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Abstract: Recently there has been a considerable interest in studying iron-based superconductors called 
pnictides. The aim of this paper is to give a contribution to better understanding of magnetic properties of 
the 122 class of iron pnictides. We use anisotropic J1-J2-Jc-Jp Heisenberg model. The method of spin Green’s 
functions in the Tyablikov’s random phase approximation (RPA) decoupling scheme is used to determine 
the transition temperature. Based on the obtained expression for the transition temperature, we study its 
dependence on the spin anisotropy. Furthermore, we compare our model results with the experimentally 
available data for the transition temperature. In addition, we test our model predictions of the transition 
temperature using the exchange interaction values from other articles. Results presented here should give 
additional contribution to understanding the magnetic properties of the 122 class of iron-based supercon-
ductors.
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1. INTRODUCTION

The discovery of superconductivity in 
fluorine-doped LaOFeAs opened a new direction 
in the research of unconventional high-temperature 
superconductors [1]. It was followed by numerous, 
both theoretical and experimental, studies of a newly 
discovered class of iron-based superconductors, 
called pnictides. Today, the family of  high-
temperature iron-based superconductors includes 
pnictides such as the so-called 1111-system 
RFeAsO (R-rare Earth element), 122-system 
AFe2As2 (A = Ba, Ca, Sr), 111-system XFeAs  
(X = Li) and 11-system such as FeSe [2-7]. New types 
of iron-based superconductors are even recently 
being discovered such as the so-called 1144 class [8] 
and new research is done constantly on previously 
discovered compounds [9]. Pnictides showed a lot of 
similarities with the so-called cuprates, a well-studied 
class of high-temperature superconductors [10]. The 

main similarity between cuprates and pnictides is 
the layered structure (see Figure 1). In the case of 
pnictides the layered structure is made by layers of 
FeAs. Pnictides, like the cuprates, have a long-range 
magnetic order that is lost by doping with electrons 
or holes, when a superconducting state occurs.

Figure 1. Crystal structure of BaFe2As2, an iron pnictide 
compound of the 122-type in undoped regime
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 Undoped pnictide compounds are bad 
metals that have a long-range antiferromagnetic 
order below the Neel temperature TN ≤ 220 K 
[11,12]. Although it is believed that magnetism has 
a significant role in the onset of superconductivity 
in pnictides, there is still no general accordance 
on the magnetic interactions in these compounds. 
There are currently two active ways of looking 
at the nature of magnetism in pnictides: model 
of localized electrons and itinerant model. In this 
paper, we present the results of modeling the 122 
pnictide system as a system of localized electrons 
within the anisotropic Heisenberg antiferromagnetic 
model. We will use the 3D anisotropic Heisenberg 
antiferromagnetic J1-J2-Jc-Jp model to calculate 
the spin-wave spectrum and from it derive the 
transition (Neel, critical) temperature TN. Above 
this temperature long-range magnetic order in 
destroyed. Similar work was done on the analysis 
of 1111-system of pnictides in undoped phase [13]. 
Main idea of this paper is to give the selection of 
magnetic interactions that are used in model spin 
Hamiltonian and to see how Neel temperature 
depends on them and on spin anisotropy.

This work is organized as follows: after 
general introduction we will give an overview of 
three-dimensional antiferromagnetic J1-J2-Jc-Jp 
Heisenberg model with spin anisotropy. By using 
the Green’s function method for spin operators, 
we will obtain spin-wave spectrum and Neel 
temperature. Green’s functions equations of motion 
are decoupled by using so-called Tyablikov’s 
decoupling or random phase approximation.  After 
that, we will present numerical results that will 
show how does Neel temperature depend on model 
parameters, anisotropy and how results compare 
with the experimental data. Finally, we summarize 
the conclusions and give an overview of used 
literature.

2. MODEL HAMILTONIAN  
               AND MAIN RESULTS

In order to describe antiferromagnetic long-
range order of layered 122-type of pnictides we use 
Heisenberg model on a bilayer magnetic unit cell.  
We use the following Hamiltonian:
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where �⃗
�

�ρ�⃗ (��) represents spin operators in the ��-th sublattice in the m-th bilayer, while	�⃗ is the position of 

spin inside bilayer plane and � = �, �. Figure 2 shows magnetic elementary cell with eight sublattices 
labeled by �� = ��, ��, ��, �� for � = 1,2.  
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where T is the temperature and kB is the Boltzmann's constant. Further on, we use the self-consistent Callen's 
relation for the magnetization for arbitrary spin S in random phase approximation  [20,23]: 
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where T is the temperature and kB is the Boltzmann's constant. Further on, we use the self-consistent Callen's 
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where T is the temperature and kB is the Boltzmann's constant. Further on, we use the self-consistent Callen's 
relation for the magnetization for arbitrary spin S in random phase approximation  [20,23]: 
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where T is the temperature and kB is the Boltzmann's constant. Further on, we use the self-consistent Callen's 
relation for the magnetization for arbitrary spin S in random phase approximation  [20,23]: 
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where T is the temperature and kB is the Boltzmann's constant. Further on, we use the self-consistent Callen's 
relation for the magnetization for arbitrary spin S in random phase approximation  [20,23]: 
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where T is the temperature and kB is the Boltzmann's constant. Further on, we use the self-consistent Callen's 
relation for the magnetization for arbitrary spin S in random phase approximation  [20,23]: 
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where T is the temperature and kB is the Boltzmann's constant. Further on, we use the self-consistent Callen's 
relation for the magnetization for arbitrary spin S in random phase approximation  [20,23]: 

� =
(� − �)(1 + �)���� + (� + 1 + �)�����

(1 + �)���� − �����
 (9) 

−2�� 〈〈���
	(��)|��〉〉 − 4�� 〈〈���

	(��)|��〉〉 + (� − �) 〈〈�� �
	(��)|��〉〉 − 2�� 〈〈���

	(��)|��〉〉 − ��� 〈〈���
	(��)|��〉〉 =

1

2�
〈����

	(��), ���〉 (4c) 

4�� 〈〈�� �
	(��)|��〉〉 + 2�� 〈〈�� �

	(��)|��〉〉 + 2�� 〈〈���
	(��)|��〉〉 + (� + �) 〈〈�� �

	(��)|��〉〉 + ��� 〈〈�� �
	(��)|��〉〉 =

1

2�
〈��� �

	(��), ���〉 (4d) 

-���� 〈〈���
	(��)|��〉〉 + (� − �) 〈〈���

	(��)|��〉〉 − 2�� 〈〈�� �
	(��)|��〉〉 − 2�� 〈〈�� �

	(��)|��〉〉 − 4�� 〈〈���
	(��)|��〉〉 =

�

��
〈��� �

	(��), ���〉 (4e) 

���� 〈〈���
	(��)|��〉〉 + 2�� 〈〈���

	(��)|��〉〉 + (� + �) 〈〈���
	(��)|��〉〉 + 4�� 〈〈���

	(��)|��〉〉 + 2�� 〈〈�� �
	(��)|��〉〉 =

1

2�
〈��� �

	(��), ���〉 (4f) 

−���� 〈〈���
	(��)|��〉〉 − 2�� 〈〈�� �

	(��)|��〉〉 − 4�� 〈〈���
	(��)|��〉〉 + (� − �) 〈〈���

	(��)|��〉〉 − 2�� 〈〈���
	(��)|��〉〉 =

1

2�
〈��� �

	(��), ���〉 (4g) 

���� 〈〈���
	(��)|��〉〉 + 4�� 〈〈���

	(��)|��〉〉 + 2�� 〈〈�� �
	(��)|��〉〉 + 2�� 〈〈���

	(��)|��〉〉 + (� + �) 〈〈�� �
	(��)|��〉〉 =

1

2�
〈��� �

	(��), ���〉 (4h) 

where we have used following notation: 

� = �((2��� − 2��� + ��)� + �� + 4��) (5a) 

�� = ���� c os(���) (5b) 

�� = ���� c os(���) (5c) 

�� = ��� c os(���) c os(���) (5d) 

��� = �(�� + �������� ) (5e) 

���� = �(�� + ������� ) (5f) 

 Solving system of equations for Green's functions gives us spin wave dispersion. Spin waves 
dispersion has four positive solutions: 

�� = �(� − 2��)� − 4(�� − 2��)� − ������� − 4��������(�� − 2��)� (6a) 

�� = �(� − 2��)� − 4(�� − 2��)� − ������� + 4��������(�� − 2��)� 
(6b) 

�� = �(� + 2��)� − 4(�� + 2��)� − ������� − 4��������(�� + 2��)� 
(6c) 

�� = �(� + 2��)� − 4(�� + 2��)� − ������� + 4��������(�� + 2��)� 
(6d) 

where E3 has the Goldstone mode. Spin gap that is obtained when ��⃗ → 0 in E3 vanishes when η=0. Spin 
wave dispersion depends on magnetization and that indicates that magnon energy is temperature dependent 
and tends to zero as � → ��. In order to obtain sublattice magnetization we have calculated correlation 
function: 

〈���(��)���(��)〉 ≡ 2��(�) (7) 

where the function � is given by: 

�(�) =
1

�
� �� �

� − 2��

8��
c oth�

��

2���
��

�

���

+ � �
� + 2��

8��
c oth�

��

2���
��

�

���

−
1

2
�

	

��⃗

 (8) 

where T is the temperature and kB is the Boltzmann's constant. Further on, we use the self-consistent Callen's 
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where T is the temperature and kB is the Boltzmann's constant. Further on, we use the self-consistent Callen's 
relation for the magnetization for arbitrary spin S in random phase approximation  [20,23]: 
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where T is the temperature and kB is the Boltzmann's constant. Further on, we use the self-consistent Callen's 
relation for the magnetization for arbitrary spin S in random phase approximation  [20,23]: 
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where T is the temperature and kB is the Boltzmann's constant. Further on, we use the self-consistent Callen's 
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where T is the temperature and kB is the Boltzmann's constant. Further on, we use the self-consistent Callen's 
relation for the magnetization for arbitrary spin S in random phase approximation  [20,23]: 
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where T is the temperature and kB is the Boltzmann's constant. Further on, we use the self-consistent Callen's 
relation for the magnetization for arbitrary spin S in random phase approximation  [20,23]: 

� =
(� − �)(1 + �)���� + (� + 1 + �)�����

(1 + �)���� − �����
 (9) 

−2�� 〈〈���
	(��)|��〉〉 − 4�� 〈〈���

	(��)|��〉〉 + (� − �) 〈〈�� �
	(��)|��〉〉 − 2�� 〈〈���

	(��)|��〉〉 − ��� 〈〈���
	(��)|��〉〉 =

1

2�
〈����

	(��), ���〉 (4c) 

4�� 〈〈�� �
	(��)|��〉〉 + 2�� 〈〈���

	(��)|��〉〉 + 2�� 〈〈���
	(��)|��〉〉 + (� + �) 〈〈�� �

	(��)|��〉〉 + ��� 〈〈�� �
	(��)|��〉〉 =

1

2�
〈��� �

	(��), ���〉 (4d) 

-���� 〈〈���
	(��)|��〉〉 + (� − �) 〈〈���

	(��)|��〉〉 − 2�� 〈〈�� �
	(��)|��〉〉 − 2�� 〈〈�� �

	(��)|��〉〉 − 4�� 〈〈���
	(��)|��〉〉 =

�

��
〈��� �

	(��), ���〉 (4e) 

���� 〈〈���
	(��)|��〉〉 + 2�� 〈〈���

	(��)|��〉〉 + (� + �) 〈〈���
	(��)|��〉〉 + 4�� 〈〈���

	(��)|��〉〉 + 2�� 〈〈�� �
	(��)|��〉〉 =

1

2�
〈��� �

	(��), ���〉 (4f) 

−���� 〈〈���
	(��)|��〉〉 − 2�� 〈〈�� �

	(��)|��〉〉 − 4�� 〈〈���
	(��)|��〉〉 + (� − �) 〈〈���

	(��)|��〉〉 − 2�� 〈〈���
	(��)|��〉〉 =

1

2�
〈��� �

	(��), ���〉 (4g) 

���� 〈〈���
	(��)|��〉〉 + 4�� 〈〈���

	(��)|��〉〉 + 2�� 〈〈�� �
	(��)|��〉〉 + 2�� 〈〈���

	(��)|��〉〉 + (� + �) 〈〈�� �
	(��)|��〉〉 =

1

2�
〈��� �

	(��), ���〉 (4h) 

where we have used following notation: 

� = �((2��� − 2��� + ��)� + �� + 4��) (5a) 

�� = ���� c os(���) (5b) 

�� = ���� c os(���) (5c) 

�� = ��� c os(���) c os(���) (5d) 

��� = �(�� + �������� ) (5e) 

���� = �(�� + ������� ) (5f) 

 Solving system of equations for Green's functions gives us spin wave dispersion. Spin waves 
dispersion has four positive solutions: 

�� = �(� − 2��)� − 4(�� − 2��)� − ������� − 4��������(�� − 2��)� (6a) 

�� = �(� − 2��)� − 4(�� − 2��)� − ������� + 4��������(�� − 2��)� 
(6b) 

�� = �(� + 2��)� − 4(�� + 2��)� − ������� − 4��������(�� + 2��)� 
(6c) 

�� = �(� + 2��)� − 4(�� + 2��)� − ������� + 4��������(�� + 2��)� 
(6d) 

where E3 has the Goldstone mode. Spin gap that is obtained when ��⃗ → 0 in E3 vanishes when η=0. Spin 
wave dispersion depends on magnetization and that indicates that magnon energy is temperature dependent 
and tends to zero as � → ��. In order to obtain sublattice magnetization we have calculated correlation 
function: 

〈���(��)���(��)〉 ≡ 2��(�) (7) 

where the function � is given by: 

�(�) =
1

�
� �� �

� − 2��

8��
c oth�

��

2���
��

�

���

+ � �
� + 2��

8��
c oth�

��

2���
��

�

���

−
1

2
�

	

��⃗

 (8) 

where T is the temperature and kB is the Boltzmann's constant. Further on, we use the self-consistent Callen's 
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where T is the temperature and kB is the Boltzmann's constant. Further on, we use the self-consistent Callen's 
relation for the magnetization for arbitrary spin S in random phase approximation  [20,23]: 
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where T is the temperature and kB is the Boltzmann's constant. Further on, we use the self-consistent Callen's 
relation for the magnetization for arbitrary spin S in random phase approximation  [20,23]: 
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(1 + �)���� − �����
 (9) 

where T is the temperature and kB is the Boltzmann’s 
constant. Further on, we use the self-consistent
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3. NUMERICAL ANALYSIS  
               AND DISCUSSION

In the previous section we have derived the 
analytical expression for the Neel temperature 
for the 122-type of pnictides within our bilayer 
model. From (11) we see that Neel temperature 
depends on model parameters namely its exchange 
integrals values and anisotropy. This section we 
will use to present numerical results on how Neel 
temperature depends on spin anisotropy and to 
present the transition temperature values for the 
wide range of model parameters values. We shall 
compare our results with experimentally available 
results for three 122-type pnictide compounds 
namely CaFe2As2, BaFe2As2 and SrFe2As2. We 
will show how does transition temperature depend 
on the set of parameters J1a, J1b, J2, Jc, Jp and spin 
anisotropy given by η. For that purpose, we define 
dimensionless parameters    

 since the J1a can be taken as the strongest 
one [16]. Figure 3 shows dependence of Neel 
temperature on spin anisotropy parameter η for the 
following selection of model parameters: J1a=50.0 
meV, d=0.6, c=0.02, b=-0.2, p=0.001. Results are 
presented for spin values S=1 and S=1/2. 

where for example, in the case of S=1 the magnetization is given with:
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 Magnetization is a function of temperature as well as all the exchange integrals and spin anisotropy 
(model parameters). We obtain the Neel temperature using that when 
S=1 obtained expression for the Neel temperature in random phase approx
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(11) in order to perform numerical analysis of obtained expression
on Neel temperature. 
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spin S in random phase approximation  [20,23]:
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where T is the temperature and kB is the Boltzmann's constant. Further on, we use the self-consistent Callen's 
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Figure 3. The transition temperature dependence on the spin anisotropy parameter for spin values S=1/2 and S=1
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From Figure 4 we see that that critical 
temperature grows with the increase of J1a and other 
exchange integrals values. Two dashed horizontal 
lines in every part of Figure 4 cut the interval of 
Neel temperature values from 140 K to 220 K in 
which are the experimentally observed critical 
temperatures of BaFe2As2, SrFe2As2 and CaFe2As2 
[11]. It is obvious that critical temperatures in that 
interval can be obtained for small values of J1a and 

other corresponding parameters within our model. 
If we take S=1/2 those values will be higher. On the 
other hand, if we use parameters from other papers, 
the transition temperatures that we obtain are 
higher (>220 K) than the experimental measured 
values [14-17,24-28]. Finally, we examine the Neel 
temperature dependence on spin anisotropy for a 
range of J1a values.

As can be seen from two parts of Figure 3, 
Neel temperature is an increasing function of the 
spin anisotropy parameter η, but with little change 
for value of η close to 1.0.  Furthermore, we examine 
dependence of transition temperature on other model 

parameters b, c, d, p and J1a at some value of spin 
anisotropy. In other words we investigate how does 
Neel temperature depend on exchange integrals J1a, 
J1b, J2, Jc, Jp. Figure 4 shows dependence of transition 
temperature on the model exchange integrals.

Figure 4. Dependence of Neel temperature on J1a for η=1.001 and (top left) c=0.01, d=0.6, p=0.001 and b=-0.3, -0.2,-0.1,-
0.05,0.1,0.2, (top right) b=-0.2, d=0.6, p=0.001 and c=0.01,0.02,0.05,0.06,0.08,0.1, (bottom  left) b= -0.2, c=0.01, p=0.001 

and d=0.51,0.6,0.65,0.7,0.75,0.8 (bottom right) b=-0.2, c=0.01, d=0.6 and p=0.0001,0.0005,0.001,0.005,0.0, 0.1.  
All these results are for S=1

anisotropy. In other words we investigate how does Neel temperature depend on exchange integrals 
J2, Jc, Jp. Figure 4 shows dependence of transition temperature

 

Figure 4. Dependence of Neel temperature on J
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p=0.0001,0.0005,0.001,0.005,0.01,0.1

 From Figure 4 we see that that critical temperature 
integrals values. Two dashed horizontal lines in every part of Figure 4 cut the interval of Neel temperature 
values from 140 K to 220 K in which are the experimentally observed critical temperatures of BaFe
SrFe2As2 and CaFe2As2 [11]. It is obvious that critical tempe
values of J1a and other corresponding parameters within our model.
higher. On the other hand, if we use parameters from other papers, the transition temper
are higher (>220 K) than the experimental measured values
temperature dependence on spin anisotropy for a range of J

In other words we investigate how does Neel temperature depend on exchange integrals 
shows dependence of transition temperature on the model exchange integrals.

Dependence of Neel temperature on J1a for η=1.001 and (top left) c=0.01, d=0.6, p=0.00
, d=0.6, p=0.001 and c=0.01,0.02,0.05,0.06,0.08,0.1, (bottom  left)

01 and d=0.51,0.6,0.65,0.7,0.75,0.8 (bottom right) b=-0.2, c=0.01, d=0.6 and 

p=0.0001,0.0005,0.001,0.005,0.01,0.1. All these results are for S=1 

 

From Figure 4 we see that that critical temperature grows with the increase of J1a and other exchange
Two dashed horizontal lines in every part of Figure 4 cut the interval of Neel temperature 

in which are the experimentally observed critical temperatures of BaFe
It is obvious that critical temperatures in that interval can be obtained for small 

and other corresponding parameters within our model. If we take S=1/2 those values 
On the other hand, if we use parameters from other papers, the transition temperatures that 

the experimental measured values [14-17,24-28]. Finally, we examine
temperature dependence on spin anisotropy for a range of J1a values. 

In other words we investigate how does Neel temperature depend on exchange integrals J1a, J1b, 
on the model exchange integrals. 

 

0.001 and b=-0.3,          
, (bottom  left) b= -0.2, 

0.2, c=0.01, d=0.6 and 

and other exchange 
Two dashed horizontal lines in every part of Figure 4 cut the interval of Neel temperature 

in which are the experimentally observed critical temperatures of BaFe2As2, 
ratures in that interval can be obtained for small 

If we take S=1/2 those values will be 
atures that we obtain 

Finally, we examine the Neel 



pages: 195-203
TRANSITION TEMPERATURE DEPENDENCE ON ANISOTROPY  IN THE Ј1-Ј2-Јc-Јp  

HEISENBERG MODEL WITH APPLICATION  TO 122-TYPE OF IRON PNICTIDES

Contemporary Materials, XIII-2 (2022) 201

If we look at Figure 5 we can once again 
conclude that Neel temperature grows with the 
increase of J1a and η. Dashed horizontal lines 
correspond to already mentioned temperature 
interval. However, for the spin S=1/2 there is a 
shift to higher values of J1a available to reproduce 
the Neel temperature of three mentioned 122-type 
compounds.  With this we conclude the overview of 
our numerical results.

4. CONCLUSION

In this paper, we have derived transition 
temperature of the antiferromagnetic 122-type of 
iron pnictides based on the effective J1a-J1b-J2-Jc-Jp 
Heisenberg model on a bilayer with anisotropy and 
for arbitrary spin. All the necessary calculations 
were done by using Green’s functions method 
within the random phase approximation. Numerical 
calculations were done by using the analytical 
expression for the transition temperature in order 
to compare our results with some available data for 
the 122-type of iron pnictides. Our results suggest 
that spin anisotropy plays an important role in the 
magnetic properties of these compounds. We have 
given numerical results that are a map of sorts of the 
parameter space of available and possible magnetic 
interactions. In addition, overestimates of Neel 
temperature for parameters available in other papers 
might suggest that itinerant magnetism might play 
some important role in completely understanding 
the physical properties of iron pnictides. Results of 

our analysis should, with the rest available data, be 
helpful in better understanding the properties of 122-
type of iron pnictide materials.
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ЗАВИСНОСТ ПРЕЛАЗНЕ ТЕМПЕРАТУРЕ ОД АНИЗОТРОПИЈЕ У  
Ј1-Ј2-Јc-Јp ХАЈЗЕНБЕРГОВОМ МОДЕЛУ СА ПРИМJЕНОМ НА 122 ТИП 
ПНИКТИДА НА БАЗИ ГВОЖЂА

Сажетак: У претходном периоду показано је значајно интересовање за проучавање суперпроводника 
на бази гвожђа названих пниктидима. Циљ овог рада је да допринесе бољем разумевању магнетних 
особина 122 класе пниктида гвожђа. Користимо анизотропни J1-J2-Jc-Jp Хајзенбергов модел. Коришћен 
је метод спинских Гринових функција у Тјабликовљевој апроксимацији случајних фаза како бисмо 
одредили израз за критичну температуру. На основу добијеног израза за критичну температуру 
разматрамо њену зависност од спинске анизотропије. Поред тога, упоређујемо резултате нашег 
модела са експериментално доступним подацима о критичној температури. Додатно, разматрамо 
вредности критичне температуре добијене нашим моделом користећи интеракције измене из других 
радова. Резултати које смо представили овде требало би да дају допринос разумевању магнетних 
особина 122 класе суперпроводника на бази гвожђа. 
Кључне речи: Нелова температура, спинска анизотропија, пниктиди гвожђа, анизотропни 
Хајзенбергов модел.


