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Abstract: Biophysical muscle models, also known as Huxley-type models, are appropriate for simulating
non-uniform and unsteady contractions. Large-scale simulations can be more challenging to use because
this type of model can be computationally intensive. The method of characteristics is typically used to solve
Huxley’s muscle equation, which describes the distribution of connected myosin heads to the actin-binding
sites. Once this equation is solved, we can determine the generated force and the stiffness of the muscle
fibers, which may then be employed in the macro-level simulations of finite element analysis. In our paper,
we developed a physics-informed surrogate model that functions similarly to the original Huxley muscle
model but uses a lot less computational resources in order to enable more effective use of the Huxley mus-
cle model.

Keywords: physics-informed neural networks, numerical analysis, machine learning, Huxley’s muscle
model.

1. INTRODUCTION Huxley muscle model. We solved the Huxley equa-
tion, using physics-informed neural networks, to ac-
quire the distribution of attached myosin heads to the

actin-binding sites.

To analyze muscle behavior via in silico anal-
ysis we model biophysical processes on multiple
spatial and temporal scales. We perform multi-scale
simulation in which continuum muscle mechanics is

2. METHODS
modeled using the finite element method and materi-

al characteristics of muscle at the microscopic scale
are defined by Huxley’s muscle contraction model
[1]. During transient finite element simulation, we
use Huxley’s model to calculate stress and instanta-
neous stiffness, given the muscle activation, stretch,
and other material parameters and properties. These
finite element simulations can be quite computa-
tionally intensive. The most time-consuming part
of these simulations are calculations carried out at
the microscale. To lower the computational require-
ments of the simulations, we create a computational-
ly more efficient surrogate model to replace the real

Huxley considered the dynamics of the fila-
ments within muscle and the probability of establish-
ing connections (cross-bridges) of myosin heads to
actin filaments inside sarcomeres. The n(x,t) func-
tion describes the rate of connections between myo-
sin heads and actin filaments, as a function of the po-
sition of the nearest available actin-binding site rela-
tive to the equilibrium position of the myosin head x:
20y B 1 n(x, 0]f(va) — n(x0g(x) (1)
where f{x,a) and g(x) represent the attachment and
detachment rates of cross-bridges respectively, v is
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the velocity of filaments sliding, positive in the di-
rection of contraction, and @ is muscle activation giv-
en as a function of time. Once the n(x,t) values are
acquired we can calculate generated force /' within
the muscle fiber and also stiffness K using the equa-
tions:

F(t) = an(x,t)x dx
and  K(t)=kXZ® n(xt) dx @)

where £ is the stiffness of cross-bridges. Stress and
stress derivatives can be calculated as:

O da. a;
o = F ¢ m_ 47 Zise
m Fizg » e 0 Fiso 3)

and

where Fj., is maximal force achieved during isomet-
ric conditions, g;;, maximal stress achieved during
isometric conditions, L the initial length of sarco-
mere and A is stretch. Calculated stresses and stress
derivatives can be further used at the macro-level
during finite element analysis.
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Figure 1. Schematic of the Huxley s muscle model

Physics-informed neural networks (PINNs)
are trained to solve supervised learning tasks while
respecting any given law of physics described by

general nonlinear partial differential equations [2].
These neural networks form a new class of data-effi-
cient universal function approximators that naturally
encode any underlying physical laws as prior infor-
mation [2]. The major innovation with PINN is the
introduction of a residual network that encodes the
governing physics equations, takes the output of a
deep-learning network, called a surrogate, and cal-
culates a residual value [3]. The basic formulation
of the PINN training does not require labeled data,
results from other simulations or experimental data,
and is unsupervised. PINNs only require the evalu-
ation of the residual function. Providing simulation
data or experimental data for training the network
in a supervised manner is also possible and neces-
sary in some cases, especially inverse problems. The
supervised approach is often used for solving ill-de-
fined problems when for instance we lack boundary
conditions or an Equation of State to close a system
of equations. Once a PINN is trained, the inference
from the trained PINN can be used to replace tradi-
tional numerical solvers in scientific computing [3].
PINNSs are a gridless method because any point in
the domain can be taken as input without requiring
the definition of a mesh. Moreover, the trained PINN
network can be used for predicting the values on sim-
ulation grids of different resolutions without the need
of being retrained [3]. PINNs can also be used for
time-dependent problems. Since time is represented
as any other variable, it’s possible to have a predic-
tion of output at the specified time without solving
for previous time steps. For these reasons, the com-
putational cost does not scale with the number of grid
points like many traditional computational methods.
PINN has been employed for predicting the solu-
tions for the Burgers’ equation, the Navier—Stokes
equations, and the Schrodinger equation [4]. In this
study, we focused on the basic PINNs and solving
PDE without relying on other simulations to assist
the training. The residual of the differential equation
is minimized by training the neural network. PINNs
calculate differential operators on graphs using au-
tomatic differentiation. To implement PINN and
incorporate the equation (1), we used SciANN [5],
a high-level artificial neural networks API, written
in Python using Keras and TensorFlow backends.
SciANN is designed to abstract neural network con-
struction for scientific computations and solution and
discovery of partial differential equations (PDE) us-
ing the physics-informed neural networks [5].
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For the isometric case of the muscle contrac-
tion, we used a standard approach for physics-in-
formed neural networks, without data collected
from simulations. In this case, inputs to the network
consist only of time t and x, since there is no change
in stretch and activation of the muscles, and the net-
work predicts the n value. To solve the isotonic case
of muscle contraction, we also provided data to the
neural network in a standard supervised manner.
The data were collected from multi-scale finite el-
ement simulation with the original Huxley muscle
model built-in. Our neural network, or a surrogate
model, receives current and previous stretch, mus-
cle activation, time, and x, and based on these val-
ues predicts the n value. During training the resid-
ual of Huxley’s muscle differential equation, resid-
ual of initial condition and error between true and
predicted n values are minimized. After the training
is done, the neural network is loaded in multi-scale
finite element simulation and used instead of the
original Huxley muscle model.

3. RESULTS

To solve the isometric muscle contraction
case, using the SciANN framework we constructed
a neural network with 8 hidden layers, each con-
taining 20 neurons with a hyperbolic tangent acti-
vation function. The network is trained by minimiz-
ing the residual derived from equation (1) and by
providing initial conditions to solve the equation.
We used Adam optimizer [6] with a learning rate
of 10 and batch size of 512, with a total number
of 10000 epochs. We also used the neural tangent
kernel (NTK) method to get the adaptive weights,
balancing the difference between the number of
collocation points, used to minimize the residual of
PDE, and the number of points used to minimize
the residual of the initial condition. We generated
a data grid consisting of x values in the range of
—208nm < x= 624nm and t values in the
range Os < t < 0.55 . These generated points
were used to train the network. Once the network
was trained we calculated generated stress based on
n values and we compared the solutions obtained by
the method of characteristics and PINN. We can see
that the PINN produces very similar results as the
method of characteristics.
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Figure 2. Isometric contraction case

To solve the isotonic muscle contraction case,
we first ran 10 numerical experiments with random
muscle activation functions, such that the muscles
contracted and then returned to the initial positions.
These finite element simulations consist of one el-
ement as shown in Fig.3. The model is constrained
in all directions in point A, it can slide up and down
at point C, and at points, D and B the model is free
to move. We collected x values, time, activation,
and stretch values (input data), and also the pro-
duced n values (output data) from these numerical
experiments. Then, we fed this data to the neural
network, and we also provided the encoded Huxley
equation with initial conditions to the network. Us-
ing the SciANN framework we constructed a neural
network with 8 hidden layers each containing 200
neurons with a hyperbolic tangent activation func-
tion. Adam optimizer with a learning rate of 10
and batch size of 16384, with a total number of
30000 epochs. We also used the neural tangent ker-
nel (NTK) method. Once the training was finished
we integrated the network as a material model into
the finite element analysis software. At the macro
level, finite elements provide the neural network
with muscle activation, time, and current stretch,
based on these values and x values the network
predicts the n values. Using n values we calculated
the stress and stress derivatives and compared the
values in the case of the method of characteristics
and PINN (Fig. 4). The isotonic case is more com-
plicated since the muscle activation varies, and the
velocity of the contraction is non-zero, so we didn’t
achieve as precise results as with the isometric case
but there is a similarity between stresses obtained
by the method of characteristics and PINN.
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Figure 4. Isotonic contraction case

Finally, we measured the execution time of
the multi-scale finite element simulations with PINN
and with methods of characteristics at the micro-lev-
el. It can be seen in Fig.5 that we achieved 10 times
speed-up with PINN compared to the method of
characteristics.
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Figure 5. Execution time

4. CONCLUSIONS

In this paper, we presented the surrogate mod-
el of the Huxley muscle model based on physics-in-
formed neural networks. We collected data from
multi-scale finite element simulation and trained the
network to produce probabilities of attachment of the

myosin heads to actin-binding sites. Based on these
probabilities we calculated stress and instantaneous
stiffness. Once the neural network was trained, the
surrogate was built into a finite element solver, as
a material model, and we compared the stresses ob-
tained from the original and the surrogate model. We
showed that the surrogate model produces similar
outputs as the original model, concluding that the
surrogate model has the potential to replace the orig-
inal model within finite element simulations. Our
future research will focus more on isotonic contrac-
tions, and if we achieve higher precision using one
finite element we will use the surrogate model in the
large-scale models such as the left ventricle model.
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HEYPOHCKE MPEXE 3A PELHLIABAILE
XAKCJ/IMJEBE JE/JHAYNHE

Caxerak buopuznuku monenu munirha, WM Mojieln XakcinjeBor THIIA, CY TIOTOAHH 32 CUMYJIHPAe
HEYHH(POPMHUX M HECTAOMIHUX KOHTpaknuja. CUMyranyja ca OBUM THIIOM MOJElTa MOTY OMTH BeoMa
padyHCKH 3aXTeBHE. MeToa KapaKTepHCTHKA ce OOMYHO KOPUCTH 3a pellaBame XaKCIHjeBe jeIHadn-
He, KOja OTICHje AUCTPHUOYIHjy 3aKaueHNX MHUO3MHCKHX TJIaBa 3a akTWH. HakoH permaBama XaKciijeBe
jeIHaYMHE MOXKEMO OJIPEIMTH FEHEPHCaHy CHIIy M KPYTOCT Y MUIIMNHUM BJIaKHHMA, LITO 1aJbe MOXKE
O6uti KopuIIheHo y aHaIN3u METO/IOM KOHAUHHX eJIeMeHaTa. Y HalleM pajy pa3BHIIM CMO Cyporar Mo-
Jen, 0a3upaH Ha HEYPOHCKHUM Mpekama MH(pOopMHCaHMM (DU3NYKHM 3aKOHHMa, KOjeé YMECTO METoje
KpPaKTEepUCTHKA PauyHCKHU e(puKacHUje pelnaBajy XakciIijeBy jeIHaYnHYy.

Kibyune pujeun: HeypoHcke Mpexe MH(OpMHCaHe (U3MYKHM 3aKOBHMMa, HyMEpHUKa aHaIHM3a, Ma-
IIMHCKO y4eme, XaKciInjeB Mojen Mumunha
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