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Abstract—This paper employs the multiple scales method and 

chaos theory for analyzing chaotic behavior of the voltage 
transformer (VT) with linear core loss model. It is shown that 
ferroresonance phenomenon in VTs can be classified as chaotic 
dynamics, including a sequence of bifurcations such as period 
doubling  bifurcation  (PDB),  saddle  node  bifurcation  (SNB),  
Hopf  Bifurcation  (HB)  and chaos. Bifurcation diagrams and 
phase plane diagrams are drawn using a continuation method for 
linear core loss model and lyapunov exponents are obtained 
using the multiple scales method. At first an overview of the 
subject in the literature is provided. Then, ferroresonance 
phenomenon is introduced and its various types in a VT are 
simulated. Finally the effects of ferroresonance suppression 
circuit on stabilizing these oscillations are studied. The proposed 
approach is implemented using MATLAB, and simulation results 
are presented. The results show connecting the ferroresonance 
suppression circuit to the system configuration, causes great 
controlling effect on ferroresonance overvoltage.  
 

Index Terms—Ferroresonance oscillation, stabilizing, 
chaos control, voltage transformer, new ferroresonance 
suppression circuit. 
 

I. INTRODUCTION 
ERRORESONANCE is typically initiated by saturable 
magnetizing inductance of a transformer and capacitance 

of the distribution cable or transmission line connected to the 
transformer. In most practical situations, ferroresonance 
results in dominant currents, but in some operating “mode”, 
may cause significant high value distorted winding voltage 
waveform, which is typically referred to as ferroresonance. 
For example, when circuit breaker between the main and 
reserve busbars is opened, ferroresonance can occur in voltage 
transformer connected to the reserve busbar. Ferroresonance 
generates overvoltages, overcurrents and finally chaos with 
different frequencies in power system. Magnetic core of 
transformers is nonlinear, resulting in variable inductance,
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while the line capacitance and grading capacitance of the 
circuit breaker are constant [1]. Therefore, unlike the ordinary 
resonance, Ferroresonance has multiple fixed points, which 
loose and regain their stability due to changes in the system 
parameters. This behavior depends, not only on the frequency, 
but also on the amplitude of the source voltage, initial 
conditions and core losses [2]. Although methods such as 
harmonics balance can be use for analyzing nonlinear 
differential equations, but solving these equations leads to a 
set of complex algebraic equations [3]. Thus, it is often 
preferred to use other methods to solve nonlinear dynamic 
equations; one of which is the bifurcation theory [4], [5]. 
Bifurcation theory enables us to describe and analyze 
qualitative properties of solutions (fixed points) when system 
parameters change. Evaluation of route to chaos in VT, 
considering linear core loss, circuit breaker model complexity 
and damping effects of the system has been carried out in [6], 
[7]. Early interest to the problem returns to 1907, when it was 
shown that the use of series capacitors for voltage regulation 
could cause ferroresonance in distribution systems [8]. 
Ferroresonance behavior of a 275 kV potential transformer, 
fed from a sinusoidal supply via circuit breaker grading 
capacitance, has been studied in [9]. The potential transformer 
ferroresonance from an energy transfer point of view has been 
presented in [10]. A systematic method for suppressing 
ferroresonance at neutral-grounded substations has been 
studied in [11]. A sensitivity study on power transformer 
ferroresonance in a 400 kV double circuit line has been 
performed in [12]. The impact of the transformer core 
hysteresis on the stability domain of ferroresonance modes has 
been studied in [13]. A new modeling of transformers 
enabling more accurate simulation of slow transients than the 
existing models in Simulink/MATLAB is presented in [14]. 
Controlling ferroresonance oscillations in potential 
transformer, considering nonlinear core losses and the circuit 
breaker shunt resistance effect, has been investigated in [15]. 
Impacts of hysteresis and magnetic couplings on the stability 
domain of ferroresonance in asymmetric three-phase three-leg 
transformers have been investigated in [17]. In this paper, a 
newly developed and accurate time-domain transformer 
model, capable of simulating dynamic and transient operating 
conditions is implemented. Using multiple scales method, 
lyapunov exponents are obtained and the attraction behavior 
in route to chaos is analyzed by chaos theory. However, the 
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effect of scaling method and suppression circuits on 
ferroresonance oscillations in VT has not been studied yet. In 
this paper, it is shown that the system is greatly affected by 
ferroresonance suppression circuit. The presence of the 
suggested limiter results in clamping of ferroresonance 
overvoltage. Using this method results in improving the 
voltage waveform and, consequently, protecting insulations, 
fuses and switchgears against high voltages. In this study, 
MATLAB program is employed to simulate the system and 
plot the related phase plane and bifurcation diagrams. The 
results of case study indicate that bifurcation occurs and the 
system states lead to chaos in the absence of ferroresonance 
limiter. The presence of the proposed suppression circuit, 
however, causes to clamp the ferroresonance oscillations and 
successfully decreases the chaotic region. 

II. MODELING OF SYSTEM INCLUDING VOLTAGE 
TRANSFORMER 

The Fig. 1 shows single line circuit diagram of the power 
system at a 275 kV substation. VT is isolated from sections of 
bus bars by disconnectors. Ferroresonance conditions may 
occur upon closure of disconnector DS1 with circuit breaker 
(CB) and DS2 open, leading to a system fault and failure in the 
VT's primary winding [15] and [18]. 

 
 
Fig. 1.Single line diagram of the power system including VT. 

 
Fig. 2 shows the basic ferroresonance equivalent circuit 

used in this analysis. Resistor R represents the transformer 
core losses. In [15] and [18] accurate model for magnetization 
curve of the core, considering hysteresis, has been introduced, 
but in the present paper the nonlinear transformer 
magnetization curve is modeled by a single valued seventh 
order polynomial [15] and [18]. 
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Fig. 2. Reduced equivalent ferroresonance circuit of the power system. 

In Fig. 2, E is the power system rms phase voltage, Cseries is 
the total grading capacitance of circuit breaker and Cshunt is the 
equivalent line-to-earth and line-to-line capacitance of the 
arrangement. The resistor R represents the transformer core 
losses. In the peak current range, the flux-current 
characteristic becomes highly nonlinear. Here, λ-I 
characteristic of the voltage transformer is modeled, as in [3], 
by the polynomial  

7i a bλ λ= +                                                                (1) 
where,  a=3.14, b=0.41 and λ=Nφ (N is the coil turns of the 
transformer). The polynomial order of seven and the value of 
coefficients in equation (1) are obtained by dick and Watson 
[16], for the best fit of the saturation region to the true 
magnetization characteristic. It was found that for a fairly 
accurate representation of the saturation characteristics of a 
VT core, the exponent q may acquire a value of 7 [16]. Fig. 3 
shows simulation of this iron core characteristic ( i−ϕ ) for 
q=7. 
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Fig. 3. Flux- current characteristic of the transformer core. 
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Fig. 4. Hysteresis loop of the transformer core. 

 
The basic ferroresonance circuit as shown in Fig. 2 is 

analyzed by differential equations. Because of the nonlinear 
nature of the transformer magnetizing characteristics, the 
behavior of the system is more sensitive to change in system 
parameters and initial conditions [15]. A small change in the 
value of the system voltage, capacitance or losses may cause 
to dramatic changes in its behavior. A more suitable 
mathematical approach for studying ferroresonance and other 
nonlinear phenomena is provided by nonlinear dynamic 
methods. Nonlinear dynamical analysis of the equivalent 
circuit by applying KVL and KCL results in the following 
equations: 

2 sin( )e E tω=                                                             (2) 

L
dv
dt
λ

=                                                                           (3)  
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                      (4)                    

State space formulation is done by selecting λ and VL as the 
state variables x1 and x2, respectively. For simplification, 
some new parameters are defined as bellows: 

( )
1

series shuntC C
ε =

+
                                                     (5) 

1
R

μ =                                                                              (6) 

( )2seriesK C Eω=                                                         (7) 

 
Substituting in (4), the following equation is obtained: 

( )1 1 1 1 cosqX aX bX X Kε με ε θ+ + + =                     (8)                       

where ε is a small positive parameter, μ is the damping 
coefficient and is a positive parameter, Kε is amplitude of 
voltage source and ω is the frequency of voltage source. State 
equations are formed as follows: 

1 2X X=                                                                         (9) 

( )2 1 1 2 cosqX aX bX X Kε εμ ε θ= − + − +                (10)                          

If state equations are considered as (11) 
X AX BU= +                                                           (11) 

where X and U are state variables and system inputs vectors 
and  A and B represent coefficients matrices, thus: 

1 1

22

1

0 1

0 0 0
( )

0 0

q

X X
X

a XX

X U t
b K

ε εμ

ε ε

⎡ ⎤ ⎡ ⎤⎡ ⎤
= = +⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎣ ⎦⎢ ⎥ ⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤
+⎢ ⎥⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

                  (12)               

where ( ) cosU t tω= . 
The fixed or equilibrium points are defined as the vanishing 

of the vector field; that is: 
0X =                                                                        (13) 

For the initial conditions, we have: 

(0) 0.0; (0) 2l
dv
dt
λλ = = =                             (14) 

At an equilibrium point, since the right-hand side term of 
(11) becomes zero, its stability is dominated by the 

eigenvalues of the Jacobean fJ
x

∂
=

∂
 evaluated at fixed point. 

Multiple scales method can be used as simplification method 
for stability and bifurcation analysis [20]. By using the 
multiple scales method one obtains a first order approximation 
for the solution of (8) as: 

( ) ( )1 cosX h t oω γ ε= − +                                            (15) 
The parameters a, μ and k are independent of ε. Further, the 

frequency of system is such that 

1ω εδ= +                                                                    (16) 
where δ is named external detuning. By using the multiple 
scales method, we seek for the first order uniform expansion 
of (8) in the form: 

( ) ( ) ( )1 1,0 0 1 1,1 0 1; , , ...X t X T T X T Tε ε= + +                  (17)                   

where T = t0 and T1 =εT0. In term of T1 the time derivative 
becomes: 

2
0 1 2 ...d D D D

dt
ε ε= + + +                                         (18)                   

Substituting (17) and (18) into (8), and equating coefficient 
of the similar powers of ε, we obtain: 

( )0 2
0 1,0: 0O D Xε =                                                      (19) 

( ) 2
0 1,1 1 0 1,0 0 1,0 1,1 0: 2 cosqO D X D D X D X bX K tε μ ω+ + + =      

 (20) 
The solution of Eq. (20) can be expressed as: 

( )1,0 1 0 0X A T T A= +                                                   (21) 
Substituting (21) in (20): 

1

2 5
0 1,1 1,1 1,1 2

2
q i TKD X aX bX A A e ccμ′+ + = − − + +  (22) 

where cc is complex conjugate of preceding terms and the 
prime indicates the derivation with respect to T1. Using (8) in 
eliminating the lead to secular terms in X1,1 from (19), we 
obtain: 

1

52 0
2

i TKA A eμ′ − + =                                              (23) 

If A is defined in the polar form, we have 
( )

2

1
2

i TA e β δα += where ,α β are functions of 1T , by separating 

real and imaginary parts in (20): 
( ) ( ) ( ) ( )

1 1 1
1

1 0
2 2

i T i T i T i Tke i e e eβ δ β δ β δ δα α β δ α+ + ++ + + − =  

 (24)                   
From (24), we obtain (25) and (26): 

1cos sin sin cos 0
2

α β αβ β αδ β α β′ ′− − + =    (25)                   

1sin cos cos sin 0
2

α β αβ β αδ β α β′ ′− − + =    (26)                   

Multiplying sin β− in (25) and cos β in (26) we have: 

sin 0
2
kαβ αδ β′ + + =                                              (27) 

With multiplying cos β in (27) and sin β in (28) we have: 
1 cos 0
2 2

kα α β′ − =                                                   (28) 

Setting 0α′ = and 0β ′ = in (27) and (28) we find that their 
fixed points are given by: 

0 0sin 0
2
kα δ β+ =                                                    (29) 

0 0
1 cos 0
2 2

kα β− =                                                  (30) 

Squaring and adding (29) and (30) yield the frequency 
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response equation: 
2 2 2

0 0
1 1
4 4

kα δ α+ =                                                (31) 

The stability of the fixed points depends on eigenvalues of 
Jacobean matrix which are given in (32). 

2

1 sin2 2

sin cos
22

k

A
k k

β

β β
α

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−⎢ ⎥⎣ ⎦

                             (32) 

Determinant of [ ]I Aλ − yields eigenvalues: 
2

2 2
2cos cos sin 0

2 4 4
k k kλ β λ β β
α α α

⎛ ⎞+ − − =⎜ ⎟
⎝ ⎠

  (33)                           

Where λ is eigenvalue. Substituting the polar form of A into 
(18) and substituting result into (19), we find that, to first 
approximation 1X is given by: 

( )1 cos ...X tα ω β= + +                                             (34) 

If 0 1
2

k
αβ αδ

α α

= −⎧
⎪= → ⎨ ′ = −⎪⎩

                                             (35) 

For nontrivial solutions, 0α ≠ and its follows from (35) 
that: 

1 0 1 0,T T t tβ δ β ε β εδ β= − + = → = − +                 (36)               
Substituting (36) into (34), we find that to the first 

approximation, the free oscillations of (36) are given by: 
( )1 0 0cos ...X tα ω β= + +                                         (37) 

Where α is given by (35) which has the normal form of a 
supercritical pitchfork bifurcation. Equation of eigenvalue is 
as follows: 

2 2
0

1 1 1 0
2 2 4

λ α λ δ⎛ ⎞+ − − − =⎜ ⎟
⎝ ⎠

                             (38) 

 We obtain first order approximation of (8) by multiple 
scale method and by using the chaos theory we discuss its 
stability. For more details about chaos theory see [19] and 
[20]. Table I shows the base values used in the analysis; and 
the parameters’ value resulting in two possible types of 
ferroresonance are given in Table II. 

 
TABLE I 

BASE VALUES OF THE SYSTEM USED FOR SIMULATION 

Base value of voltage 275 / 3 KV 
Base value of volt-amperes 100 VA 
Base angular Frequency 2π50 rad/sec 
 

TABLE II 
PARAMETERS’ VALUE USED IN SIMULATION [9] 

Parameters Cshunt 

(nf) 
Cseries 
(nf) 

Rcore 
(MΩ) 

RFLR 
(MΩ) 

ω 
(rad/sec) 

E 
(KV) 

First case 0.19 0.5 225 2 314 275 
Second case 0.1 3 1900 2 314 275 

III. DESCRIPTION OF SYSTEM WITH FERRORESONANCE 
SUPPRESSION CIRCUIT 

Power system including ferroresonance suppression circuit 

is shown in Fig. 5.  

E
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Fig. 5. (a) System equivalent circuit when ferroresonance suppression circuit 
is connected. 
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Fig. 5. (b) Switching process diagram. 
 

The primary purpose of inserting ferroresonance limiter 
between the neutral point of the transformer and the earth is to 
limit the ferroresonance overvoltage and overcurrent.  Low 
impedance earthing is conventionally defined as impedance 
that limits the prospective ferroresonance current to the full 
load current of the transformer. The value of the impedance 
required is easily calculated to a reasonable approximation by 
dividing the rated phase voltage by the rated phase current of 
the transformer.  The ferroresonance limiter impedance is 
conventionally achieved using resistors rather than inductors, 
to limit the tendency for the fault arc to persist due to the 
inductive started energy. The suggested ferroresonance limiter 
consists of a compact circuit including one resistor, power 
electronic switches and control circuit. This circuit is placed in 
the grounding path of the voltage transformer. During normal 
operation the resistor is bypassed, while at ferroresonance 
occurrence, it is inserted into the circuit via power electronic 
switches, activated by control circuit. Regarding the above 
explanation, in Fig. 5 (a), RFLR is the ferroresonance limiter 
resistance. The power electronic switches need proper 
switching pulses, in order to connect and disconnect the 
ferroresonance limiter resistance to the grounding point of the 
transformer. Fig. 5 (b) shows the switching process diagram 
with one decision box. Vref is adjusted between 0.9-1.2 pu of 
the source voltage and this reference voltage is compared with 
the measurement voltage on the transformer coil. When 
reference and measurement voltages are equal, then the 
decision box generates a pulse for SW1, otherwise, this circuit 
activates the second switch. To protect the power electronic 
switches against overvoltages, the step down transformer is 
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used here. The values for various system parameters, 
considered for simulation, are kept the same as previous case, 
while ferroresonance limiter circuit is added to the power 
system configuration and its value is given below: 

2FLRR M= Ω    
The differential equation for the circuit in Fig. 5 can be 

presented as follows:  

( )

( )
( ) ( )

2

2

6

2
7

2

2 cos

1 7

L
FLR core ser shunt core ser

FLR core ser FLR croe ser L

core sh ser FLR ser core

d v
R R C C R C E t

dt

R R C a R R C b v

dR C RC R C R a b
dt

ω ω

λ

λ λ λ

= −

+ +

− + + − +

    

                                                                                          (39)   

IV. SIMULATION RESULTS 

A. Ferroresonance Study of System 
For better results, time domain simulations are performed 

using fourth order Runge-Kutta-fehlberg method and 
validated by Matlab-Simulink. The major analytical tools, 
used to study the chaotic ferroresonance, are phase plane, time 
domain oscillation, and bifurcation diagram. The phase plane 
analysis is a graphical method, in which the time behavior of a 
system is represented by the movement of state variables of 
the system in the state space coordinates versus time. As time 
evolves, the initial point follows a trajectory. If a trajectory 
closes on itself, then the system produces a periodic solution. 
In the chaotic system, the trajectory will never close to itself 
to shape cycles. A bifurcation diagram is a plot that displays 
single or multiple solutions (bifurcations) as the value of the 
control parameter is increased. The results are obtained by 
numerical solutions and preliminary analysis is based on the 
mathematical theories. Bifurcation diagrams are given by 
using Matlab software. Note in these bifurcation diagrams 
each route has special color. The routs that have same color 
have similar frequency. In this section, behavior of the VT is 
studied where there is no controlling circuit in the system 
configuration. Simulations are performed based on the two 
sets of the parameters value given in Table II. The following 
results are obtained. Simulation results are shown in Figs. 6 
and 7. Fig. 6 (a) shows time domain behavior of the 
transformer terminal voltage which depicts sub-harmonic 
oscillation. Fig. 6 (b) is phase plane diagram when Vin = 
3.5p.u and q = 7. Sub-harmonic ferroresonance oscillations in 
these figures can be observed. The resulting waveform has 
sub-harmonic, with a period of 40 ms, i.e. twice the period of 
the supply. It can be found that there are sharp peaks in flux 
waveform. This type of flux can damage the insulation of 
voltage transformer. 
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Fig. 6. Subharmonic ferroresonance oscillation a) Time domain simulation b) 
Phase plane diagram. 

 
The results also indicate subharmonic resonances of the 

power system, with amplitude of the overvoltages reaching 
about 3.5p.u which is very dangerous for the power system 
equipments and may cause VT failure. In the second part of 
the ferroresonance simulation, parameters value are changed 
to those presented in the second row of Table II and the 
results are illustrated in Fig. 7 parts (a) and (b). According to 
the phase plan diagram, it can be deduced that the amplitude 
of the ferroresonance oscillation is increased up to 5pu, and 
behavior of the oscillation is completely chaotic. This 
overvoltage certainly can cause VT failure. 
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Fig. 7. Chaotic ferroresonance oscillation a) Time domain simulation b) Phase 
plane diagram. 

 
Phase plan diagram shows the chaotic behavior of the flux 

linkage and voltage of the transformer. Trajectory of the 
system indicates nonlinear oscillation with amplitude of the 
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ferroresonance overvoltages reaching to 5p.u. Although 
duration of the ferroresonance overvoltages is short, but due 
to the high amplitude, it can cause serious failure in the power 
equipments.  

B. Adding Ferroresonance Suppression Circuit to the 
System 
This section shows the effect of ferroresonance limiter 

circuit on the ferroresonance overvoltages by proper nonlinear 
dynamical tools such as bifurcation and phase plan diagrams. 
It is considered that all parameters are the same as the 
previous case, in which ferroresonance occurred, and only 
parameter value of the ferroresonance limiter circuit are added 
to the power system. The simulation results indicate that 
subharmonic and chaotic ferroresonance are changed to the 
periodic oscillations. By considering ferroresonance limiter 
circuit effect, amplitude of the overvoltages “3.5p.u” is 
decreased to 1.5p.u. Voltage waveform, phase plane diagram 
of normal sinusoidal oscillation are shown in Fig. 8 parts a, 
and b, respectively. The resulting waveform is periodic, 
ferroresonance limiter circuit successfully clamps the 
ferroresonance overvoltages and changes it to the closed 
trajectory with the frequency equal to that of the source.  
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Fig. 8. Periodic oscillation a) Time domain simulation b) phase plane diagram. 

 
Phase plan diagram in Fig. 8 (b) clearly shows the periodic 

behavior of the voltage of the transformer, which is the effect 
of limiter circuit. Phase plan shows the closed trajectory of the 
system, in which there is no extra harmonic. For confirming 
the effect of suggested ferroresonance limiter circuit on 
controlling ferroresonance overvoltages, new set of the power 
system parameters are considered. The simulation results in 
this case corresponds to the last ferroresonance oscillation of 
the previous case, In these results, also, the effect of 
ferroresonance limiter circuits is obvious. High amplitude of 
the ferroresonance overvoltages is decreased to the lower 
amplitude as shown in Fig. 9 parts (a) and (b). Chaotic 

ferroresonance changes to the quasiperiodic resonance by 
connecting ferroresonance limiter circuit.  
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Fig. 9. Quasiperiodic oscillation behavior a) Time domain simulation b) phase 
plane diagram. 
 

This plots show the qasiperiodic oscillation with some 
fundamental oscillations included. Amplitude of this 
resonance is decreased to 0.6p.u. Time domain simulation 
shows this quasiperiodic behavior while extra resonances are 
in it. The behavior of this case is better when compared with 
the chaotic case. Ferroresonance limiter circuit successfully 
changes the chaotic oscillation into periodic and quasiperiodic 
oscillation as shown here. 

C. Bifurcation Diagram Analysis 
Number In this section, the effect of variation in the voltage 

of the system on ferroresonance overvoltage in the VT, and 
also the effect of applying ferroresonance limiter circuit on 
this overvoltage is studied by the bifurcation diagrams. Table 
III shows parameters value of the power system equipments 
which are considered for simulation. 

 
TABLE III 

POWER SYSTEM PARAMETERS USED FOR PLOTTING THE BIFURCATION 
DIAGRAM [15] 

Power system 
Parameters 

Cshunt 
(nf) 

Cseries 
(nf) 

Rcore 
(MΩ) 

RFLR 

(KΩ) E (KV) 

Parameters value  0.5 0.1 1900 50 275-1375 

 
In the bifurcation diagrams, horizontal axis is the power 

system input source voltage, and vertical axis is the voltage of 
the transformer terminals. By using this dynamical tool, it is 
shown that if due to some natural event or switching 
interrupts, voltage of the system is increased, ferroresonance 
occurs. Fig. 10 clearly shows the ferroresonance overvoltage 
in VT when voltage of the system is increased up to 5 p.u. 
According to this plot, the behavior of the system is 
completely chaotic. In E=0.8p.u period-3 appears and 
amplitude of the overvoltage is reached to 2p.u. By increasing 
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the source voltage, at E=2 p.u period doubling starts, and by 
PDB logic, system behavior goes into the chaotic region. For 
finding the beginning point of the chaotic region Lyapunov 
exponent is used. In this plot, effect of the variation in the 
input voltage on ferroresonance occurring is shown by the 
Lyapunov exponent. If the exponent remains below zero line, 
its oscillation have a periodic behavior, otherwise it has a 
chaotic behavior. According to this explanation, 
ferroresonance is controlled by connecting ferroresonance 
limiter and this exponent stays below zero line all the region. 
This means ferroresonance limiter successfully causes to 
control ferroresonance phenomena. 
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Fig. 10. Bifurcation diagram (a) chaotic behavior without controlling circuit, 
(b) periodic behavior causes by ferroresonance limiter circuit. 
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Fig. 11. Lyapunov exponent (a) without limiter effect, (b) when limiter circuit 
is added. 

 

In part (a) and (b) of Fig. 11, ferroresonance condition and 
effect of the ferroresonance limiter on controlling nonlinear 
oscillation is shown via Lyapunov exponent. In the last part of 
the simulation, system behavior is shown by different set of 
the system parameters as shown in Table III. Effect of 
ferroresonance limiter circuit on decreasing ferroresonance 
over voltages is clearly obvious. In this plot, amplitude of the 
oscillation is limited to 0.9p.u, and chaotic ferroresonance is 
changed to the period-1 oscillation. 

V. CONCLUSION 
In this paper, chaotic ferroresonance oscillations of voltage 

transformer with considering linear core loss model have been 
described. Bifurcation and chaos analysis has been introduced 
and different types of bifurcation for ferroresonance 
phenomena have been observed using multiple scales method. 
Lyapunov exponents for different fix points in bifurcation 
diagrams have been obtained. It was shown that chaos occurs 
in voltage transformer from a sequence of PDB. It was found 
that nonlinear magnetization curve has a great influence on 
bifurcation diagrams and domains of ferroresonance 
occurrence. Linear core loss model has been used in dynamics 
equations. Border collision where system becomes suddenly 
chaotic in bifurcation diagram has been shown. In phase plane 
diagrams period-n windows have been observed. For fixed 
points periodic and non-periodic solution and also type of 
bifurcation are gained. It was shown that for some reasons 
chaotic ferroresonance can appear causing voltage transformer 
failure. By connecting the ferroresonance limiter circuit to the 
transformer ferroresonance phenomena is greatly affected. 
The presence of the ferroresonance limiter circuit results in 
clamping the ferroresonance overvoltages in the studied 
system. The ferroresonance limiter circuit successfully 
suppresses the chaotic behaviour of the system. Consequently, 
the system shows less sensitivity to initial conditions and 
amplitude of the chaotic ferroresonance is controlled 
successfully. 
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