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Abstract—The main objective of this paper is to present a new 

method of predictive maintenance which can detect the states of 

coal grinding mills in thermal power plants using Bayesian 

networks. Several possible structures of Bayesian networks are 

proposed for solving this problem and one of them is implemented 

and tested on an actual system. This method uses acoustic signals 

and statistical signal pre-processing tools to compute the inputs of 

the Bayesian network. After that the network is trained and 

tested using signals measured in the vicinity of the mill in the 

period of 2 months. The goal of this algorithm is to increase the 

efficiency of the coal grinding process and reduce the 

maintenance cost by eliminating the unnecessary maintenance 

checks of the system 
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I. INTRODUCTION 

ONDITION based maintenance (CBM) is a maintenance 

technique widely used in the industry today. It uses data 

collected through condition monitoring to advise whether 

maintenance is necessary, and thus reduces maintenance cost 

of the system [1]. Many of the maintenance techniques that are 

currently implemented are using a certain type of time-based 

preventive maintenance, where the components of the system 

are checked regularly after a certain period of time to ensure 

that no serious fault has occurred. This kind of maintenance is 

being conducted on ventilation mills in thermal power plants 

where, due to the inability to predict the state of the coal 

grinding plate within the mill, the entire subsystem needs to be 

periodically stopped and inspected. This paper proposes a new 

method of predictive maintenance which can detect the state of 

the plates within the mills based on the acoustic signals 
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measured in the vicinity of the mill, using Bayesian networks 

(BN). 

Bayesian networks have been widely used for the purpose of 

predictive maintenance in the last few years. Since their 

introduction in the mid 80’s [2] they have experienced a rapid 

development in many areas of research. Also, due to their 

ability to represent complex systems in which high amount of 

uncertainty exists, they have proven themselves to be superior 

to other methods such as neural networks, support vector 

machines, etc. In this paper several BN structures will be 

proposed which serve to model the states and the behaviors of 

ventilation mills, and one of them will be tested on actual 

acoustic measurements. 

There are many examples of fault detection algorithms 

which are based on the measurements of vibration signals of 

the machines ([3] and [4], to name a few). However, it has 

long since been shown that acoustic measurements can be as 

informative as vibration signals when it comes to detecting the 

faults in machines [5]. The usage of acoustic signals in fault 

detection has expanded during the last decade [6], however 

they are still considered to be a lesser alternative to vibration 

signals, due to their high susceptibility to surrounding noise. In 

this paper acoustic signals acquired in a very noisy 

environment will be used to test the efficiency of a simple 

Bayesian network for the detection of states in the ventilation 

mills. More complex realizations of the solution to the 

problem will be proposed as well. 

This paper is structured as follows. In Chapter 2 a short 

introduction to Bayesian Networks is presented, while in 

Chapter 3 some practical realizations of BNs which can be 

used for fault detection are proposed. Chapter 4 describes the 

system on which the algorithms have been tested, as well as 

the process of acquiring acoustic signals. In Chapter 5 the 

results of the algorithm are presented and in Chapter 6 the final 

conclusions to this paper are stated. 

II. BAYESIAN BELIEF NETWORKS 

Bayesian Belief Network (BBN) is a term introduced in 

1980s by Jude Pearl [2] in an attempt to create a mathematical 

probabilistic tool capable of modeling and reproducing the 

process of human reasoning. The basic idea was to reproduce 

the way in which people accumulate information from 

different sources and use it to develop conclusions about 

certain ideas. During the last decade Bayesian networks have 

become a very powerful tool for representation of complex 
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systems and it has been used in many areas of research 

including fault detection and fault isolation [7], [8]. 

 

 
Fig. 1. A simple Bayesian network which consists of 4 nodes (X1, X2, X3 and 

X4) and three connections between them. 

 

A. Bayesian Theorem 

Bayesian networks apply Bayesian theorem on complex 

systems to calculate conditional probabilities of certain events 

or hypothesis when a new evidence is obtained. Bayesian 

theorem was coined by Thomas Bayes in the 18th century and 

it can be formulated as 

              .
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Here ( | )nP H E  is a posterior probability of hypothesis 

Hn  when evidence E  is known. ( )nP H  and ( )P E  are prior 

probabilities of hypothesis and evidence, respectively, and 

( | )nP E H  is the probability of evidence E  given the 

hypothesis nH . The great advantage of Bayes' theorem is that 

it allows us to easily calculate conditional probabilities based 

on the corresponding prior probabilities. In this case, if nH  is, 

for example, a certain fault, and E  is evidence or a symptom 

of a fault, than ( )nP H  and ( | )nP E H  can be more easily 

obtained from the survey or maintenance data, than the 

conditional probability of a fault given the evidence. 

 If we assume that i  denotes a specific hypothesis iH , then 

(1) can be rewritten using the rule of total probability, where 

the summation is taken over all hypotheses iH  which are 

mutually exclusive and their prior probabilities sum up to 1. 

The final form is given as 
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This is called inference and it represents the basic idea of 

how the inserted evidence spreads throughout Bayesian 

networks. 

B. Topology of Bayesian Network 

Bayesian network is an acyclic probabilistic graph which 

contains a set of nodes and directed connections between them 

and it is used to represent the knowledge about uncertain 

events. Nods represent the probabilistic variables which can be 

continuous or discrete. Connections between nodes represent 

the probabilistic dependencies among certain variables. A 

simple type of Bayesian network is shown in Fig. 1. Here an 

edge from node X1 to node X3 and from nodes X1 and X2 to 

node X4 represent a statistical dependence between the 

corresponding variables. Therefore a value taken by a variable 

X4 depends on the values taken by variables X1 and  X2. Nodes 

X1 and X2 are then referred to as the parents of X4 and, 

similarly, X4 is referred to as the child of X1 and X2. In general, 

for the network with n nodes: X1, X2,..., Xn, the joint 

probability can be expressed as 
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where ( )ipa X  is a set of parents of the node iX . 

There are many types of nodes which can be chosen for any 

given Bayesian network. However, in practice only two types 

of variables are used: discrete and continuous Gaussian. This 

is because only for these two types of nodes can the exact 

computation of conditional probabilities be done [9]. 

Similarly, the discrete variables cannot have continuous 

parents if the exact computation is required. Therefore, there 

are three different combinations of nodes for the parent-child 

relationship and three different methods for calculating 

conditional probabilities. If discrete variables have discrete 

parents, their conditional probabilities are expressed via 

conditional probability table. For example, if both X1 and X3 

from Fig. 1 are discrete variables, with n and m different 

possible states respectively, their conditional probability table 

would have n x m entries of conditional probabilities 

3 3 1 1( | )i kP X x X x  , where 3ix  is the i-th state of node X3 

and 1kx  the k-th state of the node X1. On the other hand, if  X3 

was a Gaussian continuous variable and X1 its discrete parent, 

the conditional probability distribution would be Gaussian as 

well [9]. 

C. The Learning Process 

There are two ways of calculating parameters of Bayesian 

network, as well as the structure. One is based on an expert 

knowledge of the system and the other on machine learning 

using experimental results. These two approaches can be used 

jointly or individually.  

Assuming that the expert knowledge of the system is 

unavailable and that Bayesian network needs to be taught its 

structure and parameters, there are several ways in which this 

can be achieved. Structure learning itself is much more 

complicated than the parameter learning and we will not dwell 

on it further in this paper. For all intents and purposes we will 

assume that the structure of the Bayesian network is known 

and that only the parameters need to be taught. 

In the case when all the nodes (variables) of the system are 

observable, the most common algorithm for machine learning 

of the Bayesian network is the log likelihood approach. Here 
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the goal is to learn all of the conditional probability densities 

which maximize the likelihood of the training data. That is to 

 
Fig. 2. Bayesian network with one measured continuous node (X3), one 

hidden discrete node (X2) and one discrete node which represents the state of 

impact plates and which cannot be directly measured (X1). 

 

say that if we have Bayesian network ( , )B S p  with defined 

structure S and parameters p, and where D is a set of training 

data with the values of all the parameters p of network B, then 

the goal is to maximize the likelihood, i.e. the probability of 

the data d given the Bayesian network B: 

                                     ( | ) ,
d D

L P d B


  (4) 

 

or as it is more commonly expressed in logarithmic form: 

                               .)|(log 2

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If by any chance there is a choice of several Bayesian 

network models, it is wise to adopt the model which gives the 

maximum likelihood given the data obtained. 

Usually however, not all the parameters can be measured, 

and some connections between the nodes must be modeled 

with unobservable variables. In such cases the exact log 

likelihood approach cannot be used and the approximate 

parameter estimation must be conducted. The most popular 

approximate algorithm for teaching the Bayesian network with 

hidden nodes is the Expectations maximization (EM) 

algorithm. This algorithm consists of two steps. In the first 

step, called the expectation step, the current parameter 

estimations p̂  are used to calculate expectations for the 

missing values of hidden variables. Then, in the second step 

called the maximization step, a new maximum likelihood 

estimate of the parameters is calculated after which the 

algorithm goes back to the previous step. This continues 

throughout the entire training set.  

III. APPLICATION OF BAYESIAN NETWORK IN PREDICTIVE 

MAINTENANCE 

The fundamental problem with Bayesian networks is 

deciding which model adequately represents the system which 

is observed. First of all, the variables used in the system need 

to be chosen. They can represent some physical, measurable 

property of the system or some unknown interference which 

 
Fig. 3. Hidden Markov model represented with Bayesian networks. Xi

S are the 

states of the system and Xi
M are the measurements of the system. All the 

variables are continuous Gaussian and visible. 

 

cannot be measured. Then, the decision needs to be made 

concerning the type of the chosen variables. They can be 

discrete or continuous, visible or hidden. Secondly, the 

question of the structure of the Bayesian network should be 

decided upon. This is the most important and the most 

complex question. The types of structures which can be 

represented with Bayesian networks are vast, and the only 

limit one faces when choosing them is the knowledge of the 

causal relationships within the physical system and the 

complexity sufficient to solve the given problem. In this 

chapter several structures will be proposed for solving the 

problem of detecting the states of ventilation mills.  

A. The Simple Static Model 

The simplest Bayesian network that can be used for 

detecting the state of the mill is shown in Fig. 1. Circles 

represent continuous-valued random variables, squares are 

discrete random variables, clear boxes represent observed 

nodes and gray boxes represent hidden nodes. This network 

contains only 3 nodes (variables), two of which are discrete 

and one of which is continuous Gaussian. 

The basic idea is that the measurements taken outside of the 

mill are directly influenced by the state of the impact plates 

within the mill and by a hidden variable which is modeled as a 

discrete node. This hidden, immeasurable node can represent 

an outside noise, unknown component of the system or some 

other feature which does not necessarily need to have a 

physical interpretation. The state of the plates X1 is modeled as 

a discrete node with 2 states: healthy plates and worn plates. 

The measured signal which is represented by the node X3 is a 

two-dimensional  Gaussian variable. 

B. Hidden Markov Model 

Hidden Markov model (HMM) can be modeled as a simple 

dynamic Bayesian network, where the next state of the system 

depends on the previous state and the state transition 

probabilities, and where the states themselves are not directly 

measured. However, even though the states cannot be 
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Fig. 4. Complex dynamical BN model. Xi

S are the states of the system, Xi
M are the measurements of the system and Xi

H. are the hidden variables of the system 

which cannot be observed or detected. All the nodes are continuous and Gaussian. 

 

measured, they influence the measurements of the system 

which are then used to infer the state in which the system is in. 

Hidden Markov models are used for a very broad range of 

systems and one such model (Fig. 3) can be used to infer the 

states of the impact plates in ventilation mills. 

In Fig. 3, Xi
S
 represents a state node and Xi

M
 a measurement 

node. All of the variables are chosen to be continuous and 

visible (that is to say, information on states and measurements 

can be used when training the network). In this case 3 

continuous states are chosen: the state of healthy plates (X1
S
 ), 

the state when the plates are used but not damaged enough, so 

the repair is not necessary (X2
S
 ) and the state which represents 

worn plates (X3
S
 ) and which indicates that the repair should be 

done as soon as possible. 

Note that the transition between states is modeled so that the 

state deteriorates up until a point when the plates have to be 

replaced, and only then can the state return to the initial value 

of healthy plates. Also, each state influences the appropriate 

measurement of the system, but due to noise and 

inconsistencies it can appear as a measurement of the adjacent 

state as well (presented by dotted lines in Fig. 3). 

A. The Complex Dynamical Model 

As we have noted, HMM are broadly used to model all sorts 

of systems in many areas of research. However, they represent 

only a simple usage of dynamic Bayesian network which can 

easily be modified to include more complex demands of the 

system. One such modification is proposed in Fig 4, where the 

mixture of first two solutions to Bayesian network models is 

implemented. Here the one-way transition between the states is 

included as well as the influence of the unknown, hidden 

variable on the measurements of the system. 

IV. CASE STUDY 

In the previous chapter some possible structures of Bayesian 

networks were proposed that can be used for predictive 

maintenance. The actual process on which one of these 

solutions will be tested is a ventilation mill in thermal power 

plant Kostolac A (Serbia) and it will be described in this 

chapter. Also, the process of acquiring and pre-processing of 

acoustic signals used in simulations will be depicted. 

A. Ventilation Mill 

Coal grinding mills are a very important subsystem of 

thermal power plants. Their main purpose is to pulverize the 

coal into fine powder before it can get into the furnace. The 

mill itself consists of coal grinding plates (also called impact 

plates) which rotate within it with the frequency of fr=12.5Hz 

and are used to crush the coal into smaller pieces until it gets 

sufficiently fragmented. After that it drifts into the furnace 

system where it is used as a fuel. 

During the grinding process the impact plates get slowly 

depleted and their efficiency reduces. In the early stages this 

causes them to pulverize the coal more slowly, but if the plates 

are not changed for a long period of time it can cause a 

complete malfunction of the milling subsystem in thermal 

power plants. Some algorithms for solving this problem have 

already been proposed [10]. Currently this problem is being 

solved by employing a type of time based maintenance, which 

implies stopping the entire subsystem once every 8 or 9 weeks, 

conducting visual inspection of the plates and, if it is deemed 

necessary, replacement of the plates with the new ones. This 

can be very costly if the overhaul was concluded not to be 

necessary. 

In this paper a new algorithm will be tested which uses 

acoustic signals recorded in the vicinity of the mill, while the 

mill is operating mode, and Bayesian networks to determine 

the state of the impact plates, i.e. whether the replacement is 

necessary or not. 

B. Acoustic Signals 

Acoustic signals were recorded in the vicinity of the mill 

while it was in operating mode. The measurements were 

conducted every couple of weeks in the period of two months, 

thus encompassing the entire life cycle of the plates, from the 

moment they were replaced to the moment when they were 

completely depleted. These signals were recorded with the 
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sampling frequency of fs=48kHz and 24bit encryption. 

Approximately once every two weeks an acoustic signal has 

been measured, which has afterward been divided into 20-30 

shorter signals. 

For the training and testing of the Bayesian network the 

sampling period was downsized to 4.8kHz, Also, certain 

features were extracted from the signal which were later used 

in the decision making process. These features are the basic 

properties of the signal in time and frequency domain. Eight 

features in time domain are chosen as characteristic parameters 

of the signal [3]: 
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 C factor: / rmsC PP x  

 L factor: / rL PP x  

 S factor: /rmsS x x  

where xv is the variance of the signal x and PP is peak-to-peak 

value of the signal. Also, eight features in the frequency 

domain were chosen as the most dominant components in the 

frequency spectrum of the signal, in the same way it has been 

done in [10]. They represent the maximum value of the 

amplitude frequency spectrum of the signal at the frequencies: 

  25 37.5 50 62.5 125 250 375 500f  Hz. 

After extracting these features a vector of 16 elements is 

acquired for each of the measured signals. To reduce the 

dimension of this vector and therefore reduce the amount of 

variables needed for the Bayesian network, a linear dimension 

reduction algorithm is applied which transforms a 16-

dimentional vector X into a two-dimentional vector Y [11]: 

                            .1221612 x

T

xx XAY   (6) 

The matrix A is chosen so to minimize the loss of 

information by maximizing the distance of two extreme classes 

- the class of healthy and the class of worn plates. This matrix 

is acquired by maximizing the criteria 
1

( )
W B

J tr S S


  where 

W
S  is a within-class scatter matrix and 

B
S  is a between-class 

scatter matrix, as defined in [11], and applied in [3]. After this 

procedure has been implemented, the 2-dimensional vector of 

features Y is used as an input to a Bayesian network. 

V. RESULTS 

For the testing of this algorithm the Bayesian Network 

depicted in Fig. 2 is used. The first variable (X1) represents the 

true state of the system and is chosen to be a discrete variable 

with two possible states - healthy and worn plates. The second 

variable (X2) is a hidden variable and it does not have a 

specific physical meaning. It represents the noise in the 

surroundings that can influence the measurements, as well as 

unknown parameters of the system that were not otherwise 

included in the model. It is also chosen to be a discrete 

variable with two possible states. Finally, the third variable 

(X3) represents the measured output of the system, or in this 

case, a parameter Y gained by signal pre-processing techniques 

described in the previous chapter. This variable is chosen to be 

continuous and Gaussian. With this in mind, the joint 

probability of this Bayesian network is: 

    .)()|(),|(),,( 112213321 XPXXPXXXPXXXP   (7) 

The idea is to calculate the probability of each of the states 

in X1 given the measurements X3. 

Learning and testing procedures for this Bayesian network 

are done in a programming package Matlab, using toolbox for 

Bayesian networks created by [9]. For a training set, the 

signals taken slightly before and slightly after the change of 

plates were chosen, representing the two extreme states of the 

mill. Since there is a hidden node within the system, the EM 

learning algorithm is applied. The testing is done on all the 

signals. No initial assumptions about the conditional 

probabilities were made, so only after the learning process has 

been completed, the conditional probability table for all the 

nodes had been constructed. The testing has been done in two 

ways - real time and offline testing. 

In average of every two weeks, a recording has been 

conducted, enabling us to acquire around 30 acoustic signals, 

thus giving us a complete database of a over 120 signals 

throughout the entire lifespan of the grinding plates. In order 

to test this algorithm in real time, all these signals have been 

artificially merged so to appear as though the seconds have 

passed between different measurement sessions, when indeed 

it has actually been weeks. However, despite the artificially 

created sudden changes in the state of the mill (which are 

realistically much slower) the algorithm tested in real-time has 

shown some very good results. 

From Fig. 5 it can be concluded that this simple Bayesian 

network can successfully detect the states of the grinding 

plates. Two weeks after they have been changed the algorithm 

detects that the plates are completely healthy, 5 weeks after the 

change the deterioration of the plates becomes noticeable, and 

the Bayesian network detects 25% probability that the plates 

are worn. After 6 weeks this percentage increases to 50%, 

whereas after 8 weeks the algorithm reports with 100% 

certainty that the plates need to be replaced. In order to 

prevent sudden changes in real time testing environment, the 

output of the Bayesian network is averaged over the last 10 

time periods (each of which lasts 15 seconds). It can be noted  
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Fig. 5. Results of a real-time test. Bayesian network has managed to calculate 

the probability for grinding plates to belong to each of the defined states, for 

each of the measured signals. 

 

that a sudden change in the state of the plates cannot be 

detected in a very short period of time. It is needed 

approximately 4 minutes (15 time periods) for the algorithm to 

converge to the right state. 

Another way of testing this algorithm, which may be more 

useful when taking into account the nature of the problem, is in 

an offline simulation. In this case the simulation has been run 

only after all the signals that day have been recorded. Seeing 

that the sudden changes in the state of the plates cannot 

happen, this is a more appropriate way to use this algorithm. It 

does not require the constant presence of the recording device 

which can be used once every week or so for a couple of hours 

to predict whether the maintenance check is necessary. The 

results are given in Fig. 6 and they are similar to those 

obtained with a real-time test. 

VI. CONCLUSION 

In this paper an application of Bayesian networks on 

predictive maintenance of ventilation mills in thermal power 

plants has been investigated. The basic principles of BN have 

been described and several solutions to the predictive 

maintenance problem have been proposed. Using statistical 

signal processing and one of the proposed structures of 

Bayesian networks, the algorithm has been proposed which 

manages to detect the state of the plates of the coal grinding 

mills based on acoustic signals, and therefore predict the time 

when it is necessary to conduct the replacement of the plates. 

This algorithm has been successfully tested on a real system 

during a time period of several months. 

The final purpose of this algorithm is the development of the 

commercially accessible device which would be able to detect 

the state of ventilation mills and predict the time when it is 

necessary to repair them. The great advantage of this 

 
Fig. 6. Results of offline testing. The probability that the grinding plates are 

damaged is calculated for each day of the measurements. The further the 

measurements are from the last repair the higher is the probability that the 

plates need to be changed. 

 

method is that it uses acoustic signals which can be acquired 

without disturbing the operation of the mill. Unfortunately, this 

also means that the algorithm is highly susceptible to noise and 

acoustic disturbances. However, even with these drawbacks 

the algorithm developed here yields very good results despite 

the fact that the simplest BN model has been adopted and the 

measured signals had a noticeable presence of noise 

In future works more complex models of Bayesian networks 

that include the dynamic behavior of the transition between the 

states of the system should be tested. Also a better database of 

the signals should be acquired. Finally it would be interesting 

to test the algorithm on acoustic signals gained with a cheaper 

microphone which is commercially more available. 
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