
 ELECTRONICS, VOL. 20, NO. 2, DECEMBER 2016 43



Abstract - This work presents an FPGA implementation of FIR

filter based on 4:2 compressor and CSA multiplier unit. The

hardware realizations presented in this paper are based on the

technology-dependent optimization of these individual units. The

aim is to achieve an efficient mapping of these isolated units on

Xilinx FPGAs. Conventional filter implementations consider only

technology-independent optimizations and rely on Xilinx CAD

tools to map the logic onto FPGA fabric. Very often this results in

inefficient mapping. In this paper, we consider the traditional

CSA-4:2 compressor based FIR filters and restructure these units

to achieve improved integration levels. The technology optimized

Boolean networks are then coded using instantiation based

coding strategies. The Xilinx tool then uses its own optimization

strategies to further optimize the networks and generate circuits

with high logic densities and reduced depths. Experimental

results indicate a significant improvement in performance over

traditional realizations. An important property of technology-

dependent optimizations is the simultaneous improvement in all

the performance parameters. This is in contrast to the

technology-independent optimizations where there is always an

application driven trade-off between different performance

parameters.

Index Terms—FIR filters, FPGA, Look-up table, Technology

Mapping, Carry-save Arithmetic

Original Research Paper

DOI: 10.7251/ELS1620043K

I. INTRODUCTION

Finite Impulse Response (FIR) filters are basic components

in many Digital Signal Processing (DSP) applications like

multimedia & wireless communication, image processing,

video & audio processing, speech recognition etc. [1], [2], [3].

Owing to their iterative nature, DSP computations differ

drastically from general purpose computations. The non-

Manuscript received on July 20, 2015. Received in revised form on

October 8, 2016. Accepted for publication on October 10, 2016.

Burhan Khurshid is with the Department of Computer Science and

Engineering, National Institute of Technology Srinagar, Jammu and Kashmir,

India, 190006 (phone: +91-9797875163; e-mail:

burhan_07phd12@nitsri.net).

Roohie Naaz is with the Faculty of Computer Science and Engineering,

National Institute of Technology Srinagar, Jammu and Kashmir, India,

190006 (e-mail: naaz310@nitsri.net).

terminating nature of DSP algorithms can be exploited to

design efficient systems by exploiting the concurrencies both

within iteration and among multiple iterations [4]. This has

provided designers with sufficient impetus to look beyond the

traditional software oriented solutions and consider some

hardware platforms where the underlying resources can be

utilized to develop a complete System on Chip (SoC) solution

that best matches the algorithmic complexity by developing

the right type of architecture.

Application Specific Integrated Circuits (ASIC) have long

been used to develop custom architectures for realizing FIR

filters. However, with ASICs the design flow is complicated

and time consuming resulting in huge non-recurring

engineering (NRE) costs [5]. This has typically reserved

ASICs for high volume markets and for some specialized

domains. FPGAs provide for reduced design time due to a

simplified design flow and pre-fabricated nature which

eliminates the requirement for verification of deep sub-micron

effects. Some other advantages include reconfigurable design

approach [6], [7], large scale integration [6], [8], availability

of several intellectual property (IP) cores [9], reduced NRE

costs [6], [7] etc. The design cycle in FPGAs has a strong

computer aided design (CAD) support. The software handles

the time consuming mapping, routing, placement and floor

planning phases. The effectiveness of technology-independent

optimizations that are generally well suited for ASICs [10] is

thus limited in FPGAs. Thus, in order to get maximum

performance from the target FPGA device, optimizations that

are specific to the underlying technology have to be

considered. This requires a complete knowledge about the

target device. Also, the choice of the target device will have a

prominent effect on the end performance of the system [11]. In

this work, we carry out the hardware realization of 4:2

compressor and carry save adder (CSA) based multiplier units

that are optimized for FPGAs with 6-input look-up tables

(LUT). Since all modern FPGAs from Xilinx support 6-input

LUTs [12], [13], [14], the filter realizations based on these

individually optimized units should provide an improved

performance.

FIR filters in general tend to have high arithmetic

complexity due to the required number of multipliers, adders

and delay elements. However, the main computational

bottleneck is the multiply operation that requires a large

Technology-Dependent Optimization of FIR

Filters based on Carry-Save Multiplier and 4:2

Compressor unit

Burhan Khurshid and Roohie Naaz

44 ELECTRONICS, VOL. 20, NO. 2, DECEMBER 2016

computation time [15]. A variety of approaches have been

used to speed-up the multiplier operation in a filter structure.

These approaches either completely eliminate the existing

multiplier unit or reduce its architectural complexity. A widely

used multiplier-less approach is the one where the multiplier

unit is replaced by some sort of memory. Two frequently used

memory-based techniques are the direct ROM based

implementation and distributed arithmetic (DA) based

implementation. ROM based implementations replace the

multipliers with LUTs resulting in faster output compared to

multiply and accumulate design [16]. DA based techniques

have high throughput processing capabilities and regularity

resulting in cost-optimal structures [17], [18], [19]. In DA

based multipliers the pre-computed partial products are stored

in the memory elements and are later read out and

accumulated to obtain the desired results. To minimize the

logic requirements the authors in [20] present a new kind of

FPGA implementation algorithm which is based on the

Remainder theorem. Another approach uses the divided LUT

method to decrease the computational complexity [21]. The

problem with memory-based techniques is the increased on-

chip memory requirements as the operand word-length

increases. Low capacity FPGAs often switch to bit-serial

arithmetic for realizing multiplier circuits [22]. Special

purpose bit-serial implementations include power-of-two sum

or difference approaches. This allows multiplication to be

replaced with faster shift and addition operations [23], [24],

[25]. Linear systolic structures have also been used as bit-

serial architectures [4]. In these approaches the conventional

2-D bit-parallel architectures are transformed into linear 1-D

bit-serial systolic structures. The drawback with bit-serial

structure is their reduced speed.

Apart from the multiplier-less approaches several

techniques have been used to reduce the complexity of the

multiplication operation. In [26] the authors present an

improved multiplier design based on Canonic Signed Digit

(CSD) representation and Horner’s scheme. Two multiplier

structures have been proposed: a cascaded adder structure and

an accumulator structure. Both take advantage of the fixed

nature of filter coefficients and reduce the number of partial

products resulting in an area efficient realization. Similarly

constant coefficient multipliers have been reported in [27],

[28], [29]. Residue Number System (RNS) is yet another

approach that has been used for designing efficient high-speed

multipliers [30]. The limited inter-moduli carry propagation

and parallel computations make RNS desirable for

add/multiply intensive applications. Similarly, the authors in

[31] propose a novel design scheme based on the combination

of sum of power of two (SPT) coefficients and carry-save

addition for implementing fast multiplier blocks.

At system level, one of the frequently used modifications is

to develop systolic architectures for the filter structures.

Systolic designs posses a high potential to yield a high

throughput rate with features like simplicity, regularity and

modularity of structure [32]. The authors in [33] and [34] take

a systolic approach for filter design by using multipliers based

on direct ROM and DA approaches. Similarly, the work in

[35] uses the systolic structures but focuses on replacing the

original adder unit by using a parallel prefix adder (PPA) with

minimal depth algorithm. Poly-phase decomposition has been

used to design high-speed and low-power parallel filters [36],

[7], [37], [38], [39], [40]. A modification of poly-phase

decomposition is the Fast FIR algorithm (FFA). Filters based

on FFA are area efficient utilizing fewer multiplier units [41],

[42].

All the above mentioned approaches use technology-

independent optimizations to enhance the performance of the

filtering structures. In this paper, we take an alternate low-

level design approach and propose realizations that are based

on technology-dependent optimizations.

The rest of the paper is organized as follows. Section II

discusses the basic FIR structure. Section III discusses some

of the preliminary terminologies used in this paper. Section IV

discusses the technology-dependent optimization of the 4:2

compressor and CSA multiplier unit. Synthesis and

implementation is carried out in section V. Conclusions are

drawn in section VI and references are listed at the end.

II. BASIC FIR FILTER

An N-tap FIR filter is defined as:

 (1)

Where, hk is the filter coefficient that determines the frequency

behavior of the filter and x[n-k] are the time delayed samples

of input sequence with 0 ≤ k ≤ N-1. A direct mapping of

equation 1 results in the Direct form realization of the FIR

filter as shown in figure 1. The critical path of the Direct form

consists of N-1 adder units and one multiplier unit.

Alternatively transposition theorem may be applied to obtain

the Transposed form as shown in figure 2 [4]. The critical path

in the Transposed form consists of one adder and one

multiplier unit only. The Transposed and Direct form may be

combined to have different Hybrid forms. However, in this

paper we have only considered the realization of Transposed

and Direct forms of FIR filters.

 ELECTRONICS, VOL. 20, NO. 2, DECEMBER 2016 45

Fig. 1. Direct form realization of FIR filter

Fig. 2. Transposed form realization of FIR filter

III. PRELIMINARY TERMINOLOGIES

Logic synthesis is concerned with realizing a desired

functionality with minimum possible cost. In the context of

digital design the cost of a circuit is a measure of its speed,

area, power or any combination of these. For graphical

representations a combinational function may be represented

as a directed acyclic graph (DAG) called the Boolean network.

Nodes within this network represent logic gates, primary

inputs (PI) and primary outputs (PO). Each node implements a

local function and together with its predecessor nodes

implements a global function. A cone of a node v, Cv, is a sub-

graph that includes the node v and some of its non-PI

predecessor nodes. Any node, u within this cone has a path to

the root node v, which lies entirely in Cv. The level of the node

v is the length of the longest path from any PI node to v. If

node v is a PO node then the level will give the depth of the

network. Thus network depth is the largest level of a node in

the network. The critical path and area of a mapped Boolean

network is measured by the depth and number of LUTs

utilized by the network. A network is said to be k-bounded if

the fan-in of every node does not exceed k.

IV. TECHNOLOGY-DEPENDENT OPTIMIZATION

Technology-dependent optimization transforms the initial

Boolean network into a circuit netlist that utilizes the target

logic elements efficiently. The aim is to distribute the logic

among the targeted elements with minimum possible depth

and minimum resource utilization. The target element in

majority of FPGAs is a k-LUT [43], [44]. An efficient

utilization of this circuit element could lead to increased logic

densities and reduced circuit depths.

Technology-dependent optimization using LUTs is a two

step process. In the first step, the entire network is partitioned

into suitable sub-networks. The individual nodes within each

sub-network are then covered with suitable cones. The

redundancies within each sub-network are exploited during the

covering phase. The logic implemented by each cone is then

mapped onto a separate LUT. In the second step, the netlist for

the entire network is constructed by assembling the

individually optimized sub-networks. The overall aim is to

have a circuit implementation that uses minimum possible

LUTs and has minimum possible depth.

The FIR structure considered in this paper is based on a

multiplier unit and a 4:2 compressor unit. The multiplier is

based on the CSA logic and generates two partial vectors. The

4:2 compressor then combines these partial vectors with those

generated from the previous stage and generates two new

partial vectors. A final adder stage at the output then combines

these partial vectors and generates the final result. The CSA

multiplier and 4:2 compressor ensure that there is no rippling

of carry and the critical path is kept to a minimal. Direct and

Transposed FIR structures based on these units are shown in

figure 3 and figure 4 respectively. In each case, the input x[n]

and the filter coefficients hk are assumed to be in fixed-point

2’s complement representation.

A. Technology-Dependent Optimization of the Multiplier unit

The multiplier unit is an array multiplier based on the carry-

save logic. In carry-save logic the carry outputs are saved and

used in the adder in the next row. This ensures that the

additions at different bit-positions within a row are

independent of each other. The details of a CSA multiplier are

given in [4]. The schematic for 4-bit operands is shown in

figure 5. The vector merging adder which is the main

computational bottleneck in a CSA multiplier need not to be

included as the partial sum and carry outputs are directly fed

to the 4:2 compressor unit.

×

×

×

×

×

×

++++

DDDD

h3h4h5h6hN-1

x[n]

y[n]

×

D

+

×

D

+

h2

×

D

+

h1 h0

×

×

×

×

×

×

++++

h4h3h2h1h0

y[n] DDDD

x[n]
×

++

hN-1h6h5

DD

×

×

+
D

46 ELECTRONICS, VOL. 20, NO. 2, DECEMBER 2016

Fig. 3. Direct form FIR filter based on CSA multiplier and 4:2 compressor units

Fig. 4. Transposed form FIR filter based on CSA multiplier and 4:2 compressor units

Fig. 5. Fixed-point 4-bit CSA multiplier

Figure 6 shows the Boolean network for the basic operating

cell used in the CSA multiplier. The network is partitioned

into two sub-networks corresponding to the sum (S) and carry

(C) outputs. Each sub-network is separately mapped onto a

circuit of LUTs by covering the individual nodes with suitable

cones. A straight forward approach would be to cover each

node within a sub-network with a separate cone. The sub-

network is then traversed in a post-order depth-first fashion

and the local function implemented by each cone is mapped

onto a separate LUT. This is shown in figure 7(a). The overall

depth at PO nodes S and C is three and the LUT count is

seven. The number of LUTs may be reduced by decomposing

the 3-input OR gate in the carry sub-network and duplicating

the AND gate in each of the sum and carry sub-networks. The

decomposed node is included in two separate cones and the

sub-network is again traversed in a post-order depth-first

fashion resulting in the realization of figure 7(b). The shaded

nodes represent the duplicated logic. The circuit depth is now

two and the LUT count is three. However, an optimal

implementation may be obtained by exploiting the

reconvergent PI nodes in the carry sub-network. Reconvergent

nodes share the same inputs and can be exploited to reduce the

number of PIs to a sub-network by realizing such paths within

the LUT. This is shown in figure 7(c). The depth of the circuit

is now reduced to one and the total LUT count is reduced to

one as both sum and carry sub-networks are mapped onto a

single 6-LUT with dual outputs. An n×n multiplier

implemented using the realization of figure 7(c) will require n2

LUTs and will have an overall depth of n.

It was mentioned in the introduction that the design cycle in

FPGAs has a strong CAD support that handles the majority of

the technology-dependent steps like mapping and placement

and route (PAR). Technology-dependent optimizations mainly

focus on improving the mapping of Boolean networks onto

target LUTs. However, with modern CAD tools, both

technology mapping and PAR are automated and the

optimization process is not transparent to the user [14]. Thus

any optimization done prior to the design entry may get over-

rid during the mapping and PAR phases. To counter this issue,

we re-define the coding strategy at the design entry phase.

Instead of writing conventional behavioral codes, which are

inferential in nature, we adopt an instantiation based coding

×

×

×

×

×

×

DDDD

h3h4h5h6hN-1

x[n]

y[n] 4:24:24:24:2

+

×

×

DD

4:24:2

D

×

4:2

h2 h1 h0

(a)

×

×

×

×

×

×
 h4h3h2h1h0

y[n] DDDD

x[n]

4:24:24:24:2

+

×

×

×
 hN-1h6h5

DDD 4:24:24:2

(b)

×

×

×

×

×

×

DDDD

h3h4h5h6hN-1

x[n]

y[n] 4:24:24:24:2

+

×

×

DD

4:24:2

D

×

4:2

h2 h1 h0

(a)

×

×

×

×

×

×
 h4h3h2h1h0

y[n] DDDD

x[n]

4:24:24:24:2

+

×

×

×
 hN-1h6h5

DDD 4:24:24:2

(b)

FAFAFA FA

FAFAFA FA

FAFAFA FA

FAFAFA FA Y3

 0 X3 Y0 0 X2 Y0 0 X1 Y0 0 X0 Y0

 X3 Y1 X2 Y1 X1 Y1 X0 Y1

 X3 Y2 X2 Y2 X1 Y2 X0 Y2

 X3 Y3 X2 Y3 X1 Y3 X0 Y3

 ELECTRONICS, VOL. 20, NO. 2, DECEMBER 2016 47

strategy, wherein a target element is directly called upon and

the desired functionality is assigned to it. This ensures a

controlled mapping. The following instantiations were used to

map the circuit in figure 7.c.

LUT_1: LUT6_2 generic map (INIT =>

X"96660000E8880000") port map (C, S, c, s, b, a, ‘1’, ‘1’);

B. Technology-Dependent Optimization of the 4:2

Compressor unit

A 4:2 compressor unit takes four inputs and produces two

output values, sum (S) and carry (C). A 4:2 compressor can be

realized using a carry-save stage and a final ripple-carry stage

as shown in figure 8. The carry save stage can be easily

pipelined by inserting registers between the subsequent stages.

The registers are shown as small dots in the schematic of

figure 8. The critical path for such a realization consists of the

delay associated with the final ripple carry chain. An n-bit 4:2

compressor unit will require 2n full adder units and will have a

critical path of n full adders. Each full adder requires two

LUTs; one for the sum and the other for the carry. Thus total

LUT cost for an n-bit 4:2 compressor would be 4n. Assuming

each LUT has a unit delay, the total critical path for such a

realization would be n. Further n flip-flops would be required

for effective pipelining of the structure.

Fig. 6. Boolean network for the basic operating cell used in a CSA multiplier

Fig. 7. Technology optimization for the basic cell. a) Direct mapping. b) Using node decomposition and logic duplication. c) Using reconvergent paths.

For technology-dependent optimization, we first consider

the covering process at a higher level. The adder units are

covered in an inclined fashion as shown in figure 9. Each

covered portion implements a two-stage ripple carry chain,

with the difference that the sum output is being rippled and the

carry output is retained. The critical path of such a realization

will consist of the delay associated with each covered portion.
Pipelining the circuit would require placing registers at the

output node of each shaded portion. This is shown as small

dots in figure 9. The entire structure would require

approximately n flip-flops for pipelining.

Let us now consider the covering process at a lower level.

Figure 10(a) and 10(b) shows the block diagram and the

corresponding parent network for a single shaded portion. For

technology-dependent optimization we again directly re-

structure the parent network. This is done by duplicating the

logic at node Z. Node duplication enables the parent network

to be partitioned into three separate networks corresponding to

the outputs Out1, Out2 and Out3. Each network is covered with

a suitable cone and the logic function implemented by each

cone is mapped onto a separate LUT. The overall realization is

shown in figure 11. LUT1 is used to realize a single three-

input function. LUT2 is used in the dual mode to realize two

five-input functions corresponding to the outputs Out1 and

Out3. The overall depth of the circuit is one. Since the critical
path of the 4:2 compressor unit is limited by the depth of each

shaded portion, the overall critical path is one. Also note that

the LUT cost is two. The 4:2 compressor will thus have the

same hardware utilization as a binary adder.

The following instantiations were used to map the circuit in

figure 18(c).

LUT1: LUT3_L generic map (INIT => X“E8”) port map

(Out2, c, b, a);

LUT2: LUT6_L generic map (INIT =>

X“E88E8EE896696996”) port map (Out1, Out3, e, d, c, b, a,

 a b s c s s c c

 S C

1
1

2

text
text

text

text

text

text

1

2 2 1 2

 3

text

 3

 S C

 a b s c s s c c

(a)

 a b s c a b s s c c a b

 S C

(b)

 a b s c a b s c

1

1

S
(c)

C

1LUT1

48 ELECTRONICS, VOL. 20, NO. 2, DECEMBER 2016

‘1’);

Fig. 8. Top-level schematic for an 8-bit 4:2 compressor unit based on CSA logic

Fig.9. Covering of individual adder units. Each shaded portion represents a two-stage RCA chain

Fig.10. Block diagram and Boolean network corresponding to a single shaded portion.

Fig. 11. Technology optimized realization for each shaded portion

FA

FA

 d0 a0 b0 c0 d1 a1 b1 c1 d2 a2 b2 c2 d3 a3 b3 c3 d4 a4 b4 c4 d5 a5 b5 c5 d6 a6 b6 c6 d7 a7 b7 c7

0

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

 S0 C0 S1 C1 S2 C2 S3 C3 S4 C4 S5 C5 S6 C6 S7 C7

FA

 d0 a0 b0 c0 d1 a1 b1 c1 d2 a2 b2 c2 d3 a3 b3 c3 d4 a4 b4 c4 d5 a5 b5 c5 d6 a6 b6 c6 d7 a7 b7 c7

0

 S0 C0 S1 C1 S2 C2 S3 C3 S4 C4 S5 C5 S6 C6 S7 C7

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

 a b c d

e

Out1

Out3

(a)

 a b c a b c d e d e

(b)

Z

(c)

LUT1 1

1LUT2

Out2

Out2

Out1

Out3

 a b c a b c d e

Out2

Out1 Out3

FA

FA

 a b c d

e

Out1

Out3

(a)

 a b c a b c d e d e

(b)

Z

(c)

LUT1 1

1LUT2

Out2

Out2

Out1

Out3

 a b c a b c d e

Out2

Out1 Out3

 ELECTRONICS, VOL. 20, NO. 2, DECEMBER 2016 49

V. SYNTHESIS, IMPLEMENTATION AND RESULTS

The implementation in this work targets 6-LUT FPGAs. In

particular we have considered devices from Virtex-5 and

Virtex-6 FPGA families from Xilinx. The implementation is

carried for different filter orders and an operand word-length

of 16 bits. The parameters considered are area, timing and

power dissipation. Area is measured in terms of different

FPGA resources utilized. Timing analysis may be static or

dynamic. Static timing analysis gives information about the

critical path delay and operating frequency of the design.

Static timing analysis is done post synthesis and post PAR.

However, the metrics obtained after synthesis are often not

accurate enough due to the programmability of the FPGA

which allows for interconnect delays to change significantly

between iterations. Therefore, the metrics presented in this

paper are post PAR and have been recorded for a high

optimization level with area and speed as optimization goals.

Dynamic timing analysis verifies the functionality of the

design by applying test vectors and checking for correct output

vectors. Dynamic timing analysis gives information about the

switching activity of the design, which is captured in the value

charge dump (VCD) file. Power dissipation is given by the

sum of static power dissipation and dynamic power

dissipation. Static power dissipation is device specific and is

mainly determined by the specific FPGA family. Dynamic

power dissipation is related to the charging and discharging of

capacitances along different logic nodes and interconnects.

Dynamic power dissipation mainly consists of the logic

power, clock power and signal power [45]. Logic power

depends on the amount of on-chip resources being utilized by

the design. Clock power is proportional to the operating

frequency. Signal power depends on the switching activity and

the density of the interconnects. For simulation and metrics

generation similar test benches have been used and are

typically designed to represent the worst case scenario (in

terms of switching activity) for data entering into the filter.

Design entry is done using VHDL. As mentioned earlier

instantiation based coding strategy is used. The constraints

relating to synthesis and implementation are duly provided

and a complete timing closure is ensured. Synthesis and

implementation is carried out in Xilinx ISE 12.1 [46]. Power

analysis is done using the Xpower analyzer tool.

A. Area Analysis

Table 1 provides a comparison of the different FPGA

resources utilized by the technology optimized FIR filter

against the traditional implementation and the one based on

the Xilinx multiply-adder IP v 2.0. The operand length in each

case is 16 bits and the filter order is 16. Target device is

xc5vlx50-2ff324 from Virtex-5. Both technology optimized

and traditional implementations rely on the optimization

strategies of the Xilinx CAD tool, however, the initial

restructuring ensures that the end performance is better in

technology-dependent optimizations. Note that the multiply-

adder IP v 2.0 is used with an optimum latency value (-1).

TABLE 1

RESOURCE UTILIZATION FOR TECHNOLOGY OPTIMIZED AND IP

BASED TRANSPOSED FIR FILTER.

Filter Design LUTs Flip-flops Slices DSPs

Transposed [this work] 254 (223
A
) 185 (185) 143 (93) 0

Transposed [traditional] 323 (307) 271 (253) 311 (289) 0

Transposed [IP v 2.0] 273 (267) 503 (503) 243 (243) 30

A
 When area optimized

Next we compare our implementation against the various

realizations reported in [47] and [10]. In [47] the authors have

considered the Direct, Transposed and Hybrid realizations of

the FIR filter. Two sets of results have been reported; one for

symmetric coefficients and the other for asymmetric

coefficients. For symmetric coefficients Direct and

Transposed forms have been considered for a filter order of

120. Each form is implemented using the architecture based

on generic multiplier (GM) and shift-add (SA) operation. For

asymmetric coefficients Direct, Transposed and three different

Hybrid forms (Hybrid-I-3, Hybrid-II-15, and Hybrid-III-15)

have been considered for a filter order of 75. Table 2 provides

the comparison for symmetric coefficients and table 3

provides the comparison for asymmetric coefficients. The

devices considered are xc5vlx50-2ff324 and xc6vlx75t-2ff484

from Virtex-5 and Virtex-6 respectively. It is observed that in

each case the structures based on the technology optimized

multiplier and 4:2 compressor units use the underlying fabric

efficiently. It should be noted that the authors in [47] have

used Xilinx ISE 13.1 design suite as the synthesis tool while

our implementation is carried out in Xilinx ISE 12.1 design

suite. Using a higher version will only enhance the

performance of the designs.

In [10] the authors present an algorithm that achieves

performance speed up by enabling an efficient use of the

embedded arithmetic blocks and custom compression trees.

Different filter realizations have been considered that include

filters based on canonic signed digit (CSD) arithmetic utilizing

6:3 compression trees, systolic architectures for transposed

realizations and filters designed using IP multiply-accumulate

(MAC) units, unfolded MAC architecture and one generated

through MATLAB Filter design and analysis (FDA) tool.

Table 4 provides the area comparisons in terms of number of

slices utilized. The target device is xc5vlx50-2ff324 from

Virtex-5. Again the technology optimized structures show an

efficient utilization of the underlying fabric. Apart from that

only general logic elements are utilized and no special

primitives or macro-support is consumed.

50 ELECTRONICS, VOL. 20, NO. 2, DECEMBER 2016

TABLE 2

RESOURCE UTILIZATION FOR DIFFERENT FILTER REALIZATIONS WITH SYMMETRIC COEFFICIENTS.

Filter Design Architecture
XC5VLX50-2FF324 (Virtex-5) XC6VLX75T-2FF484 (Virtex-6)

LUTs FFs Slices DSPs LUTs FFs Slices DSPs

Direct [47]

GM 4357 1904 1542 35 2826 1904 938 59

SA
A

3838 1904 1274 -- 3785 1904 1085 --

SA
D

4013 1904 1377 -- 4021 1904 1146 --

Transposed [47]

GM 4236 3886 1169 48 3777 3886 1018 57

SA
A

5094 3886 1402 -- 5020 3886 1332 --

SA
D

5070 3886 1390 -- 5054 3886 1354 --

Direct [this work]
Tech. optimized

A
2508 1904 1216 -- 2535 1904 1956 --

Tech. optimized
D

4975 1904 1359 -- 5047 1904 2241 --

Transposed [this work]
Tech. optimized

A
1802 1888 1094 -- 1795 1857 914 --

Tech. optimized
D

3952 1888 1286 -- 3839 1857 1221 --

 A
 When area optimized

 D
When delay optimized

TABLE 3

RESOURCE UTILIZATION FOR DIFFERENT FILTER REALIZATIONS WITH ASSYMMETRIC COEFFICIENTS.

Filter Design
XC5VLX50-2FF324 (Virtex-5) XC6VLX75T-2FF484 (Virtex-6)

LUTs FFs Slices LUTs FFs Slices

Direct [47] 3398 1184 1148 3166 1185 891

Hybrid-I-3 [47] 3821 1212 1179 3542 1212 985

Hybrid-I-15 [47] 3941 546 1105 3751 538 1020

Hybrid-I-15 [47] 4121 598 1120 3672 606 988

Transposed[47] 3617 2204 980 3585 2204 955

Direct [this work]
A

1538 1184 1137 1553 1184 1189

Direct [this work]
D

2980 1192 1420 3088 1214 1515

Transposed [this work]
A

1362 1222 960 1390 1222 871

Transposed [this work]
D

2479 1222 1084 2759 1222 918

TABLE 4

RESOURCE UTILIZATION FOR DIFFERENT FILTER REALIZATIONS

Filter Design Filter Order Bit-Slices DSP Blocks

CSD 6:3 compressor [10] 7 444 --

Transposed Systolic [10] 7 114 7

2-Unfolded MAC [10] 7 14 14

FDA HDL pipelined [10] 18 653 18

IP Systolic MAC [10] 18 548 9

Transposed CSD pipelined [10] 18 1071 --

Pipelined DSP48 MAC [10] 18 14 18

Direct form [This work] 7 162 --

Transposed form [This work] 7 132 --

Direct form [This work] 18 320 --

Transposed form [This work] 18 240 --

 ELECTRONICS, VOL. 20, NO. 2, DECEMBER 2016 51

B. Timing Analysis

Table 5 provides a comparison of the critical path delay and

maximum clock frequency for the technology optimized FIR

filter against the traditional implementation and the one based

on the Xilinx multiply-adder IP v 2.0. The realization

considered is transposed. The operand length is 16 bits and the

filter order is 16. Target device is xc5vlx50-2ff324 from

Virtex-5.

Tables 6 and 7 provide a comparison of the critical path
delay for the technology optimized realization and those

reported in [47]. Table 6 is for symmetric coefficients with a

filter order of 120 and table 7 is for asymmetric coefficients

with a filter order of 75. The devices considered are xc5vlx50-

2ff324 and xc6vlx75t-2ff484 from Virtex-5 and Virtex-6

respectively. The input operand length in each case is 16 bits.

Technology optimized structures are implemented with

minimum possible depth; therefore, the critical path delays are

quite low. Since clock frequency is also a strong function of

the propagation and routing delays associated with the critical

path, a minimum depth circuit also ensures high operating

frequencies. This is indicated in table 8 where maximum clock
frequency is compared against the various designs

implemented in [10].
TABLE 5

TIMING ANALYSES FOR TECHNOLOGY OPTIMIZED AND IP BASED

TRANSPOSED FIR FILTER

Filter Design Critical path

(ns)

Max. clock frequency

(MHz)

Transposed [This work] 6.632 581.654

Transposed [Traditional] 10.541 375.38

Transposed [IP v 2.0] 8.751 480.517

TABLE 6

CRITICAL PATH DELAY FOR DIFFERENT FILTER REALIZATIONS

WITH SYMMETRIC COEFFICIENTS

Filter Design Architecture

Critical path delay (ns)

XC5VLX50-

2FF324

XC6VLX75T-

2FF484

Direct [47]

GM 29.7 29.9

SA
A

37.6 31.2

SA
D

27.7 23.7

Transposed [47]

GM 11.5 8.8

SA
A

15.8 11.7

SA
D

10.9 8.4

Direct [this

work]

Tech. optimized
A 30.873 27.547

Tech. optimized
D

21.64 17.287

Transposed [this

work]

Tech. optimized
A 11.741 7.946

Tech. optimized
D

8.088 4.66

C. Power Analysis

Technology-dependent optimization reduces the power
dissipation in two ways. First, the high activity switching

nodes within a network are hid within the LUTs in the final

circuit netlist. This reduces the overall switching activity

associated with the logic nodes [48]. Second, technology-

dependent optimization results in a minimal depth circuit with

a high logic density. This reduces the length of interconnects.

Since interconnects in FPGAs are reconfigurable switches,

there is a further reduction in the switching activity and thus
the power dissipated. The analysis is done for a constant

TABLE 7

CRITICAL PATH DELAY FOR DIFFERENT FILTER REALIZATIONS

WITH ASSYMMETRIC COEFFICIENTS

Filter Design
Critical path delay (ns)

XC5VLX50-2FF324 XC5VLX50-2FF484

Direct [47] 25.5 27.3

Hybrid-I-3 [47] 22.8 26.4

Hybrid-I-15 [47] 22.8 25.2

Hybrid-I-15 [47] 22.2 23.3

Transposed[47] 11.4 12.1

Direct [this work]
A

33.79 31.06

Direct [this work]
D

20.82 22.528

Transposed [this work]
A

11.741 9.916

Transposed [this work]
D

9.028 7.62

TABLE 8

MAXIMUM CLOCK FREQUENCY FOR DIFFERENT FILTER

REALIZATIONS

Filter Design Filter Order Clock frequency (MHz)

CSD 6:3 compressor [10] 7 182.3

Transposed Systolic [10] 7 423

2-Unfolded MAC [10] 7 535

FDA HDL pipelined [10] 18 302.51

IP Systolic MAC [10] 18 500

Transposed CSD pipelined [10] 18 520

Pipelined DSP48 MAC [10] 18 535

Direct form [This work] 7 523.04

Transposed form [This work] 7 605.692

Direct form [This work] 18 468.92

Transposed form [This work] 18 560.51

supply voltage and maximum operating frequency in each

case. Test benches were designed for worst-case switching

activity and the filter functionality was verified for more than

1000 input signals. The design node activity from the

simulator database along with the power constraint file (PCF)

was used for power analysis in the Xpower analyzer tool.

Table 9 gives the detailed power dissipation for the technology

optimized FIR filter against the traditional implementation and

the one based on the Xilinx multiply-adder IP v 2.0. The target

device is Virtex-5 and the filter order and input bit-width is

16.

The power dissipated in clocking resources varies with the

clock frequency. Since technology optimized design operates

at slightly higher frequency, the power dissipated by clocking

resources is more. Power dissipated by on-chip resources

52 ELECTRONICS, VOL. 20, NO. 2, DECEMBER 2016

(logic + DSP) is lesser for technology optimized design

because of the efficient utilization of the underlying resources.

A reduction in switching activity due to hiding of nodes and

reduction of interconnects results in lower power dissipation

in the signals.
TABLE 9

POWER DISSIPATION FOR TECHNOLOGY OPTIMIZED AND IP

BASED FIR FILTERS

FPGA Resource Power Dissipation (mW)

T’posed

[This work]

T’posed

[Traditional]

T’posed

[IP v 2.0]

Clock 27.45 26.43 26.75

Logic 3.41 6.002 2.03

DSP -- -- 3.58

Signals 6.23 7.51 8.11

I/Os 9.12 9.14 11.1

Quiescent 529.91 529.91 529.91

Total 576.12 578.992 581.47

Tables 10 and 11 provide comparison of the power

dissipation by the technology optimized realizations and those

reported in [47]. Table 10 is for symmetric coefficients with a

filter order of 120 and table 11 is for asymmetric coefficients

with a filter order of 75. The devices considered are xc5vlx50-

2ff324 and xc6vlx75t-2ff484 from Virtex-5 and Virtex-6

respectively. The input operand length in each case is 16 bits.

For high throughput DSP systems it is more appropriate to

quantify the power efficiency through energy analysis. In [49]

the authors define three energy related parameters for FIR

systems. These include Energy per operation (EOP), which is

the average amount of energy required to compute one

operation; Energy throughput (ET) which is the energy

dissipated for every output bit processed and Energy density

(ED) which is the energy dissipated per FPGA slice. Tables 12

and 13 provide these metrics for the technology optimized

realizations and those reported in [47]. The devices considered

are xc5vlx50-2ff324 and xc6vlx75t-2ff484 from Virtex-5 and

Virtex-6 respectively. The input operand length in 16 bits.

TABLE 10

POWER DISSIPATION FOR DIFFERENT FILTER REALIZATIONS

WITH SYMMETRIC COEFFICIENTS

Filter Design Architecture

Power Dissipation (mW)

XC5VLX50-

2FF324

XC6VLX75T-

2FF484

Direct [47]

GM 797 1477

SA
A

870 1559

SA
D

812 1498

Transposed [47]

GM 785 1516

SA
A

848 1537

SA
D

804 1503

Direct [this work]
Tech. optimized

A
749.13 1242.97

Tech. optimized
D

737.72 1039.82

Transposed [this

work]

Tech. optimized
A

733.61 1023.97

Tech. optimized
D

722.08 991.29

TABLE 11

POWER DISSIPATION FOR DIFFERENT FILTER REALIZATIONS

WITH ASSYMMETRIC COEFFICIENTS

Filter Design
Power Dissipation (mW)

XC5VLX50-2FF324 XC5VLX50-2FF484

Direct [47] 820 1523

Hybrid-I-3 [47] 762 1493

Hybrid-I-15 [47] 834 1551

Hybrid-I-15 [47] 787 1507

Transposed[47] 760 1487

Direct [this work]
A

745.78 1059.76

Direct [this work]
D

658.54 851.26

Transposed [this work]
A

755.65 1062.76

Transposed [this work]
D

740.25 962.08

TABLE 12

ENERGY ANALYSIS FOR DIFFERENT FILTER REALIZATIONS WITH SYMMETRIC COEFFICIENTS

Filter Design

Architecture EOP (nJ) ET (nJ/bit) ED (nJ/Slice)

XC5VLX50-

2FF324

XC6VLX75T-

2FF484

XC5VLX50-

2FF324

XC6VLX75T-

2FF484

XC5VLX50-

2FF324

XC6VLX75T-

2FF484

Direct [47]

GM 23.671 44.16 0.012329 0.023 0.015351 0.047079

SA
A

32.712 48.64 0.017038 0.025333 0.025677 0.044829

SA
D

22.5 35.5 0.011719 0.01849 0.01634 0.030977

Transposed [47]

GM 9.027 13.34 0.004702 0.006948 0.007722 0.013104

SA
A

13.4 17.98 0.006979 0.009365 0.009558 0.013498

SA
D

8.763 12.625 0.004564 0.006576 0.006304 0.009324

Direct [this work]
Tech. optimized

A
23.127 34.24 0.012045 0.017833 0.019019 0.017505

Tech. optimized
D

15.964 17.975 0.008315 0.009362 0.011747 0.008021

Transposed [this

work]

Tech. optimized
A

8.613 8.136 0.004486 0.004238 0.007873 0.008024

Tech. optimized
D

5.84 4.62 0.003042 0.002406 0.004541 0.003784

 ELECTRONICS, VOL. 20, NO. 2, DECEMBER 2016 53

TABLE 13

ENERGY ANALYSIS FOR DIFFERENT FILTER REALIZATIONS WITH ASSYMMETRIC COEFFICIENTS

Filter Design EOP (nJ) ET (nJ/bit) ED (nJ/Slice)

XC5VLX50-

2FF324

XC6VLX75T-

2FF484

XC5VLX50-

2FF324

XC6VLX75T-

2FF484

XC5VLX50-

2FF324

XC6VLX75T-

2FF484

Direct [47] 20.91 41.5779 0.017425 0.034648 0.018214 0.046664

Hybrid-I-3 [47] 17.3736 39.4152 0.014478 0.032846 0.014736 0.040015

Hybrid-I-15 [47] 19.0152 39.0852 0.015846 0.032571 0.017208 0.038319

Hybrid-I-15 [47] 17.4714 35.1131 0.01456 0.029261 0.015599 0.03554

Transposed 8.664 17.9927 0.00722 0.014994 0.008841 0.018841

Direct [this work]
A

25.19991 32.91615 0.021 0.02743 0.022164 0.027684

Direct [this work]
D

13.7108 19.17719 0.011426 0.015981 0.009655 0.012658

Transposed [this work]
A

8.872087 10.53833 0.007393 0.008782 0.009242 0.012099

Transposed [this work]
D

6.682977 7.33105 0.005569 0.006109 0.006165 0.007986

VI. CONCLUSIONS

This paper focused on the realization of FIR filters using

technology optimized multiplier and 4:2 compressor unit. The

results presented in this paper showed that technology-

dependent optimizations have a direct impact on area, delay

and power dissipation of the design. Different filter forms

(Direct, Transposed and Hybrid) were implemented and it was

shown that for a particular form, the technology optimized

realizations will always have an improved performance.

Another key feature of technology-dependent optimization is

that the same optimization results in the improvement of all

the performance parameters (area, speed and power). This is

generally not the case with technology-independent

optimization where there is always an application driven

trade-off that drives the design process. However,

performance speed-up through technology-dependent

optimization strongly relies on the amount of control the

designer has over the mapping process. In this paper, we

tackled this issue by modifying the coding strategy and writing

instantiation based codes to map the behavior of the optimized

Boolean networks. This complicates the design entry and

although an efficient mapping is achieved, a complete control

over the mapping process still remains a bottleneck in

technology-dependent optimizations.

Conflict of Interests

The authors declare that there is no conflict of interests

regarding the publication of this paper.

REFERENCES

[1] A. Mirshekari and M. Mosleh, “Hardware Implementation of a Fast FIR

Filter with Residue Number System,” 2nd International conference on

Industrial Mechatronics and Automation, pp 312-315, 30-31 May, 2010.

[2] J. G. Proakis and D. G. Manolakis, "Digital Signal Processing:

Principles, Algorithms and Applications," Prentice Hall, 1996.

[3] A. Antonion, "Digital Filters: Analysis, Design and Application,"

McGraw Hill, 1993.

[4] K. K. Parhi, “VLSI Digital Signal Processing Systems Design and

Implementation,” Wiley, 1999.

[5] R. Woods, J. McAllister, G. Lightbody and Y. Yi, “FPGA-based

Implementation of Signal Processing Systems,” Wiley, 2008.

[6] R. Tessier and W. Burleson, “Reconfigurable Computing for DSP: A

Survey,” Journal of VLSI Signal Processing, Vol. 28, pp. 7-27, 2001,

Kluwer Academic Publisher.

[7] T. J. Todman, G. A. Constantinides, S. J. E. Wilton, O. Mencer, W. Luk

and P. Y. K. Cheung, “Reconfigurable Computing: Architecture and

Design Methods,” IEEE Proceedings. Computer Digital Technology,

Vol. 152, No. 2, March 2005.

[8] R. Naseer, M. Balakrishnan, and A. Kumar, “Direct Mapping of RTL

Structures onto LUT-Based FPGAs,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, Vol. 17, No. 7, July

1998.

[9] M. K. Jaiswal and R. C. C Cheung, “Area-efficient architectures for

double precision multiplier on FPGA, with run-time-reconfigurable dual

single precision support,” Microelectronics journal 44 pp. 421 – 430,

2013.

[10] H. M. Kamboh and S. A. Khan, "An Algorithmic Transformation for

FPGA Implementation of High Throughput Filters," Proceedings of the

7th International Conference on Emerging Technologies, 2011.

[11] A. Perwaiz, S. A. Khan and H. M. Kamboh, "Optimization for

Quantization & Embedded Resources on FPGA," Proceedings of

International Conference on Emerging Technologies, 2011.

[12] Xilinx, “Virtex-5 Family Overview,” DS100 (v 5.0) Feb. 6, 2009.

www.xilinx.com.

[13] Xilinx, “Virtex-6 Libraries Guide for HDL Designs,” UG623 (v 12.3)

September 21, 2010. www.xilinx.com.

[14] Xilinx, “Spartan-6 Family Overview,” DS160 (v 2.0) October 25, 2011.

www.xilinx.com.

[15] X. L. Hu, F.Wang, M.Zhang, "Hardware Implementation of FIR Filter,"

Proceedings of International Conference on Multimedia Technology, p.

no. 341-343, July 26-28, 2011.

[16] P. K. Meher, “Low-Latency Hardware-Efficient Memory-Based Design

for Large Order FIR Digital Filters,” 6th International Conference on

Information, Communication and Signal Processing, 10-13 Dec., 2007.

[17] G. Wei and W. F. Ying, “The Implementation of FIR Low-Pass Filter

Based on FPGA and DA,” 4th International Conference on Intelligent

Control and Information Processing, Beijing, China, June 9-11, 2013.

[18] L. Zhao, W. H Bi and F. Liu, “Design of Digital FIR Band pass Filter

Using Distributed Algorithm Based on FPGA,” Electronic Measurement

Technology, 30(7):101-104, 2010.

[19] G. R. Goslin, “A Guide to using FPGAs for application-specific DSP

performance,” in Xilinx application note, 1998.

[20] P. Shi and Y. J. Yu “Design of Linear Phase FIR Filters With High

Probability of Achieving Minimum Number of Adders,” IEEE Circuits

and Systems Society, vol. 58 Issue: 1, 126 – 136, Jan. 2011.

[21] N. Mu and G. Liu, “Study on the FPGA Implementation Algorithm of

Effective FIR Filter Based on Remainder Theorem,” 2nd International

Conference on Consumer Electronics, Communication and Networks,

21-23 April, 2012.

[22] Y. Zhon and P. Shi, “Distributed Arithmetic for FIR Implementation on

54 ELECTRONICS, VOL. 20, NO. 2, DECEMBER 2016

FPGA,” International Conference on Multimedia Technology,

Hangzhou, China, 2011.

[23] J. E. Carletta and M. D. Rayman, “Practical Considerations in the

Synthesis of High Performance Digital Filters for Implementation on

FPGAs,” FPL 2002, LNCS 2438, pp. 886-896, Springer, 2002.

[24] J. Chou, S. Mohanakrishnan and J. B. Evans, “FPGA Implementation of

Digital Filters,” Proceedings 4th International Conference on Signal

Processing Applications and Technology, 1993.

[25] R. Woods, S. Ludwig, J. Heron, D. Trainor and S. Gehring, “FPGA

Synthesis on the XC6200 using IRIS and Trianus/Hades,” Proceedings

5th IEEE Symposium on FPGA based Custom Computing Machines,

pp. 155-164, 1997.

[26] X. Yuan, T. Ying and G. Chunpeng, “Improved Design of Multiplier in

the Digital Filter,” International Conference on Computer and

Communication Technologies in Agriculture Engineering, 2010.

[27] K. Chapman, “Constant Coefficient Multipliers for the XC4000E,”

Xilinx Technical Report 1996.

[28] M. J. Wirthlin and B. McMurtrey, “Efficient Constant Coefficient

Multiplication Using Advanced FPGA Architectures,” International

Conference on Field Programmable Logic and Applications (FPL),

2001.

[29] M. J. Wirthlin, “Constant Coefficient Multiplication Using Look-Up

Tables,” Journal of VLSI Signal Processing, vol. 36, pp. 7-15, 2004.

[30] A. Mirshekari and M. Mosleh, “Hardware Implementation of a Fast FIR

Filter with Residue Number System,” 2nd International Conference on

Industrial Mechatronics and Automation, 2010.

[31] J. E. Carletta and M. D. Rayman, “Practical Considerations in the

Synthesis of High Performance Digital Filters for Implementation on

FPGAs,” FPL 2002, LNCS 2438, pp. 886-896, Springer, 2002.

[32] R. Uma and J. Ponnian, “Systolic FIR Filter Design with Various

Parallel Prefix Adders in FPGA: Performance Analysis,” International

Symposium on Electronic System Design, Kolkatta, 19-22 Dec., 2012.

[33] P. K. Meher, “Low-Latency Hardware-Efficient Memory-Based Design

for Large Order FIR Digital Filters,” 6th International Conference on

Information, Communication and Signal Processing, 10-13 Dec., 2007.

[34] P. K. Meher, S. Chanderasekaram and A. Amira, “FPGA Realization of

FIR Filters by Efficient and Flexible Systolization Using Distributed

Arithmetic,” IEEE Transactions on Signal Processing, vol. 56. no. 7,

July, 2008.

[35] R. Uma and J. Ponnian, “Systolic FIR Filter Design with Various

Parallel Prefix Adders in FPGA: Performance Analysis,” International

Symposium on Electronic System Design, Kolkatta, 19-22 Dec., 2012.

[36] Y. C. Tsao and K. Choi, “Area Efficient Parallel FIR Digital Filter

Structures for Symmetric Convolutions Based on Fast FIR Algorithm,”

IEEE Transactions Very Large Scale Integration (VLSI) Systems, vol.

20, no. 2, pp. 366–371, Feb. 2010.

[37] V. D. Pavlovic, N. Doncov and D. Ciric, “1D and 2D Economical FIR

Filters Generated by Chebyshev Polynomials of the First kind,”

International Journal of Electronic, 2013.

[38] S. Haykin, "Adaptive Filter Theory," Prentice Hall, 1991.

[39] C. Cheng and K. K. Parhi, “Hardware Efficient Fast Parallel FIR Filter

Structures Based on Iterated Short Convolution,” IEEE Transactions

Circuits Systems-I, Reg. Papers, vol. 51, no. 8, pp. 1492–1500, Aug.

2004.

[40] M. Nikolic and M. Lutovac, “Sharpening of the Multistage Modified

Comb Filters,” Serbian Journal of Electrical Engineering, vol. 8, no. 3,

pp. 281- 291, 2011.

[41] Y. C. Tsao and K. Choi, “Area Efficient VLSI Implementation for

Parallel Linear-Phase FIR Digital Filters of Odd Length Based on Fast

FIR Algorithm,” IEEE Transactions on Circuits and Systems-II Express

Briefs, vol. 59, no. 6, June 2012.

[42] Y. C. Tsao and K. Choi, “Hardware-Efficient VLSI Implementation for

3-Parallel Linear-Phase FIR Digital Filters of Odd Length,” IEEE

International Symposium on Circuits and Systems, Seoul, 2012.

[43] A. Ling, D. P. Singh, and S. D. Brown, “FPGA Technology Mapping: A

Study of Optimality,” IEEE Proceedings Design Automation

Conference, pp. 427-432, June 2005.

[44] J. H. Anderson and Q. Wang, “Area-Efficient FPGA Logic Elements:

Architecture and Synthesis,” 16th Asia and South Pacific Design

Automation Conference (ASP-DAC), January 2011.

[45] L. Deng, K. Sobti, Y. Zhang and C. Chakarbarti, “Accurate Area, Time

and Power models for FPGA based Implementations,” Journal of Signal

Processing Systems, Springer, 2011.

[46] http://www.xilinx.com.

[47] L. Aksoy, P. Flores and J. Monteiro, " A Tutorial on Multiplierless

Design of FIR Filters: Algorithms and Architectures,"

[48] B. Khurshid and R. N. Mir, “Power Efficient Implementation of Bit-

Parallel Unrolled CORDIC Structures for FPGA Platforms,”

International Conference on VLSI Systems, Architecture, Technology

and Applications (VLSI-SATA), 2015.

[49] P. K. Meher, S. Chanderasekaran and A. Amira, "FPGA Realization of

FIR Filters by Efficient and Flexible Systolization using Distributed

Arithmetic," IEEE Transactions on Signal Processing, vol. 56, No. 7,

July 2008.

