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1. INTRODUCTION

To analyze muscle behavior via in silico anal-
ysis we model biophysical processes on multiple 
spatial and temporal scales. We perform multi-scale 
simulation in which continuum muscle mechanics is 
modeled using the finite element method and materi-
al characteristics of muscle at the microscopic scale 
are defined by Huxley’s muscle contraction model 
[1]. During transient finite element simulation, we 
use Huxley’s model to calculate stress and instanta-
neous stiffness, given the muscle activation, stretch, 
and other material parameters and properties. These 
finite element simulations can be quite computa-
tionally intensive. The most time-consuming part 
of these simulations are calculations carried out at 
the microscale. To lower the computational require-
ments of the simulations, we create a computational-
ly more efficient surrogate model to replace the real 

Huxley muscle model. We solved the Huxley equa-
tion, using physics-informed neural networks, to ac-
quire the distribution of attached myosin heads to the 
actin-binding sites.

2. METHODS 

Huxley considered the dynamics of the fila-
ments within muscle and the probability of establish-
ing connections (cross-bridges) of myosin heads to 
actin filaments inside sarcomeres. The n(x,t) func-
tion describes the rate of connections between myo-
sin heads and actin filaments, as a function of the po-
sition of the nearest available actin-binding site rela-
tive to the equilibrium position of the myosin head x:

� (1)

where f(x,a) and g(x) represent the attachment and 
detachment rates of cross-bridges respectively, v is 
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the velocity of filaments sliding, positive in the di-
rection of contraction, and a is muscle activation giv-
en as a function of time. Once the n(x,t) values are 
acquired we can calculate generated force F within 
the muscle fiber and also stiffness K using the equa-
tions:

and                       	                                                  (2)

where k is the stiffness of cross-bridges. Stress and 
stress derivatives can be calculated as:

and                           ,                                	 (3)

where   is maximal force achieved during isomet-
ric conditions,  maximal stress achieved during 
isometric conditions,  initial length of sarco-
mere and   is stretch. Calculated stresses and stress 
derivatives can be further used at the macro-level 
during finite element analysis. 

Figure 1. Schematic of the Huxley’s muscle model 

Physics-informed neural networks (PINNs) 
are trained to solve supervised learning tasks while 
respecting any given law of physics described by 

general nonlinear partial differential equations [2]. 
These neural networks form a new class of data-effi-
cient universal function approximators that naturally 
encode any underlying physical laws as prior infor-
mation [2]. The major innovation with PINN is the 
introduction of a residual network that encodes the 
governing physics equations, takes the output of a 
deep-learning network, called a surrogate, and cal-
culates a residual value [3]. The basic formulation 
of the PINN training does not require labeled data, 
results from other simulations or experimental data, 
and is unsupervised. PINNs only require the evalu-
ation of the residual function. Providing simulation 
data or experimental data for training the network 
in a supervised manner is also possible and neces-
sary in some cases, especially inverse problems. The 
supervised approach is often used for solving ill-de-
fined problems when for instance we lack boundary 
conditions or an Equation of State to close a system 
of equations. Once a PINN is trained, the inference 
from the trained PINN can be used to replace tradi-
tional numerical solvers in scientific computing [3]. 
PINNs are a gridless method because any point in 
the domain can be taken as input without requiring 
the definition of a mesh. Moreover, the trained PINN 
network can be used for predicting the values on sim-
ulation grids of different resolutions without the need 
of being retrained [3]. PINNs can also be used for 
time-dependent problems. Since time is represented 
as any other variable, it’s possible to have a predic-
tion of output at the specified time without solving 
for previous time steps. For these reasons, the com-
putational cost does not scale with the number of grid 
points like many traditional computational methods. 
PINN has been employed for predicting the solu-
tions for the Burgers’ equation, the Navier–Stokes 
equations, and the Schrodinger equation [4]. In this 
study, we focused on the basic PINNs and solving 
PDE without relying on other simulations to assist 
the training. The residual of the differential equation 
is minimized by training the neural network. PINNs 
calculate differential operators on graphs using au-
tomatic differentiation. To implement PINN and 
incorporate the equation (1), we used SciANN [5], 
a high-level artificial neural networks API, written 
in Python using Keras and TensorFlow backends. 
SciANN is designed to abstract neural network con-
struction for scientific computations and solution and 
discovery of partial differential equations (PDE) us-
ing the physics-informed neural networks [5]. 

a)

b)
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For the isometric case of the muscle contrac-
tion, we used a standard approach for physics-in-
formed neural networks, without data collected 
from simulations. In this case, inputs to the network 
consist only of time t and x, since there is no change 
in stretch and activation of the muscles, and the net-
work predicts the n value. To solve the isotonic case 
of muscle contraction, we also provided data to the 
neural network in a standard supervised manner. 
The data were collected from multi-scale finite el-
ement simulation with the original Huxley muscle 
model built-in. Our neural network, or a surrogate 
model, receives current and previous stretch, mus-
cle activation, time, and x, and based on these val-
ues predicts the n value. During training the resid-
ual of Huxley’s muscle differential equation, resid-
ual of initial condition and error between true and 
predicted n values are minimized. After the training 
is done, the neural network is loaded in multi-scale 
finite element simulation and used instead of the 
original Huxley muscle model. 

3. RESULTS

To solve the isometric muscle contraction 
case, using the SciANN framework we constructed 
a neural network with 8 hidden layers, each con-
taining 20 neurons with a hyperbolic tangent acti-
vation function. The network is trained by minimiz-
ing the residual derived from equation (1) and by 
providing initial conditions to solve the equation. 
We used Adam optimizer [6] with a learning rate 
of 10-4 and batch size of 512, with a total number 
of 10000 epochs. We also used the neural tangent 
kernel (NTK) method to get the adaptive weights, 
balancing the difference between the number of 
collocation points, used to minimize the residual of 
PDE, and the number of points used to minimize 
the residual of the initial condition. We generated 
a data grid consisting of x values in the range of 

  and t values in the 
range  . These generated points 
were used to train the network. Once the network 
was trained we calculated generated stress based on 
n values and we compared the solutions obtained by 
the method of characteristics and PINN. We can see 
that the PINN produces very similar results as the 
method of characteristics. 

Figure 2. Isometric contraction case

To solve the isotonic muscle contraction case, 
we first ran 10 numerical experiments with random 
muscle activation functions, such that the muscles 
contracted and then returned to the initial positions. 
These finite element simulations consist of one el-
ement as shown in Fig.3. The model is constrained 
in all directions in point A, it can slide up and down 
at point C, and at points, D and B the model is free 
to move. We collected x values, time, activation, 
and stretch values (input data), and also the pro-
duced n values (output data) from these numerical 
experiments. Then, we fed this data to the neural 
network, and we also provided the encoded Huxley 
equation with initial conditions to the network. Us-
ing the SciANN framework we constructed a neural 
network with 8 hidden layers each containing 200 
neurons with a hyperbolic tangent activation func-
tion. Adam optimizer with a learning rate of 10-4 

and batch size of 16384, with a total number of 
30000 epochs. We also used the neural tangent ker-
nel (NTK) method. Once the training was finished 
we integrated the network as a material model into 
the finite element analysis software. At the macro 
level, finite elements provide the neural network 
with muscle activation, time, and current stretch, 
based on these values and x values the network 
predicts the n values. Using n values we calculated 
the stress and stress derivatives and compared the 
values in the case of the method of characteristics 
and PINN (Fig. 4). The isotonic case is more com-
plicated since the muscle activation varies, and the 
velocity of the contraction is non-zero, so we didn’t 
achieve as precise results as with the isometric case 
but there is a similarity between stresses obtained 
by the method of characteristics and PINN. 
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Figure 3. Finite element model

Figure 4. Isotonic contraction case

Finally, we measured the execution time of 
the multi-scale finite element simulations with PINN 
and with methods of characteristics at the micro-lev-
el. It can be seen in Fig.5 that we achieved 10 times 
speed-up with PINN compared to the method of 
characteristics.

Figure 5. Execution time

4. CONCLUSIONS

In this paper, we presented the surrogate mod-
el of the Huxley muscle model based on physics-in-
formed neural networks. We collected data from 
multi-scale finite element simulation and trained the 
network to produce probabilities of attachment of the 

myosin heads to actin-binding sites. Based on these 
probabilities we calculated stress and instantaneous 
stiffness. Once the neural network was trained, the 
surrogate was built into a finite element solver, as 
a material model, and we compared the stresses ob-
tained from the original and the surrogate model. We 
showed that the surrogate model produces similar 
outputs as the original model, concluding that the 
surrogate model has the potential to replace the orig-
inal model within finite element simulations.  Our 
future research will focus more on isotonic contrac-
tions, and if we achieve higher precision using one 
finite element we will use the surrogate model in the 
large-scale models such as the left ventricle model. 
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НЕУРОНСКЕ МРЕЖЕ ЗА РЕШАВАЊЕ  
ХАКСЛИЈЕВЕ ЈЕДНАЧИНЕ

Сажетак Биофизички модели мишића, или модели Хакслијевог типа, су погодни за симулирање 
неуниформних и нестабилних контракција. Симулација са овим типом модела могу бити веома 
рачунски захтевне. Метод карактеристика се обично користи за решавање Хакслијеве једначи-
не, која опсије дистрибуцију закачених миозинских глава за актин. Након решавања Хакслијеве 
једначине можемо одредити генерисану силу и крутост у мишићним влакнима, што даље може 
бити коришћено у анализи методом коначних елемената. У нашем раду развили смо сурогат мо-
дел, базиран на неуронским мрежама информисаним физичким законима, које уместо методе 
крактеристика рачунски ефикасније решавају Хакслијеву једначину.
Kључне ријечи: неуронске мреже информисане физичким заковнима, нумеричка анализа, ма-
шинско учење, Хакслијев модел мишића 
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