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Abstract—A modification of the Approximate Internal Model-

based Neural Control (AIMNC), using Multi Layer Neural 

Network (MLNN) is introduced. A necessary condition that the 

system provides zero steady-state error in case of the constant 

reference and constant disturbances is derived. In the considered 

control strategy only one neural network (NN), which is the 

neural model of the plant, should be trained off-line. An inverse 

neural controller can be directly obtained from the neural model 

without need for a further training. Simulations demonstrate 

performance improvement of the modified AIMNC strategy. An 

extension of the modified AIMNC controller for the typical 

industrial processes is proposed. 
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I. INTRODUCTION 

E may imagine an Internal Model Control (IMC) 

architecture as a system with two degrees of freedom 

consisting of plant model dynamics and some approximation 

of the inverse dynamics of the plant model. In this respect the 

process as well as its approximate inverse dynamics must be 

stable. If the dynamics of the process is not stable, then the 

objective of the system design using an IMC approach is, 

primarily, stabilization of the process. Such a stabilized system 

is then viewed as an equivalent process that must satisfy 

forward-mentioned characteristics in terms of stability. 

In addition to stability not less important aspect is the 

system accuracy. An architecture of the IMC has many 

positive characteristics in terms of stability, robustness and 

accuracy in a steady-state  with respect to one degree of 

freedom approaches developed in the area of control 

engineering [1],[2]. 
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The IMC design algorithms based on linear models have 

attracted much attention of control theorists, as well as of 

practitioners, especially within industrial applications in 

1980s. Almost in parallel with such developments many 

successful  trials were conducted using the IMC architecture 

combined with some kind of adaptation mechanism applied to 

control slowly varying processes [3],[4]. 

Further more, as the MLNN have been proved as universal 

approximators they were used in IMC architectures to control 

nonlinear processes [2],[5]-[10]. In that sense an Approximate 

Internal Model-based Neural Control (AIMNC) and its 

modification were proposed for unknown nonlinear discrete 

time processes [11]-[13]. High performance of the mentioned 

algorithms have been demonstrated at applications to some 

benchmark examples of industrial processes. However, we 

have noticed unacceptable behavior in applications of such 

designs to control slow industrial processes. The typical 

industrial processes show some accumulation effects plus dead 

time, i.e. they usually have a very slow dynamics. 

The well-known examples of such processes are tanks, 

where the liquid level is controlled by using the difference 

between the input and output flow rates to form a manipulated 

variable [14], so in this paper we consider a double tank 

system as a plant. 

To overcome the above mentioned problem in applications 

of the modified AIMNC algorithm, in this paper we present an 

extension of the modified AIMNC controller design for slow 

nonlinear discrete time processes. This extension is based on a 

heuristic consideration of the needed control changes which 

provide requested tracking performance of the control system. 

However, simulation results confirm the validity of the 

proposed control design in cases of slow nonlinear discrete 

time processes.   

The rest of the paper is organized as follows. In the Section 

II, a plant modeling, structure and the modified AIMNC 

controller design procedure are given. The Section III gives an 

extension of the modified AIMNC algorithm applied to double 

tank system together with simulation results demonstrating 

performance of the proposed approach in controlling slow 

processes. In the Section IV we give conclusions of the work. 
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II. THE AIMNC  CONTROLLER DESIGN 

A.  The plant modeling 

A general input–output representation for an n-dimensional 

unknown nonlinear discrete time system with relative degree d 

is as follows [15] 

 

 )](,[)( kuwfdky k , (1)  

 

where a vector kw  is composed of current )(ky  and past values 

of the output 1,,1),1(  niky  , and past values of the input 

1,,1),1(  niku  , at the system, and nonlinear  mapping is 

defined by RRRf nn :  with Cf .  

Modeling is the first step in designing a controller for 

unknown nonlinear system. Different types of neural networks 

have been considered for modeling and control of nonlinear 

dynamical systems. In this paper, a MLNN has been used for 

modeling of nonlinear discrete time dynamical systems due to 

its general approximation abilities. If there  is an appropriate 

number of the neurons in the hidden layers and adequately 

determined free parameters, the MLNN can approximate 

arbitrary continuous nonlinear function on a compact subset 
C  of nn RR   to the desired accuracy [16]. 

A Neural Network Nonlinear Autoregressive Moving 

Average (NARMA) model, i.e. NN NARMA model is defined 

as follows [11],[12] 

 

 kk kuwNdky  )](,[)( , (2) 

 

where ][N  is a neural model of the nonlinear dynamical 

system and the weight vector of the NN is omitted for 

simplicity, k  is an output model error. 

Taking into account the disturbances acting on the plant, (2) 

can be written as 

 

 kk vkuwNdky  )](,[)( , (3) 

 

where kv  represents the effect of uncertainties (model error k  

and disturbances). 

B.  An approximation of the NN model 

The NN controller in the IMC control structure represemts 

an inversion of the NN model of the plant [7]. Hence, it is 

necessary to find the inversion of nonlinear mapping, 

represented  by  the NN, that models the nonlinear plant [2], 

[3]. Thus [11]-[13], an approximate model for the system (3) 

using Taylor series expansion of )](,[ kuwN k  with respect to 

)(ku  around )1( ku  is as 

 

 
kkkk

kk

vRkukuwNkuwN

vkuwNdky





)()]1(,[)]1(,[

)](,[)(

1

, (4) 

 

where    )(/)]1(,[)]1(,[1 kukuwNkuwN kk  , )1()()(  kukuku , 

and  remainder kR  is given by 

 

 2/))(](,[ 2

2 kuwNR kkk   , (5) 

 

where    )(/)],[],[ 22

2
kuwNwN

kkkk
   with k  as a point 

between )(ku  and )1( ku . 

Based on the assumptions made in [11], after neglecting the 

reminder kR  and the uncertainty kv  in (4), the NN approximate 

model output )(ˆ dkym   is derived as follows 

  

 ).()]1(,[)]1(,[)(ˆ
1 kukuwNkuwNdky kkm   (6) 

 

Since in (6), a control increment )(ku  appears linearly in the 

output )(ˆ dkym  of the NN approximate model, thus the design 

of the inverse NN controller is facilitated. To obtain the NN 

approximate model (6) and NN controller, the calculation of 

)]1(,[1 kuwN k  is needed. As was shown in [12], when using the 

NN with two hidden layers and neurons with hyperbolic 

activation functions within it, both the NN model and a 

calculation of )]1(,[1 kuwN k  can be obtained by one neural 

network, whose parameters are trained off-line. 

C.  The controller design 

From (6) the control increment )(ku  is as follows 

 

 )].1(,[/)])1(,[)(ˆ()( 1  kuwNkuwNdkyku kkm  (7) 

 

The control increment in (6) can be divided into two parts 

[12], as shown below 

 

 )()()( kukuku cn  , (8) 

 

where )(kun  refers  to  the  nominal  control  increment  and 

)(kuc  is  used  to  compensate  the model error and 

disturbances.  Using (8), (6) becomes 

 

 
)).()()](1(,[

)]1(,[)(ˆ

1 kukukuwN

kuwNdky

cnk

km




 (9) 

 

When the model is exact and there is no disturbances, i.e. in 

the nominal case, the NN approximate model is given as 

follows 

  

 ).()]1(,[)]1(,[)(ˆ
1 kukuwNkuwNdky nkkm   (10) 

 

If the NN approximate model given by (10) has a stable 

inverse, then the nominal control increment )(kun  can be 

obtained directly by 

 

 
)]1(,[/)])1(,[)((

)(

1 



kuwNkuwNdkr

ku

kk

n
, (11) 

ELECTRONICS, VOL. 18, NO. 1, JUNE 2014 47



 

where )( dkr   is the reference signal at the time instant )( dk  . 

The nominal control law is determined as  

 

 ).()1()( kukuku n  (12) 

 

If the NN approximate model given by (10) has an unstable 

inversion, it is necessary to modify (11) by introducing a 

parameter  , as proposed in [12], according to 

 

 
)],1(,[/)])1(,[)((

)(

1 



kuwNkuwNdkr

ku

kk

n


 (13) 

 

where 10  . An introduction of the parameter   ensures 

that the control law given by (12) is bounded. The parameter 

  can be 1 in the case where the NN approximate model has 

the stable inverse. Conditions for the stability of the nominal 

NN controller given by (12) are detailed in [12].  

In the presence of the plant model error and disturbances, 

substituting (8) in to (4), gives 

 

 
.)()]1(,[

)()]1(,[)]1(,[)(

1
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nkk

vRkukuwN
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 (14) 

Define the NN approximate model error )(k as 

 

 ).(ˆ)()( kykyk m  (15) 

 

The control increment )(kuc  for compensation of the model 

error and disturbances is as follows [12] 

 

 )].1(,[/)()( 1  kuwNkku kc   (16) 

 

Based on (8), (13) and (16) the control law is expressed as 

 

)].1(,[/)()]1(,[/)])1(,[

)(()1()(

11 



kuwNkkuwNkuwN

dkrkuku

kkk 


(17) 

 

The control law (17) consists of the nominal NN controller and 

uncertainties compensation. The analysis of robustness and 

stability of the control law (17) is given in [12]. 

The conceptual structure of the modified AIMNC with 

control law given by (17) and the NN approximate model 

given by (10) is shown in Fig. 1. With )( 1zS  is labeled a set 

point filter, with )( 1zF  robustness filter, where 1z  is 

backward shift operator [17]. The role of the blocks marked 

with "Scale" in Fig. 1. will be explained in the Section III. 

D.  The modified AIMNC controller design 

A positive feature of the IMC control structure is that zero 

steady-state error in the system can be achieved if we ensure 

that the steady-state gain of the controller is the inverse value 

of the steady-state gain of the model [7]. On other hand, it has 

been shown in [18], that the controller design in the AIMNC 

structure can be highly facilitated when the reference signal 

and disturbances have constant values.   

Here, we repeat conditions under which it is possible to 

achieve the satisfactory accuracy in the steady-state with 

AIMNC structure shown on the Fig. 1. in presence of the 

constant reference signal and constant disturbances [18]. If the 

system achieves the zero steady-state error then )()( krky   and 

0)1()()(  kukuku , then using (15) and (17), one has 

 

 
,0)]1(,[/)(

)]1(,[/)])1(,[)(()(

1

1





kuwNk

kuwNkuwNdkrku

k

kk




 

 

 

 

y(k) 

)(ˆ kym  

ε(k) 

+ 
_ 

u(k) 

u(k-1) 

z 
-1 

r(k) 
)( 1zS  

)( 1zF  

+ 

+ 
+ 

Plant 

NN Aproximate Model 

)())1(,(

))1(,()(ˆ

1 kukuwN

kuwNdky

nk

km





 
Uncertainty  Compensation 

))1(,(

1

1 


kuwN k
 

Nominal Control Increment 

))1(,(

))1(,()(

1 



kuwN

kuwNdkr

k

k
 

Δun(k) 

 

NNs, N and derivative N1 

 

 

Scale 

Scale 

Δun(k) 

u(k-1) 

Δuc(k) 

Δuc(k) 

y(k) 
Disturbance 

    kd  

))1(,(1 kuwN k  ))1(,( kuwN k  

 

Scale 

Scale 

 
 

Fig. 1. The conceptual structure of the modified AIMNC
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or 

 

,0)()]1(,[)(  kkuwNdkr k   

 

and after substituting (15) in last equation it becomes 

 

 .0)(ˆ)()]1(,[)(  kykykuwNdkr mk  (18) 

 

In the steady-state we have )(ˆ...)1(ˆ)(ˆ dkykyky mmm  . 

Substituting (10) and (13) in to (18), we obtain 
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or 

 

 )],1(,[)()])1(,[)((2  kuwNkykuwNdkr kk  

 

and consequently 

   

 .
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kuwNdkr

kuwNky
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Also, when reference values are constant 

)(...)1()( dkrkrkr   the system will have the zero steady-

state error if )(...)1()()( dkrkrkrky  . It follows from 

(19) that 5.0  is the necessary condition that the system in 

Fig. 1. attains the zero steady-state error in the case of  the 

constant reference signal and constant disturbances. 

The comparison of the AIMNC strategy with respect to 

performance of the fixed and adaptive IMC has been presented 

in [18]. Through a sequence of simulations we have 

demonstrated performance of the AIMNC strategy and verified 

that the system with the parameter value of 5.0  achieves 

the zero steady-state error in case of the constant reference 

signal and constant disturbances. 
 

III. THE MODIFIED AIMNC  FOR THE DOUBLE TANK SYSTEM 

Since most industrial processes have slow dynamics we 

consider the control design procedure for the nonlinear plant in 

the cases of such kind of process dynamics. Also, in a large 

number of industrial processes inputs and outputs of the plant 

can not take negative values. In addition to that, it is necessary 

to take into account a downside of the possible actuator 

saturation. 

In order to illustrate the validity of the proposed control 

design in cases of slow nonlinear discrete time processes we 

have chosen a double tank system as the plant. Its schematic 

representation is shown in Fig. 2. It is a nonlinear plant with 

slow dynamics that is often used for a verification of various 

control strategies: adaptive IMC [4], neuro-adaptive IMC [9], 

self-tuning regulator [19], Generalized Predictive Control  

 

 
Fig. 2. The schematic representation of the double tank system  

 

(GPC) [20], self-tuning IMC-PID regulator [21], direct control 

with neural networks [22], swarm adaptive tuning of hybrid 

PI-NN controller [23], Robust ℋ2/ℋ∞/reference model 

dynamic output-feedback control [24]. 

The input flow q  into the first tank is proportional to the 

voltage u  of the pump P, which is the input to the plant. The 

fluid flows from the first tank to the second and flow rate 1q  is 

a function of the difference of liquid level 1h  and h  in the first 

and second tank, respectively. From the second tank the fluid 

flows freely and a flow 2q  is a function of liquid level h  

which is the output of the plant. The task of the control system 

is control of the liquid level ]m[hy   in the second tank by 

changing the voltage ]V[u  at the pump input. 

The parameters of the plant, shown in Fig. 2., are: a cross-

sectional area of the tank ]m[0154.0 2A , the discharge 

coefficient of the first tank 1k  and discharge coefficient of the 

second tank 2k . Based on the balance between changes in the 

amount of fluids in the tanks and flows we have a system of 

nonlinear equations [21],[22]: 

 

   yhgkku
Adt

dh
 11

1 2
1

, (20) 

 

   gykyhgk
Adt

dy
22

1
211  , (21) 

 

where ]Vs/m[10174.1/ 35 uqk  is the coefficient of the pump 

and ]9.81[m/s2g  is the acceleration of gravitational force. 

Since the dynamics of the pump is negligible compared to the 

dynamics of the two connected tanks, it is presented here as a 

static gain. The parameters 1k  and 2k  are determined 

experimentally in a steady state. Let in the steady state 

magnitudes 0
1h and 0y  are achieved at a control signal 0u , then 

0//1  dtdydtdh  and we have 

 

  00
1

10 2
yh

k
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u  , (22) 
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kk
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
 . (23) 

 

For the experimentally determined values of the parameters 

one obtains ]m[102,46476 2-5
1 k  and ]m[101,816245 2-5

2 k . 

Simple forward-difference approximations of the plant 

model given by (20) and (21) are 

 

   )()(2)(
1

)()1( 1111 kykhgkkku
A

khkh  , (24) 

 
  .)(2)()(2

1

)()1(

211 kygkkykhgk
A
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


 (25) 

 

By entering the above mentioned parameter values of the plant 

into (24) and (25) we obtain a nonlinear discrete time model of 

the plant used for the design of the AIMNC controller: 

 

 
,)()(0.0070893)(0007625.0

)()1(

1

11

kykhku

khkh




 (26) 

 

 
  .)(0.0052243)()(0.0070893

)()1(

1 kykykh

kyky




 (27) 

 

In this model it is necessary to include the saturation of the 

actuator, i.e. the control signal u  (the plant input) is in the 

range of  010  volts. Also, the output y  of the plant can not 

take negative value. The fluid level in the first tank must not 

exceed the value ]m[65.01 h . From the (23), 1.543/ 00
1 yh , the 

desired stationary value of the plant output must not exceed 

the value ]m[4213.00 y . 

The step response of the double tank system, represented by 

(26) and (27), for the pump voltage ]V[065.3u , takes a 

stationary value of ]m[2.0y  at the output, Fig.  3. The 

nonlinear discrete time plant model of double tank system can 

be approximated by a linear one with a single pole and gain as 

is given by 
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This model has a pole at 9971.01 a . It has a very slow 

dynamics, Fig. 3. The system needed over 2000 sample 

periods to reach a steady state from a zero initial level, by a 

constant excitation of the pump, whereby a sampling period 

for a real system is 1 second. 

A.  A Neural model of the double tank system 

The MLNN structure with two hidden layers has been used 

for modeling of the nonlinear discrete time dynamical system. 

As inputs of the NN at time instant k were  )(kywk   and  

 
Fig. 3. The step response of the double tank system for pump voltage 

]V[065.3u  

 

)1( ku . The MLNN in the first and second hidden layer has 

had 10 neurons with hyperbolic tangent activation functions 

and bias inputs. The linear activation function and bias input 

has been used for the output neuron. 

Since the double tank system have slow dynamics it is 

necessary to pay special attention to the generation of adequate 

training set, as well as the scaling of inputs and outputs of a 

neural network in the training process, and then in the AIMNC 

structure.  

The different types of training sets have been generated for 

different control vectors. A particular training set consisted of 

12.000 pairs composed of )(ky  and )1( ku ,  where each pair 

represents an input vector of the neural network in time instant 

k. The desired value )1( ky  has been obtained based on (26) 

and (27).  

A very good neural model for the AIMNC structure shown 

in Fig. 1. was obtained for the control input 12000,...,1),( kku  

chosen as a random number in the range  80  with a mean 

value 4.0077, and the generated 12.001 values of )(ky  were in 

the range  373.00 . Fig. 4. shows the double tank system 

output )(ky  generated by this random control input. 

 

 
Fig. 4. The double tank system output y  for the input vector 

  ]V[80randu   
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A motivation for this choice of training pairs has been 

derived from a request to regulate the plant output in the range 

from 0 to 0.35 meters, and therefore it was chosen to change 

the control signal from 0 to 8 volts with a mean value near to 

4. The steady state ]m[35.00 y  corresponds to the voltage 

]V[0535.40 u  at the pump input. The initial value of the plant 

output has been set to 0)1( y . With the proposed selection of 

training pairs and the initial conditions an opportunity was 

afforded to observe a plant dynamics contained in a transition 

process from the zero initial state to the end of the operating 

range, and in the vicinity of the steady-state. 

For the NN training, a MATLAB function “newnarxsp” 

[25], has been used. The inputs to the MLNN were scaled to 

the range  1,1 , training algorithm used Levenberg-Marquart 

method [26]-[28], a number of training epochs was 1000 and 

the achieved mean square error was 4.45x10
-5

. As a result of 

off-line training we obtained the matrix 

][
121110

WWW  , 210
10

RW , 110
12

RW , 1010
21

RW  and 101
32

RW  

and vectors 1b , 2b  and 3b , with dimensions 10x1, 10x1 and 

1x1, respectively. 

The blocks marked with a “Scale” in Fig. 1. are introduced 

for the reason that the off-line training of MLNN performs 

scaling of inputs and the output to the desired range  11 . So 

to calculate )](,[ kuwN k
 in the AIMNC control structure it is 

necessary to scale inputs within the range  11 , and the 

output in the range  373.00 . 

Fig. 5. shows the step responses of the neural network 

)]1(),([ kukyN  and of the double tank system given by (26) and 

(27) for the step change of the voltage ]V[065.3u  at the pump 

input. The inputs in the neural network were scaled to the 

range  1,1 , and the output to the range  373.00 . From Fig. 

5. is evident that the resulting neural model, with an order of 

the model error of ]m[10 4 , is a good model of nonlinear plant 

at hand. The model error m  is shown on Fig. 5, too. 

A derivative of the the neural network )]1(),([1 kukyN  is 

shown in Fig. 6. In this case, the derivative of the NN 

 

 
Fig. 5. The neural network ][N  and the double tank system y outputs, and 

model error m  for the step changes of voltage at the pump input 

for a modeling of the plant with slow dynamics has an order of 
310 . It appears in the denominator of (13) and (16) for a  

calculation of the nominal control increment )(kun  and 

control increment for compensation of the model error and 

disturbances )(kuc , respectively. For sake of comparison, Fig. 

6b. also shows the derivative of the neural network for the 

modeling of the nonlinear plant with fast dynamics considered 

in [18]. 

B.  The modified AIMNC controller for the double tank 

system 

In the case of the nonlinear plant with slow dynamics the 

derivative of the neural network )]1(),([1 kukyN usually takes 

very small values. When using the AIMNC control structure 

this could represent a serious problem. The control increment 

in the control law given by (17) can take unacceptably high 

values. On the Fig. 7., the reference signal ]m[2.0r , system 

output y ,  NN approximate model output mŷ   and model error 

  are shown and on the Fig. 8. the corresponding control 

action u  and control increment u  in the case of reference 

signal ]m[2.0r . From the Fig. 8. it is seen an unacceptable 

behavior of the AIMNC control structure. The system is 

practically stable only due to the saturation of the actuator. 

The control increments, due to the very small values of 

derivative of the neural network, are too high and the voltage 

at the pump oscillates between the saturation limits 0 and 10. 

It is therefore necessary to consider how it is possible to limit 

the values of the control increments in order to achieve 

acceptable system behavior. 

An adequate control signal to control systems with slow 

dynamics, that most of the industrial processes posses, has 

three distinct segments. Typically, the first segment consists of 

a step change of the control signal, and the second of its 

exponential decrease or increase depending on the sign of the 

reference signal step change. In the case of the positive plant 

gain, if the step change of the reference signal is positive then 

the control signal in the second segment is decreasing and vice  

 

 
Fig. 6. The derivatives ][1 N of the NNs of the slow plant and fast plant 
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Fig. 7. Reference ]m[2.0r , system output y , NN approximate model 

output mŷ  and model error   

 

 
Fig. 8. Control u  and control increment u  for reference ]m[2.0r  

 

versa. The third segment is with a constant value of the control 

signal for a fixed reference signal that should provide the zero 

steady-state error. 

It has already been shown that the satisfactory accuracy of 

the system with the AIMNC controller will be achieved if 

5.0 , and we have therefore provided by the proper value of 

the control signal in the third segment. 

A required form of the control signal can be achieved if we 

ensure that the step change of the reference signal create step 

change of the neural model output. This requires a different 

way to scale the control signal that is an input to the neural 

network, i.e. it is necessary to increase it. Therefore, in the 

considered case we have scaled  the input of the neural model, 

to the range  620 . 

We have performed  the simulation of the AIMNC strategy 

shown in Fig. 1. with the obtained MLNN. The set point filter 

was chosen as )1/()1()( 1
11

1   zrrzS  with 0
1
r , i.e. 1)( 1 zS , 

and a robustness filter as )0.999421/()0.999421()( 11   zzF . 

Due to the proposed method of  the control signal scaling, 

neural model error became bigger, and we have used the 

robustness filter )( 1zF . 

 
Fig. 9. System output y  and reference r  

 

 

 
Fig. 10. Control action u  

 

The reference )(kr  was chosen to take the values of 0.2, 

0.15, 0.35, and 0.05, successively for five periods of the 2000 

samples. 

On the Fig. 9. the response of the system with AIMNC 

controller for the double tank system with the proposed 

method of a control signal scaling is shown. The 

corresponding control signal is shown in Fig. 10. 

Figs. 9.-10. depict satisfactory behavior of the proposed 

modified AIMNC strategy for the typical industrial processes 

and confirm that the choice of parameter 5.0 provides the 

zero steady-state error in cases of the constant reference 

signals. 

IV. CONCLUSION 

In this paper we have presented an improvement of the 

AIMNC structure. The procedure of designing the MLNN 

model and controller is shown. The necessary condition for 

providing an appropriate accuracy of the system at steady state 

in the case of the constant reference signal and constant 

disturbances is derived. 

Also, we have suggested an approach in which one can 

ensure satisfactory behavior of the AIMNC law for controling  
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slow industrial processes and provide the zero steady state 

error in the cases of constant reference signals and constant 

disturbances. Simulation results confirm performance 

improvements obtained by the proposed modification of the 

AIMNC algorithm.   
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