 + 𝑎𝑎3𝑎𝑎3 + 𝑏𝑏𝑑𝑑 + 𝑤𝑤

+ ∑ 𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 6.28𝑑𝑑
𝑖𝑖

6

𝑖𝑖=2
 (1)

where

𝑑𝑑 = 𝑑𝑑𝑎𝑎
𝑑𝑑𝑑𝑑  (2)

We assume that force parameters 
(𝑎𝑎, 𝑎𝑎2, 𝑎𝑎3, 𝑏𝑏, 𝑤𝑤, 𝑐𝑐𝑖𝑖) are formed as

𝑅𝑅1 +  𝑔𝑔(𝑑𝑑) + 𝑅𝑅2𝑓𝑓(𝑑𝑑);  𝑅𝑅1, 𝑅𝑅2 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑.

where   𝑔𝑔(𝑑𝑑) is a regular function of time and  𝑓𝑓(𝑑𝑑)
is fluctuating function of time with values between 
−1 and 1. We will perform computations with five
different realizations of 𝑓𝑓(𝑑𝑑) (figure 1-5). If 𝑎𝑎 > 0,
oscillations are unstable. If we set the parameter 𝑎𝑎
as

𝑎𝑎 = ⋯ + 𝑄𝑄𝑒𝑒−𝜅𝜅(𝑡𝑡−𝑡𝑡0)2;    𝑄𝑄 > 0, 𝜅𝜅 ≫ 1,

then instability of level 𝑄𝑄 is located in a short time 
interval around 𝑑𝑑0. Large instability in that short
interval causes a large change of 𝑎𝑎(𝑑𝑑) in the future 
(figure 1-7). To have a large delayed effect, the 
level of stochasticity is very important (Figs. 6, 7). 

Figure 1. Solution of differential equation of motion (1) for  Q = 0.3 (left) and 37.1 (right). Here
z(0) = −1.2, v(0) = 2.0, a = −4.5 + 1.4f(t) + Qe−17(t−5)2 , a2 = 0.5 + 0.3f(t),

a3 = −0.4 + 0.2f(t), b = −0.04 + 0.03f(t), w = −0.2 + 0.2f(t), c2 = −0.8 + 0.6f(t), c3 = 1.2 + 0.7f(t),
c4 = −1.1 + 0.5f(t), c5 = 1.2 + 0.9f(t) , c6 = 0.8 + 0.6f(t). High positive parameter a (instability) near t = 5

causes very large uncertainty, amplitude and frequency in the future ( t > 7).
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 (1)
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𝑑𝑑 = 𝑑𝑑𝑎𝑎
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where   𝑔𝑔(𝑑𝑑) is a regular function of time and  𝑓𝑓(𝑑𝑑)
is fluctuating function of time with values between 
−1 and 1. We will perform computations with five
different realizations of 𝑓𝑓(𝑑𝑑) (figure 1-5). If 𝑎𝑎 > 0,
oscillations are unstable. If we set the parameter 𝑎𝑎
as

𝑎𝑎 = ⋯ + 𝑄𝑄𝑒𝑒−𝜅𝜅(𝑡𝑡−𝑡𝑡0)2;    𝑄𝑄 > 0, 𝜅𝜅 ≫ 1,

then instability of level 𝑄𝑄 is located in a short time 
interval around 𝑑𝑑0. Large instability in that short
interval causes a large change of 𝑎𝑎(𝑑𝑑) in the future 
(figure 1-7). To have a large delayed effect, the 
level of stochasticity is very important (Figs. 6, 7). 

Figure 1. Solution of differential equation of motion (1) for  Q = 0.3 (left) and 37.1 (right). Here
z(0) = −1.2, v(0) = 2.0, a = −4.5 + 1.4f(t) + Qe−17(t−5)2 , a2 = 0.5 + 0.3f(t),

a3 = −0.4 + 0.2f(t), b = −0.04 + 0.03f(t), w = −0.2 + 0.2f(t), c2 = −0.8 + 0.6f(t), c3 = 1.2 + 0.7f(t),
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causes very large uncertainty, amplitude and frequency in the future ( t > 7).

Figure 2. Solution of differential equation of motion (1) for  Q = 0.1 and 6.1. Here
z(0) = 2.1, v(0) = 0.3, a = −0.1 + 0.1f(t) + Qe−17(t−2.5)2, a2 = 0.01 + 0.003f(t),

a3 = −0.02 + 0.01f(t), b = −0.4 + 0.03f(t), w = 0.5 + 0.4f(t), c2 = 0.1 + 0.15f(t), c3 = 0.1 + 0.1f(t),
c4 = 0.1 + 0.2f(t), c5 = −0.1 + 0.1f(t) , c6 = −1.0 + 0.2f(t) .

Figure 3. Solution of differential equation of motion (1) for  Q = 0.2 and 5.7. Here
z(0) = 1.2, v(0) = −9.3, a = −0.1 + 0.1f(t) + Qe−17(t−2.5)2, a2 = 0.03 + 0.004f(t),

a3 = −0.01 + 0.01f(t), b = −2.4 + 0.8f(t), w = −1.5 + 0.1sin (5.4t − 0.9) + 0.7f(t),
c2 = −0.1 + 0.3sin (7.4t − 0.9) + 0.2f(t), c3 = −0.2 − 0.7sin (3.6t − 0.1) + 0.1f(t), c4 = −0.3 + 0.2f(t), c5 =

0.4 + 0.3sin (8.4t − 0.5) + 0.2f(t) , c6 = 1.0 + 0.2f(t).
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Figure 4. Solution of differential equation of motion (1) for  Q = 100 and 500. Here
z(0) = 3.5, v(0) = 0.8, a = −1.4 + 0.7f(t) + Qe−200(t−2.5)2, a2 = 0.02 + 0.006f(t),

a3 = −0.03 + 0.02f(t), b = −80.2 + 40.1f(t), w = 0.1 − 361sin (6t − 0.45) + 40.4f(t), c2 = 0.3 + 0.2f(t),
c3 = −0.2 + 0.1sin (1.2t − 0.7) + 0.2f(t),

c4 = 0.4 − 0.2sin (1.1t − 0.26) + 0.2f(t), c5 = −0.2 + 0.05sin (1.3t − 0.9) + 0.1f(t) , c6 = −1.1 + 0.4f(t).

Figure 5.  Solution of differential equation of motion (1) for  Q = 0.1, 2.5, 14.9 and 27.5. Here
z(0) = 0.1, v(0) = −0.02, a = −0.1 + 0.1f(t) + Qe−17(t−5)2 , a2 = 0.02 + 0.01sin (1.5t − 1.4) + 0.007f(t),

a3 = −0.03 + 0.002sin (1.2t − 0.8) + 0.02f(t), b = −1.5 + 0.01f(t), w = 0.02 − 0.3sin (2.5t − 1.7) + 0.01f(t),
c2 = 1.5 + 0.4f(t), c3 = 0.1 + 0.1f(t), c4 = 0.1 + 0.2f(t), c5 = −0.1 + 0.1f(t) , c6 = −0.1 + 0.05f(t).
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Figure 5.  Solution of differential equation of motion (1) for  Q = 0.1, 2.5, 14.9 and 27.5. Here
z(0) = 0.1, v(0) = −0.02, a = −0.1 + 0.1f(t) + Qe−17(t−5)2 , a2 = 0.02 + 0.01sin (1.5t − 1.4) + 0.007f(t),

a3 = −0.03 + 0.002sin (1.2t − 0.8) + 0.02f(t), b = −1.5 + 0.01f(t), w = 0.02 − 0.3sin (2.5t − 1.7) + 0.01f(t),
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Figure 6.  High maximum of a at t = 1 causes a large amplitude of z(t) for 5 < t < 8, if the level of stochasticity R 
is high enough; Q = 1.4, R = 0.09 (yellow), Q = 28, R = 0.09 (blue),   Q = 1.4, R = 0.9 (green),  Q = 28, R = 0.9 

(red). Here z(0) = 0.8, v(0) = −0.4, a = −0.2 + Rf(t) + Qe−17(t−1)2 , 
a2 = 0.04 + 0.1Rf(t), a3 = −0.03 − 0.1Rf(t), b = −0.01 + Rf(t), w = 0.2 − Rf(t),  c2 = 0.2 + Rf(t), 

 c3 = −0.2 + Rf(t), c4 = 0.3 + Rf(t),  c5 = −0.3 − Rf(t) , c6 = −0.1 + Rf(t). 
   
        

  

Figure 7.  High maximum of a at t = 1 causes a large amplitude and frequency of z(t) for 14 < t, if the level of 
stochasticity R is high enough; Q = 1.5, R = 0.09 (yellow), Q = 30, R = 0.09 (blue),   Q = 1.5, R = 1.3 (green),  

Q = 30, R = 1.3 (red). Here z(0) = −0.8, v(0) = 1.5, a = −0.17 + Rf(t) + Qe−17(t−1)2, 
a2 = 0.185 − 0.1Rf(t), a3 = −0.075 − 0.01Rf(t), b = 0.04 + Rf(t), w = −0.1 + Rf(t),  c2 = −0.3 + Rf(t), c3 =

0.2 + Rf(t), c4 = −0.2 + Rf(t),  c5 = 0.2 + Rf(t) , c6 = −0.23 + Rf(t). 
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3. MEASURED TIME SERIES 

Measured 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … we treat as coordinate 
of a particle of unit mass in discrete time. Then 

𝑣𝑣𝑛𝑛+𝑗𝑗 =  𝑥𝑥𝑛𝑛+𝑗𝑗 − 𝑥𝑥𝑛𝑛+𝑗𝑗−1;  𝑛𝑛 = 2,3,4, …, 
12; 𝑗𝑗 = 0,1,2, …                                                          (3) 

has the role of velocity. We assume a certain form 
of acting force: 

𝑣𝑣𝑛𝑛+𝑗𝑗 − 𝑣𝑣𝑛𝑛+𝑗𝑗−1 = 𝑎𝑎(𝑥𝑥𝑛𝑛+𝑗𝑗 − 𝑆𝑆) + 𝑎𝑎2(𝑥𝑥𝑛𝑛+𝑗𝑗 − 𝑆𝑆)2

+ 𝑎𝑎3(𝑥𝑥𝑛𝑛+𝑗𝑗 − 𝑆𝑆)3 + 
                                   +𝑏𝑏𝑣𝑣𝑛𝑛+𝑗𝑗 + 𝑤𝑤

+ ∑ 𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 6.28(𝑛𝑛 + 𝑗𝑗)
𝑖𝑖

6

𝑖𝑖=2
 ;  

𝑛𝑛 = 3,4, … ,12                                                           (4) 
where 

𝑆𝑆 = 1
12 ∑ 𝑥𝑥𝑛𝑛+𝑗𝑗

12

𝑛𝑛=1
;  𝑗𝑗 = 0,1,2, …                             (5) 

Ten force parameters (𝑎𝑎, 𝑎𝑎2, 𝑎𝑎3, 𝑏𝑏, 𝑤𝑤, 𝑐𝑐𝑖𝑖) 
could be computed by solving ten equations (4), for 
3 ≤ 𝑛𝑛 ≤ 12. We transform here, very accurately, 
the experimental data 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … to the force 
parameters as functions of discrete time 𝑗𝑗. This is a 
crucial difference in comparison with the Helbing 
and Zeithamer models [1,2,4], where force 
parameters are constants. 

Look at an example. Measured data are 
𝑥𝑥1 = 13.82, 𝑥𝑥2 = 13.80, …, 𝑥𝑥27 = 13.52, 𝑥𝑥28 =
13.47, 𝑥𝑥29 = 13.45, 𝑥𝑥30 = 13.49, 𝑥𝑥31 = 13.46, …   

For 𝑗𝑗 = 28, we find out 𝑆𝑆 = 13.59 and 
force parameters 𝑎𝑎 = 4.88, 𝑎𝑎2 = 3.45, 𝑎𝑎3 =
−141.64, 𝑏𝑏 = 1.32,  𝑤𝑤 = 0.02, 𝑐𝑐2 =
−0.096, 𝑐𝑐3 = −0.11, 𝑐𝑐4 = 0.08, 𝑐𝑐5 = −0.29, 𝑐𝑐6 =
0.29.  

For 𝑗𝑗 = 29, results are 𝑆𝑆 = 13.62, 𝑎𝑎 =
−1.34, 𝑎𝑎2 = 5.72, 𝑎𝑎3 = −44.53, 𝑏𝑏 = 1.63,   
𝑤𝑤 = 0.01, 𝑐𝑐2 = 0.001, 𝑐𝑐3 = −0.03, 𝑐𝑐4 =
−0.06, 𝑐𝑐5 = 0.08, 𝑐𝑐6 = 0.09. 

High maximum of the force parameter 
describing instability (𝑎𝑎) announces a consi-
derable change in the measured quantity. 

This approach applies to different data – 
gross domestic product, stock market index [6], 
forced RLC circuit oscillations, variable star 
data, double pendulum data, earthquakes, ele-
ctroencephalography, sea surface temperature 
anomaly, … 

4. LABORATORY EARTHQUAKE 

Variation of the physical properties of 
tectonic faults is a very important subject in 
seismology. David Bolton investigates acoustic 
signals from the fault zone as precursors of 
laboratory earthquakes, performing friction expe-
riments showing repetitive stick-slip failure. He 
observes a sample in the biaxial shear apparatus 
containing strain-gauge load cells, direct-current 
displacement transformers and piezoceramic 
sensors. Components of the sample are two gouge 
layers placed between three steel loading platens 
[7,8]. 

Using data from experiments with a biaxial 
deformation apparatus, we find out maxima of the 
force parameter 𝑎𝑎 preceding big changes in the 
time series (figure 8-10).

 
 

Figure 8. High maximum of the force parameter a 
(red) announces large increasing of voltage (blue). 

Considered time series is an electric output from the 
piezoelectric disk under mechanical shocks 

(experiment p2394) [8]. 
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3. MEASURED TIME SERIES 

Measured 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … we treat as coordinate 
of a particle of unit mass in discrete time. Then 

𝑣𝑣𝑛𝑛+𝑗𝑗 =  𝑥𝑥𝑛𝑛+𝑗𝑗 − 𝑥𝑥𝑛𝑛+𝑗𝑗−1;  𝑛𝑛 = 2,3,4, …, 
12; 𝑗𝑗 = 0,1,2, …                                                          (3) 

has the role of velocity. We assume a certain form 
of acting force: 

𝑣𝑣𝑛𝑛+𝑗𝑗 − 𝑣𝑣𝑛𝑛+𝑗𝑗−1 = 𝑎𝑎(𝑥𝑥𝑛𝑛+𝑗𝑗 − 𝑆𝑆) + 𝑎𝑎2(𝑥𝑥𝑛𝑛+𝑗𝑗 − 𝑆𝑆)2

+ 𝑎𝑎3(𝑥𝑥𝑛𝑛+𝑗𝑗 − 𝑆𝑆)3 + 
                                   +𝑏𝑏𝑣𝑣𝑛𝑛+𝑗𝑗 + 𝑤𝑤

+ ∑ 𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 6.28(𝑛𝑛 + 𝑗𝑗)
𝑖𝑖

6

𝑖𝑖=2
 ;  

𝑛𝑛 = 3,4, … ,12                                                           (4) 
where 

𝑆𝑆 = 1
12 ∑ 𝑥𝑥𝑛𝑛+𝑗𝑗

12

𝑛𝑛=1
;  𝑗𝑗 = 0,1,2, …                             (5) 

Ten force parameters (𝑎𝑎, 𝑎𝑎2, 𝑎𝑎3, 𝑏𝑏, 𝑤𝑤, 𝑐𝑐𝑖𝑖) 
could be computed by solving ten equations (4), for 
3 ≤ 𝑛𝑛 ≤ 12. We transform here, very accurately, 
the experimental data 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … to the force 
parameters as functions of discrete time 𝑗𝑗. This is a 
crucial difference in comparison with the Helbing 
and Zeithamer models [1,2,4], where force 
parameters are constants. 

Look at an example. Measured data are 
𝑥𝑥1 = 13.82, 𝑥𝑥2 = 13.80, …, 𝑥𝑥27 = 13.52, 𝑥𝑥28 =
13.47, 𝑥𝑥29 = 13.45, 𝑥𝑥30 = 13.49, 𝑥𝑥31 = 13.46, …   

For 𝑗𝑗 = 28, we find out 𝑆𝑆 = 13.59 and 
force parameters 𝑎𝑎 = 4.88, 𝑎𝑎2 = 3.45, 𝑎𝑎3 =
−141.64, 𝑏𝑏 = 1.32,  𝑤𝑤 = 0.02, 𝑐𝑐2 =
−0.096, 𝑐𝑐3 = −0.11, 𝑐𝑐4 = 0.08, 𝑐𝑐5 = −0.29, 𝑐𝑐6 =
0.29.  

For 𝑗𝑗 = 29, results are 𝑆𝑆 = 13.62, 𝑎𝑎 =
−1.34, 𝑎𝑎2 = 5.72, 𝑎𝑎3 = −44.53, 𝑏𝑏 = 1.63,   
𝑤𝑤 = 0.01, 𝑐𝑐2 = 0.001, 𝑐𝑐3 = −0.03, 𝑐𝑐4 =
−0.06, 𝑐𝑐5 = 0.08, 𝑐𝑐6 = 0.09. 

High maximum of the force parameter 
describing instability (𝑎𝑎) announces a consi-
derable change in the measured quantity. 

This approach applies to different data – 
gross domestic product, stock market index [6], 
forced RLC circuit oscillations, variable star 
data, double pendulum data, earthquakes, ele-
ctroencephalography, sea surface temperature 
anomaly, … 

4. LABORATORY EARTHQUAKE 

Variation of the physical properties of 
tectonic faults is a very important subject in 
seismology. David Bolton investigates acoustic 
signals from the fault zone as precursors of 
laboratory earthquakes, performing friction expe-
riments showing repetitive stick-slip failure. He 
observes a sample in the biaxial shear apparatus 
containing strain-gauge load cells, direct-current 
displacement transformers and piezoceramic 
sensors. Components of the sample are two gouge 
layers placed between three steel loading platens 
[7,8]. 

Using data from experiments with a biaxial 
deformation apparatus, we find out maxima of the 
force parameter 𝑎𝑎 preceding big changes in the 
time series (figure 8-10).

 
 

Figure 8. High maximum of the force parameter a 
(red) announces large increasing of voltage (blue). 

Considered time series is an electric output from the 
piezoelectric disk under mechanical shocks 

(experiment p2394) [8]. 

5. ANNUAL AVERAGE GLOBAL
TEMPERATURE

Instability is a key feature of the climate 
system – its variability is strongly affected by 
small changes in natural and anthropogenic 
forcing [9]. The annual average global 
temperature is higher now than it has been for 
at least 12000 years [10,11].  The actual effects 
of climate change have not yet been suffi-
ciently explored. Greenhouse gases are 
unlikely to be the only cause of rising 
temperatures and global warming. In 1883, a 
large eruption of the Krakatoa volcano 
occurred. It was the deadliest and most 
aggressive eruption of a volcano ever recorded 

Figure 9. Two high maxima of the force parameter 
a (red) announce large decreasing of S (blue) 

(experiment p4677) [8].

Figure 10. High maximum of the force parameter 
a (red) announces large increasing of S (blue) 

(experiment p4581)  [8].

Figure 11. Left: large increase in global temperature 
(blue) [13] is preceded by a high maximum of the force 
parameter a (red). This maximum is probably related to 
the 1883 eruption of Krakatoa. Right:  high maximum 

of the force parameter a (red) is probably related to the
jump in the growth rate of carbon emissions from 1950 
to 1970. [14]. We consider data xi+shift (i = 1,2,3, …)

with shift = 1 (left) and shift = 0 (right). 

in history. The effects of this volcanic eruption were 
immediate but there are certainly far-reaching 
consequences. The year following the eruption, 
average Northern Hemisphere summer temperatures 
fell by 0.4 °C (0.72 °F). 
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There are also water years and record rainfall 
values recorded in California after the eruption 
[12]. The high maximum of the force parameter 𝑎𝑎

announces a large increase in global temperature. 
Besides greenhouse gases, Krakatoa 1883 eruption 
is a possible cause of modern global warming 
(figure 11,12). 

Figure 12. Simulation of global warming with differential equation 
(1). If  Q = 0.1, z(4.8) = 0.34, but z(4.8) = 0.76 for Q = 5.3.

Here z(0) = 0.1, v(0) = −0.02, a = −0.1 + 0.1f(t) + Qe−17(t−1)2 ,
a2 = 0.02 + 0.01sin (1.5t − 1.4) + 0.007f(t),

a3 = −0.03 + 0.002sin (1.2t − 0.8) + 0.02f(t), b = −1.5 + 0.01f(t),
w = 0.02 − 0.3sin (2.5t − 1.7) + 0.01f(t), c2 = 1.5 + 0.4f(t), c3 = 0.1 + 0.1f(t),

c4 = 0.1 + 0.2f(t), c5 = −0.1 + 0.1f(t) , c6 = −0.1 + 0.05f(t).

6. CONCLUSION

Considering stochastic and chaotic artificial 
time series, we found out that large instability in a 
short time interval causes large uncertainty, 
amplitude and frequency of future oscillations. For 
a measured time series, we compute the appropriate 
force using Newton’s second law. The force acts on 
point in the space of data. Transformation of 
experimental data to the time-depending force 
parameters is a kind of information filtering. Then 
we can find out certain short time intervals with 
high instabilities and compare these heights. High 
maxima of the force parameter describing insta-
bility announce large changes in the measured 
quantities in mechanical experiments and a large 
increase in annual average global temperature. 
Besides greenhouse gases, the Krakatoa 1883 
eruption is a possible cause of modern global 
warming.
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ГРУБО ПРЕДВИЂАЊЕ ОСЦИЛАЦИЈА РАЧУНАЊЕМ  
МАКСИМАЛНЕ НЕСТАБИЛНОСТИ  

 
 
 

Сажетак: Користимо други Њутнов закон кретања претпостављајући комбинацију хаоса и 
стохастике. За измјерени временски низ може се израчунати одговарајућа сила и на основу тога 
имати боље разумијевање посматраног комплексног система као и грубо предвиђати његово 
понашање. Од највећег је значаја параметар силе који описује нестабилност. Разматрамо 
неколико механичких експеримената и средњу глобалну температуру.  

Кључне ријечи: хаос, стохастика, нестабилност, земљотрес, глобална температура. 
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