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 

Abstract - This work presents an FPGA implementation of FIR 

filter based on 4:2 compressor and CSA multiplier unit. The 

hardware realizations presented in this paper are based on the 

technology-dependent optimization of these individual units. The 

aim is to achieve an efficient mapping of these isolated units on 

Xilinx FPGAs. Conventional filter implementations consider only 

technology-independent optimizations and rely on Xilinx CAD 

tools to map the logic onto FPGA fabric. Very often this results in 

inefficient mapping. In this paper, we consider the traditional 

CSA-4:2 compressor based FIR filters and restructure these units 

to achieve improved integration levels. The technology optimized 

Boolean networks are then coded using instantiation based 

coding strategies. The Xilinx tool then uses its own optimization 

strategies to further optimize the networks and generate circuits 

with high logic densities and reduced depths. Experimental 

results indicate a significant improvement in performance over 

traditional realizations. An important property of technology-

dependent optimizations is the simultaneous improvement in all 

the performance parameters. This is in contrast to the 

technology-independent optimizations where there is always an 

application driven trade-off between different performance 

parameters. 
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I. INTRODUCTION 

Finite Impulse Response (FIR) filters are basic components 

in many Digital Signal Processing (DSP) applications like 

multimedia & wireless communication, image processing, 

video & audio processing, speech recognition etc. [1], [2], [3]. 

Owing to their iterative nature, DSP computations differ 

drastically from general purpose computations. The non-
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terminating nature of DSP algorithms can be exploited to 

design efficient systems by exploiting the concurrencies both 

within iteration and among multiple iterations [4]. This has 

provided designers with sufficient impetus to look beyond the 

traditional software oriented solutions and consider some 

hardware platforms where the underlying resources can be 

utilized to develop a complete System on Chip (SoC) solution 

that best matches the algorithmic complexity by developing 

the right type of architecture. 

Application Specific Integrated Circuits (ASIC) have long 

been used to develop custom architectures for realizing FIR 

filters. However, with ASICs the design flow is complicated 

and time consuming resulting in huge non-recurring 

engineering (NRE) costs [5]. This has typically reserved 

ASICs for high volume markets and for some specialized 

domains. FPGAs provide for reduced design time due to a 

simplified design flow and pre-fabricated nature which 

eliminates the requirement for verification of deep sub-micron 

effects. Some other advantages include reconfigurable design 

approach [6], [7], large scale integration [6], [8], availability 

of several intellectual property (IP) cores [9], reduced NRE 

costs [6], [7] etc. The design cycle in FPGAs has a strong 

computer aided design (CAD) support. The software handles 

the time consuming mapping, routing, placement and floor 

planning phases. The effectiveness of technology-independent 

optimizations that are generally well suited for ASICs [10] is 

thus limited in FPGAs. Thus, in order to get maximum 

performance from the target FPGA device, optimizations that 

are specific to the underlying technology have to be 

considered. This requires a complete knowledge about the 

target device. Also, the choice of the target device will have a 

prominent effect on the end performance of the system [11]. In 

this work, we carry out the hardware realization of 4:2 

compressor and carry save adder (CSA) based multiplier units 

that are optimized for FPGAs with 6-input look-up tables 

(LUT). Since all modern FPGAs from Xilinx support 6-input 

LUTs [12], [13], [14], the filter realizations based on these 

individually optimized units should provide an improved 

performance. 

FIR filters in general tend to have high arithmetic 

complexity due to the required number of multipliers, adders 

and delay elements. However, the main computational 

bottleneck is the multiply operation that requires a large 
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computation time [15]. A variety of approaches have been 

used to speed-up the multiplier operation in a filter structure. 

These approaches either completely eliminate the existing 

multiplier unit or reduce its architectural complexity. A widely 

used multiplier-less approach is the one where the multiplier 

unit is replaced by some sort of memory. Two frequently used 

memory-based techniques are the direct ROM based 

implementation and distributed arithmetic (DA) based 

implementation. ROM based implementations replace the 

multipliers with LUTs resulting in faster output compared to 

multiply and accumulate design [16]. DA based techniques 

have high throughput processing capabilities and regularity 

resulting in cost-optimal structures [17], [18], [19]. In DA 

based multipliers the pre-computed partial products are stored 

in the memory elements and are later read out and 

accumulated to obtain the desired results. To minimize the 

logic requirements the authors in [20] present a new kind of 

FPGA implementation algorithm which is based on the 

Remainder theorem. Another approach uses the divided LUT 

method to decrease the computational complexity [21]. The 

problem with memory-based techniques is the increased on-

chip memory requirements as the operand word-length 

increases. Low capacity FPGAs often switch to bit-serial 

arithmetic for realizing multiplier circuits [22]. Special 

purpose bit-serial implementations include power-of-two sum 

or difference approaches. This allows multiplication to be 

replaced with faster shift and addition operations [23], [24], 

[25]. Linear systolic structures have also been used as bit-

serial architectures [4]. In these approaches the conventional 

2-D bit-parallel architectures are transformed into linear 1-D 

bit-serial systolic structures. The drawback with bit-serial 

structure is their reduced speed. 

Apart from the multiplier-less approaches several 

techniques have been used to reduce the complexity of the 

multiplication operation. In [26] the authors present an 

improved multiplier design based on Canonic Signed Digit 

(CSD) representation and Horner’s scheme. Two multiplier 

structures have been proposed: a cascaded adder structure and 

an accumulator structure. Both take advantage of the fixed 

nature of filter coefficients and reduce the number of partial 

products resulting in an area efficient realization. Similarly 

constant coefficient multipliers have been reported in [27], 

[28], [29]. Residue Number System (RNS) is yet another 

approach that has been used for designing efficient high-speed 

multipliers [30]. The limited inter-moduli carry propagation 

and parallel computations make RNS desirable for 

add/multiply intensive applications. Similarly, the authors in 

[31] propose a novel design scheme based on the combination 

of sum of power of two (SPT) coefficients and carry-save 

addition for implementing fast multiplier blocks. 

At system level, one of the frequently used modifications is 

to develop systolic architectures for the filter structures. 

Systolic designs posses a high potential to yield a high 

throughput rate with features like simplicity, regularity and 

modularity of structure [32]. The authors in [33] and [34] take 

a systolic approach for filter design by using multipliers based 

on direct ROM and DA approaches. Similarly, the work in 

[35] uses the systolic structures but focuses on replacing the 

original adder unit by using a parallel prefix adder (PPA) with 

minimal depth algorithm. Poly-phase decomposition has been 

used to design high-speed and low-power parallel filters [36], 

[7], [37], [38], [39], [40]. A modification of poly-phase 

decomposition is the Fast FIR algorithm (FFA). Filters based 

on FFA are area efficient utilizing fewer multiplier units [41], 

[42]. 

All the above mentioned approaches use technology-

independent optimizations to enhance the performance of the 

filtering structures. In this paper, we take an alternate low-

level design approach and propose realizations that are based 

on technology-dependent optimizations. 

The rest of the paper is organized as follows. Section II 

discusses the basic FIR structure. Section III discusses some 

of the preliminary terminologies used in this paper. Section IV 

discusses the technology-dependent optimization of the 4:2 

compressor and CSA multiplier unit. Synthesis and 

implementation is carried out in section V. Conclusions are 

drawn in section VI and references are listed at the end. 

II. BASIC FIR FILTER 

An N-tap FIR filter is defined as: 

        
   
          (1) 

Where, hk is the filter coefficient that determines the frequency 

behavior of the filter and x[n-k] are the time delayed samples 

of input sequence with 0 ≤ k ≤ N-1. A direct mapping of 

equation 1 results in the Direct form realization of the FIR 

filter as shown in figure 1. The critical path of the Direct form 

consists of N-1 adder units and one multiplier unit. 

Alternatively transposition theorem may be applied to obtain 

the Transposed form as shown in figure 2 [4]. The critical path 

in the Transposed form consists of one adder and one 

multiplier unit only. The Transposed and Direct form may be 

combined to have different Hybrid forms. However, in this 

paper we have only considered the realization of Transposed 

and Direct forms of FIR filters. 
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Fig. 1. Direct form realization of FIR filter 

 

 
Fig. 2. Transposed form realization of FIR filter 

III. PRELIMINARY TERMINOLOGIES 

Logic synthesis is concerned with realizing a desired 

functionality with minimum possible cost. In the context of 

digital design the cost of a circuit is a measure of its speed, 

area, power or any combination of these. For graphical 

representations a combinational function may be represented 

as a directed acyclic graph (DAG) called the Boolean network. 

Nodes within this network represent logic gates, primary 

inputs (PI) and primary outputs (PO). Each node implements a 

local function and together with its predecessor nodes 

implements a global function. A cone of a node v, Cv, is a sub-

graph that includes the node v and some of its non-PI 

predecessor nodes. Any node, u within this cone has a path to 

the root node v, which lies entirely in Cv. The level of the node 

v is the length of the longest path from any PI node to v. If 

node v is a PO node then the level will give the depth of the 

network. Thus network depth is the largest level of a node in 

the network. The critical path and area of a mapped Boolean 

network is measured by the depth and number of LUTs 

utilized by the network. A network is said to be k-bounded if 

the fan-in of every node does not exceed k. 

IV. TECHNOLOGY-DEPENDENT OPTIMIZATION 

Technology-dependent optimization transforms the initial 

Boolean network into a circuit netlist that utilizes the target 

logic elements efficiently. The aim is to distribute the logic 

among the targeted elements with minimum possible depth 

and minimum resource utilization. The target element in 

majority of FPGAs is a k-LUT [43], [44]. An efficient 

utilization of this circuit element could lead to increased logic 

densities and reduced circuit depths. 

Technology-dependent optimization using LUTs is a two 

step process. In the first step, the entire network is partitioned 

into suitable sub-networks. The individual nodes within each 

sub-network are then covered with suitable cones. The 

redundancies within each sub-network are exploited during the 

covering phase. The logic implemented by each cone is then 

mapped onto a separate LUT. In the second step, the netlist for 

the entire network is constructed by assembling the 

individually optimized sub-networks. The overall aim is to 

have a circuit implementation that uses minimum possible 

LUTs and has minimum possible depth. 

The FIR structure considered in this paper is based on a 

multiplier unit and a 4:2 compressor unit. The multiplier is 

based on the CSA logic and generates two partial vectors. The 

4:2 compressor then combines these partial vectors with those 

generated from the previous stage and generates two new 

partial vectors. A final adder stage at the output then combines 

these partial vectors and generates the final result. The CSA 

multiplier and 4:2 compressor ensure that there is no rippling 

of carry and the critical path is kept to a minimal. Direct and 

Transposed FIR structures based on these units are shown in 

figure 3 and figure 4 respectively. In each case, the input x[n] 

and the filter coefficients hk are assumed to be in fixed-point 

2’s complement representation. 

A. Technology-Dependent Optimization of the Multiplier unit 

The multiplier unit is an array multiplier based on the carry-

save logic. In carry-save logic the carry outputs are saved and 

used in the adder in the next row. This ensures that the 

additions at different bit-positions within a row are 

independent of each other. The details of a CSA multiplier are 

given in [4]. The schematic for 4-bit operands is shown in 

figure 5. The vector merging adder which is the main 

computational bottleneck in a CSA multiplier need not to be 

included as the partial sum and carry outputs are directly fed 

to the 4:2 compressor unit. 
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Fig. 3. Direct form FIR filter based on CSA multiplier and 4:2 compressor units 

 

 
 

Fig. 4. Transposed form FIR filter based on CSA multiplier and 4:2 compressor units 

 
Fig. 5. Fixed-point 4-bit CSA multiplier 

 

Figure 6 shows the Boolean network for the basic operating 

cell used in the CSA multiplier. The network is partitioned 

into two sub-networks corresponding to the sum (S) and carry 

(C) outputs. Each sub-network is separately mapped onto a 

circuit of LUTs by covering the individual nodes with suitable 

cones. A straight forward approach would be to cover each 

node within a sub-network with a separate cone. The sub-

network is then traversed in a post-order depth-first fashion 

and the local function implemented by each cone is mapped 

onto a separate LUT. This is shown in figure 7(a). The overall 

depth at PO nodes S and C is three and the LUT count is 

seven. The number of LUTs may be reduced by decomposing 

the 3-input OR gate in the carry sub-network and duplicating 

the AND gate in each of the sum and carry sub-networks. The 

decomposed node is included in two separate cones and the 

sub-network is again traversed in a post-order depth-first 

fashion resulting in the realization of figure 7(b). The shaded 

nodes represent the duplicated logic. The circuit depth is now 

two and the LUT count is three. However, an optimal 

implementation may be obtained by exploiting the 

reconvergent PI nodes in the carry sub-network. Reconvergent 

nodes share the same inputs and can be exploited to reduce the 

number of PIs to a sub-network by realizing such paths within 

the LUT. This is shown in figure 7(c). The depth of the circuit 

is now reduced to one and the total LUT count is reduced to 

one as both sum and carry sub-networks are mapped onto a 

single 6-LUT with dual outputs. An n×n multiplier 

implemented using the realization of figure 7(c) will require n2 

LUTs and will have an overall depth of n. 

It was mentioned in the introduction that the design cycle in 

FPGAs has a strong CAD support that handles the majority of 

the technology-dependent steps like mapping and placement 

and route (PAR). Technology-dependent optimizations mainly 

focus on improving the mapping of Boolean networks onto 

target LUTs. However, with modern CAD tools, both 

technology mapping and PAR are automated and the 

optimization process is not transparent to the user [14]. Thus 

any optimization done prior to the design entry may get over-

rid during the mapping and PAR phases. To counter this issue, 

we re-define the coding strategy at the design entry phase. 

Instead of writing conventional behavioral codes, which are 

inferential in nature, we adopt an instantiation based coding 
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strategy, wherein a target element is directly called upon and 

the desired functionality is assigned to it. This ensures a 

controlled mapping. The following instantiations were used to 

map the circuit in figure 7.c. 

LUT_1: LUT6_2 generic map (INIT => 

X"96660000E8880000") port map (C, S, c, s, b, a, ‘1’, ‘1’); 

B. Technology-Dependent Optimization of the 4:2 

Compressor unit 

A 4:2 compressor unit takes four inputs and produces two 

output values, sum (S) and carry (C). A 4:2 compressor can be 

realized using a carry-save stage and a final ripple-carry stage 

as shown in figure 8. The carry save stage can be easily 

pipelined by inserting registers between the subsequent stages. 

The registers are shown as small dots in the schematic of 

figure 8. The critical path for such a realization consists of the 

delay associated with the final ripple carry chain. An n-bit 4:2 

compressor unit will require 2n full adder units and will have a 

critical path of n full adders. Each full adder requires two 

LUTs; one for the sum and the other for the carry. Thus total 

LUT cost for an n-bit 4:2 compressor would be 4n. Assuming 

each LUT has a unit delay, the total critical path for such a 

realization would be n. Further n flip-flops would be required 

for effective pipelining of the structure.  

 

 
Fig. 6. Boolean network for the basic operating cell used in a CSA multiplier 

 
Fig. 7. Technology optimization for the basic cell. a) Direct mapping. b) Using node decomposition and logic duplication. c) Using reconvergent paths. 

 

For technology-dependent optimization, we first consider 

the covering process at a higher level. The adder units are 

covered in an inclined fashion as shown in figure 9. Each 

covered portion implements a two-stage ripple carry chain, 

with the difference that the sum output is being rippled and the 

carry output is retained. The critical path of such a realization 

will consist of the delay associated with each covered portion. 
Pipelining the circuit would require placing registers at the 

output node of each shaded portion. This is shown as small 

dots in figure 9. The entire structure would require 

approximately n flip-flops for pipelining. 

Let us now consider the covering process at a lower level. 

Figure 10(a) and 10(b) shows the block diagram and the 

corresponding parent network for a single shaded portion. For 

technology-dependent optimization we again directly re-

structure the parent network. This is done by duplicating the 

logic at node Z. Node duplication enables the parent network 

to be partitioned into three separate networks corresponding to 

the outputs Out1, Out2 and Out3. Each network is covered with 

a suitable cone and the logic function implemented by each 

cone is mapped onto a separate LUT. The overall realization is 

shown in figure 11. LUT1 is used to realize a single three-

input function. LUT2 is used in the dual mode to realize two 

five-input functions corresponding to the outputs Out1 and 

Out3. The overall depth of the circuit is one. Since the critical 
path of the 4:2 compressor unit is limited by the depth of each 

shaded portion, the overall critical path is one. Also note that 

the LUT cost is two. The 4:2 compressor will thus have the 

same hardware utilization as a binary adder. 

The following instantiations were used to map the circuit in 

figure 18(c). 

LUT1: LUT3_L generic map (INIT => X“E8”) port map 

(Out2, c, b, a); 

LUT2: LUT6_L generic map (INIT => 

X“E88E8EE896696996”) port map (Out1, Out3, e, d, c, b, a, 
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‘1’); 

 
Fig. 8. Top-level schematic for an 8-bit 4:2 compressor unit based on CSA logic 

 

 
Fig.9. Covering of individual adder units. Each shaded portion represents a two-stage RCA chain 

 

 
Fig.10. Block diagram and Boolean network corresponding to a single shaded portion. 

 

 
Fig. 11. Technology optimized realization for each shaded portion 
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V. SYNTHESIS, IMPLEMENTATION AND RESULTS 

The implementation in this work targets 6-LUT FPGAs. In 

particular we have considered devices from Virtex-5 and 

Virtex-6 FPGA families from Xilinx. The implementation is 

carried for different filter orders and an operand word-length 

of 16 bits. The parameters considered are area, timing and 

power dissipation. Area is measured in terms of different 

FPGA resources utilized. Timing analysis may be static or 

dynamic. Static timing analysis gives information about the 

critical path delay and operating frequency of the design. 

Static timing analysis is done post synthesis and post PAR. 

However, the metrics obtained after synthesis are often not 

accurate enough due to the programmability of the FPGA 

which allows for interconnect delays to change significantly 

between iterations. Therefore, the metrics presented in this 

paper are post PAR and have been recorded for a high 

optimization level with area and speed as optimization goals. 

Dynamic timing analysis verifies the functionality of the 

design by applying test vectors and checking for correct output 

vectors. Dynamic timing analysis gives information about the 

switching activity of the design, which is captured in the value 

charge dump (VCD) file. Power dissipation is given by the 

sum of static power dissipation and dynamic power 

dissipation. Static power dissipation is device specific and is 

mainly determined by the specific FPGA family. Dynamic 

power dissipation is related to the charging and discharging of 

capacitances along different logic nodes and interconnects. 

Dynamic power dissipation mainly consists of the logic 

power, clock power and signal power [45]. Logic power 

depends on the amount of on-chip resources being utilized by 

the design. Clock power is proportional to the operating 

frequency. Signal power depends on the switching activity and 

the density of the interconnects. For simulation and metrics 

generation similar test benches have been used and are 

typically designed to represent the worst case scenario (in 

terms of switching activity) for data entering into the filter. 

Design entry is done using VHDL. As mentioned earlier 

instantiation based coding strategy is used. The constraints 

relating to synthesis and implementation are duly provided 

and a complete timing closure is ensured. Synthesis and 

implementation is carried out in Xilinx ISE 12.1 [46]. Power 

analysis is done using the Xpower analyzer tool. 

A. Area Analysis 

Table 1 provides a comparison of the different FPGA 

resources utilized by the technology optimized FIR filter 

against the traditional implementation and the one based on 

the Xilinx multiply-adder IP v 2.0. The operand length in each 

case is 16 bits and the filter order is 16. Target device is 

xc5vlx50-2ff324 from Virtex-5. Both technology optimized 

and traditional implementations rely on the optimization 

strategies of the Xilinx CAD tool, however, the initial 

restructuring ensures that the end performance is better in 

technology-dependent optimizations. Note that the multiply-

adder IP v 2.0 is used with an optimum latency value (-1). 

TABLE 1 

RESOURCE UTILIZATION FOR TECHNOLOGY OPTIMIZED AND IP 

BASED TRANSPOSED FIR FILTER. 

Filter Design LUTs Flip-flops Slices DSPs 

Transposed [this work] 254 (223
A
) 185 (185) 143 (93) 0 

Transposed [traditional] 323 (307) 271 (253) 311 (289) 0 

Transposed [IP v 2.0] 273 (267) 503 (503) 243 (243) 30 

A
 When area optimized 

Next we compare our implementation against the various 

realizations reported in [47] and [10]. In [47] the authors have 

considered the Direct, Transposed and Hybrid realizations of 

the FIR filter. Two sets of results have been reported; one for 

symmetric coefficients and the other for asymmetric 

coefficients. For symmetric coefficients Direct and 

Transposed forms have been considered for a filter order of 

120. Each form is implemented using the architecture based 

on generic multiplier (GM) and shift-add (SA) operation. For 

asymmetric coefficients Direct, Transposed and three different 

Hybrid forms (Hybrid-I-3, Hybrid-II-15, and Hybrid-III-15) 

have been considered for a filter order of 75. Table 2 provides 

the comparison for symmetric coefficients and table 3 

provides the comparison for asymmetric coefficients. The 

devices considered are xc5vlx50-2ff324 and xc6vlx75t-2ff484 

from Virtex-5 and Virtex-6 respectively. It is observed that in 

each case the structures based on the technology optimized 

multiplier and 4:2 compressor units use the underlying fabric 

efficiently. It should be noted that the authors in [47] have 

used Xilinx ISE 13.1 design suite as the synthesis tool while 

our implementation is carried out in Xilinx ISE 12.1 design 

suite. Using a higher version will only enhance the 

performance of the designs. 

In [10] the authors present an algorithm that achieves 

performance speed up by enabling an efficient use of the 

embedded arithmetic blocks and custom compression trees. 

Different filter realizations have been considered that include 

filters based on canonic signed digit (CSD) arithmetic utilizing 

6:3 compression trees, systolic architectures for transposed 

realizations and filters designed using IP multiply-accumulate 

(MAC) units, unfolded MAC architecture and one generated 

through MATLAB Filter design and analysis (FDA) tool. 

Table 4 provides the area comparisons in terms of number of 

slices utilized. The target device is xc5vlx50-2ff324 from 

Virtex-5. Again the technology optimized structures show an 

efficient utilization of the underlying fabric. Apart from that 

only general logic elements are utilized and no special 

primitives or macro-support is consumed. 
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TABLE 2 

RESOURCE UTILIZATION FOR DIFFERENT FILTER REALIZATIONS WITH SYMMETRIC COEFFICIENTS. 

Filter Design Architecture 
XC5VLX50-2FF324 (Virtex-5) XC6VLX75T-2FF484 (Virtex-6) 

LUTs FFs Slices DSPs LUTs FFs Slices DSPs 

Direct [47] 

GM 4357 1904 1542 35 2826 1904 938 59 

SA
A 

3838 1904 1274 -- 3785 1904 1085 -- 

SA
D 

4013 1904 1377 -- 4021 1904 1146 -- 

Transposed [47] 

GM 4236 3886 1169 48 3777 3886 1018 57 

SA
A 

5094 3886 1402 -- 5020 3886 1332 -- 

SA
D 

5070 3886 1390 -- 5054 3886 1354 -- 

Direct [this work] 
Tech. optimized

A 
2508 1904 1216 -- 2535 1904 1956 -- 

Tech. optimized
D 

4975 1904 1359 -- 5047 1904 2241 -- 

Transposed [this work] 
Tech. optimized

A 
1802 1888 1094 -- 1795 1857 914 -- 

Tech. optimized
D 

3952 1888 1286 -- 3839 1857 1221 -- 

 A
 When area optimized 

 D 
When delay optimized 

 

TABLE 3 

RESOURCE UTILIZATION FOR DIFFERENT FILTER REALIZATIONS WITH ASSYMMETRIC COEFFICIENTS. 

Filter Design 
XC5VLX50-2FF324 (Virtex-5) XC6VLX75T-2FF484 (Virtex-6) 

LUTs FFs Slices LUTs FFs Slices 

Direct [47] 3398 1184 1148 3166 1185 891 

Hybrid-I-3 [47] 3821 1212 1179 3542 1212 985 

Hybrid-I-15 [47] 3941 546 1105 3751 538 1020 

Hybrid-I-15 [47] 4121 598 1120 3672 606 988 

Transposed[47] 3617 2204 980 3585 2204 955 

Direct [this work]
A 

1538 1184 1137 1553 1184 1189 

Direct [this work]
D 

2980 1192 1420 3088 1214 1515 

Transposed [this work]
A 

1362 1222 960 1390 1222 871 

Transposed [this work]
D 

2479 1222 1084 2759 1222 918 

 

TABLE 4 

RESOURCE UTILIZATION FOR DIFFERENT FILTER REALIZATIONS 

Filter Design Filter Order Bit-Slices DSP Blocks 

CSD 6:3 compressor [10] 7 444 -- 

Transposed Systolic [10] 7 114 7 

2-Unfolded MAC [10] 7 14 14 

FDA HDL pipelined [10] 18 653 18 

IP Systolic MAC [10] 18 548 9 

Transposed CSD pipelined [10] 18 1071 -- 

Pipelined DSP48 MAC [10] 18 14 18 

Direct form [This work] 7 162 -- 

Transposed form [This work] 7 132 -- 

Direct form [This work] 18 320 -- 

Transposed form [This work] 18 240 -- 
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B. Timing Analysis 

Table 5 provides a comparison of the critical path delay and 

maximum clock frequency for the technology optimized FIR 

filter against the traditional implementation and the one based 

on the Xilinx multiply-adder IP v 2.0. The realization 

considered is transposed. The operand length is 16 bits and the 

filter order is 16. Target device is xc5vlx50-2ff324 from 

Virtex-5. 

Tables 6 and 7 provide a comparison of the critical path 
delay for the technology optimized realization and those 

reported in [47]. Table 6 is for symmetric coefficients with a 

filter order of 120 and table 7 is for asymmetric coefficients 

with a filter order of 75. The devices considered are xc5vlx50-

2ff324 and xc6vlx75t-2ff484 from Virtex-5 and Virtex-6 

respectively. The input operand length in each case is 16 bits. 

Technology optimized structures are implemented with 

minimum possible depth; therefore, the critical path delays are 

quite low. Since clock frequency is also a strong function of 

the propagation and routing delays associated with the critical 

path, a minimum depth circuit also ensures high operating 

frequencies. This is indicated in table 8 where maximum clock 
frequency is compared against the various designs 

implemented in [10]. 
TABLE 5 

TIMING ANALYSES FOR TECHNOLOGY OPTIMIZED AND IP BASED 

TRANSPOSED FIR FILTER 

Filter Design Critical path 

(ns) 

Max. clock frequency 

(MHz) 

Transposed [This work] 6.632 581.654 

Transposed [Traditional] 10.541 375.38 

Transposed [IP v 2.0] 8.751 480.517 

 
TABLE 6 

CRITICAL PATH DELAY FOR DIFFERENT FILTER REALIZATIONS 

WITH SYMMETRIC COEFFICIENTS 

Filter Design Architecture 

Critical path delay (ns) 

XC5VLX50-

2FF324 

XC6VLX75T-

2FF484 

Direct [47] 

GM 29.7 29.9 

SA
A 

37.6 31.2 

SA
D 

27.7 23.7 

Transposed [47] 

GM 11.5 8.8 

SA
A 

15.8 11.7 

SA
D 

10.9 8.4 

Direct [this 

work] 

Tech. optimized
A 30.873 27.547 

Tech. optimized
D 

21.64 17.287 

Transposed [this 

work] 

Tech. optimized
A 11.741 7.946 

Tech. optimized
D 

8.088 4.66 

 

C. Power Analysis 

Technology-dependent optimization reduces the power 
dissipation in two ways. First, the high activity switching 

nodes within a network are hid within the LUTs in the final 

circuit netlist. This reduces the overall switching activity 

associated with the logic nodes [48]. Second, technology-

dependent optimization results in a minimal depth circuit with 

a high logic density. This reduces the length of interconnects. 

Since interconnects in FPGAs are reconfigurable switches, 

there is a further reduction in the switching activity and thus 
the power dissipated. The analysis is done for a constant  

TABLE 7 

CRITICAL PATH DELAY FOR DIFFERENT FILTER REALIZATIONS 

WITH ASSYMMETRIC COEFFICIENTS 

Filter Design 
Critical path delay (ns) 

XC5VLX50-2FF324 XC5VLX50-2FF484 

Direct [47] 25.5 27.3 

Hybrid-I-3 [47] 22.8 26.4 

Hybrid-I-15 [47] 22.8 25.2 

Hybrid-I-15 [47] 22.2 23.3 

Transposed[47] 11.4 12.1 

Direct [this work]
A 

33.79 31.06 

Direct [this work]
D 

20.82 22.528 

Transposed [this work]
A 

11.741 9.916 

Transposed [this work]
D 

9.028 7.62 

 

TABLE 8 

MAXIMUM CLOCK FREQUENCY FOR DIFFERENT FILTER 

REALIZATIONS 

Filter Design Filter Order Clock frequency (MHz) 

CSD 6:3 compressor [10] 7 182.3 

Transposed Systolic [10] 7 423 

2-Unfolded MAC [10] 7 535 

FDA HDL pipelined [10] 18 302.51 

IP Systolic MAC [10] 18 500 

Transposed CSD pipelined [10] 18 520 

Pipelined DSP48 MAC [10] 18 535 

Direct form [This work] 7 523.04 

Transposed form [This work] 7 605.692 

Direct form [This work] 18 468.92 

Transposed form [This work] 18 560.51 

supply voltage and maximum operating frequency in each 

case. Test benches were designed for worst-case switching 

activity and the filter functionality was verified for more than 

1000 input signals. The design node activity from the 

simulator database along with the power constraint file (PCF) 

was used for power analysis in the Xpower analyzer tool. 

Table 9 gives the detailed power dissipation for the technology 

optimized FIR filter against the traditional implementation and 

the one based on the Xilinx multiply-adder IP v 2.0. The target 

device is Virtex-5 and the filter order and input bit-width is 

16. 

The power dissipated in clocking resources varies with the 

clock frequency. Since technology optimized design operates 

at slightly higher frequency, the power dissipated by clocking 

resources is more. Power dissipated by on-chip resources 
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(logic + DSP) is lesser for technology optimized design 

because of the efficient utilization of the underlying resources. 

A reduction in switching activity due to hiding of nodes and 

reduction of interconnects results in lower power dissipation 

in the signals. 
TABLE 9 

POWER DISSIPATION FOR TECHNOLOGY OPTIMIZED AND IP 

BASED FIR FILTERS 

FPGA Resource  Power Dissipation (mW) 

T’posed 

[This work] 

T’posed 

[Traditional] 

T’posed 

[IP v 2.0] 

Clock 27.45 26.43 26.75 

Logic 3.41 6.002 2.03 

DSP -- -- 3.58 

Signals 6.23 7.51 8.11 

I/Os 9.12 9.14 11.1 

Quiescent 529.91 529.91 529.91 

Total 576.12 578.992 581.47 

Tables 10 and 11 provide comparison of the power 

dissipation by the technology optimized realizations and those 

reported in [47]. Table 10 is for symmetric coefficients with a 

filter order of 120 and table 11 is for asymmetric coefficients 

with a filter order of 75. The devices considered are xc5vlx50-

2ff324 and xc6vlx75t-2ff484 from Virtex-5 and Virtex-6 

respectively. The input operand length in each case is 16 bits. 

For high throughput DSP systems it is more appropriate to 

quantify the power efficiency through energy analysis. In [49] 

the authors define three energy related parameters for FIR 

systems. These include Energy per operation (EOP), which is 

the average amount of energy required to compute one 

operation; Energy throughput (ET) which is the energy 

dissipated for every output bit processed and Energy density 

(ED) which is the energy dissipated per FPGA slice. Tables 12 

and 13 provide these metrics for the technology optimized 

realizations and those reported in [47]. The devices considered 

are xc5vlx50-2ff324 and xc6vlx75t-2ff484 from Virtex-5 and 

Virtex-6 respectively. The input operand length in 16 bits. 

 
TABLE 10 

POWER DISSIPATION FOR DIFFERENT FILTER REALIZATIONS 

WITH SYMMETRIC COEFFICIENTS 

Filter Design Architecture 

Power Dissipation (mW) 

XC5VLX50-

2FF324 

XC6VLX75T-

2FF484 

Direct [47] 

GM 797 1477 

SA
A 

870 1559 

SA
D 

812 1498 

Transposed [47] 

GM 785 1516 

SA
A 

848 1537 

SA
D 

804 1503 

Direct [this work] 
Tech. optimized

A 
749.13 1242.97 

Tech. optimized
D 

737.72 1039.82 

Transposed [this 

work] 

Tech. optimized
A 

733.61 1023.97 

Tech. optimized
D 

722.08 991.29 

 

TABLE 11 

POWER DISSIPATION FOR DIFFERENT FILTER REALIZATIONS 

WITH ASSYMMETRIC COEFFICIENTS 

Filter Design 
Power Dissipation (mW) 

XC5VLX50-2FF324 XC5VLX50-2FF484 

Direct [47] 820 1523 

Hybrid-I-3 [47] 762 1493 

Hybrid-I-15 [47] 834 1551 

Hybrid-I-15 [47] 787 1507 

Transposed[47] 760 1487 

Direct [this work]
A 

745.78 1059.76 

Direct [this work]
D 

658.54 851.26 

Transposed [this work]
A 

755.65 1062.76 

Transposed [this work]
D 

740.25 962.08 

TABLE 12 

ENERGY ANALYSIS FOR DIFFERENT FILTER REALIZATIONS WITH SYMMETRIC COEFFICIENTS 

Filter Design 

Architecture EOP (nJ) ET (nJ/bit) ED (nJ/Slice) 

 
XC5VLX50-

2FF324 

XC6VLX75T-

2FF484 

XC5VLX50-

2FF324 

XC6VLX75T-

2FF484 

XC5VLX50-

2FF324 

XC6VLX75T-

2FF484 

Direct [47] 

GM 23.671 44.16 0.012329 0.023 0.015351 0.047079 

SA
A 

32.712 48.64 0.017038 0.025333 0.025677 0.044829 

SA
D 

22.5 35.5 0.011719 0.01849 0.01634 0.030977 

Transposed [47] 

GM 9.027 13.34 0.004702 0.006948 0.007722 0.013104 

SA
A 

13.4 17.98 0.006979 0.009365 0.009558 0.013498 

SA
D 

8.763 12.625 0.004564 0.006576 0.006304 0.009324 

Direct [this work] 
Tech. optimized

A 
23.127 34.24 0.012045 0.017833 0.019019 0.017505 

Tech. optimized
D 

15.964 17.975 0.008315 0.009362 0.011747 0.008021 

Transposed [this 

work] 

Tech. optimized
A 

8.613 8.136 0.004486 0.004238 0.007873 0.008024 

Tech. optimized
D 

5.84 4.62 0.003042 0.002406 0.004541 0.003784 
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TABLE 13 

ENERGY ANALYSIS FOR DIFFERENT FILTER REALIZATIONS WITH ASSYMMETRIC COEFFICIENTS 

Filter Design EOP (nJ) ET (nJ/bit) ED (nJ/Slice) 

 
XC5VLX50-

2FF324 

XC6VLX75T-

2FF484 

XC5VLX50-

2FF324 

XC6VLX75T-

2FF484 

XC5VLX50-

2FF324 

XC6VLX75T-

2FF484 

Direct [47] 20.91 41.5779 0.017425 0.034648 0.018214 0.046664 

Hybrid-I-3 [47] 17.3736 39.4152 0.014478 0.032846 0.014736 0.040015 

Hybrid-I-15 [47] 19.0152 39.0852 0.015846 0.032571 0.017208 0.038319 

Hybrid-I-15 [47] 17.4714 35.1131 0.01456 0.029261 0.015599 0.03554 

Transposed 8.664 17.9927 0.00722 0.014994 0.008841 0.018841 

Direct [this work]
A 

25.19991 32.91615 0.021 0.02743 0.022164 0.027684 

Direct [this work]
D 

13.7108 19.17719 0.011426 0.015981 0.009655 0.012658 

Transposed [this work]
A 

8.872087 10.53833 0.007393 0.008782 0.009242 0.012099 

Transposed [this work]
D 

6.682977 7.33105 0.005569 0.006109 0.006165 0.007986 

 

VI. CONCLUSIONS 

This paper focused on the realization of FIR filters using 

technology optimized multiplier and 4:2 compressor unit. The 

results presented in this paper showed that technology-

dependent optimizations have a direct impact on area, delay 

and power dissipation of the design. Different filter forms 

(Direct, Transposed and Hybrid) were implemented and it was 

shown that for a particular form, the technology optimized 

realizations will always have an improved performance. 

Another key feature of technology-dependent optimization is 

that the same optimization results in the improvement of all 

the performance parameters (area, speed and power). This is 

generally not the case with technology-independent 

optimization where there is always an application driven 

trade-off that drives the design process. However, 

performance speed-up through technology-dependent 

optimization strongly relies on the amount of control the 

designer has over the mapping process. In this paper, we 

tackled this issue by modifying the coding strategy and writing 

instantiation based codes to map the behavior of the optimized 

Boolean networks. This complicates the design entry and 

although an efficient mapping is achieved, a complete control 

over the mapping process still remains a bottleneck in 

technology-dependent optimizations. 
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