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CFOA-Based Fractional Order PIλDδ Controller 
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Abstract— Conventional Current Feedback Operational 

Amplifier (CFOA) is not current controllable or not 
electronically controllable. It is thus of interest to add a current 
mirror into the CFOA in order to make it current controllable. 
This modification can be achieved by using Diamond Transistor 
(DT) instead of going through complicated IC fabrication 
process. This work applies the modified CFOA in fractional-
order proportional integral derivative (PIλDδ) controller. Both 
simulation and experimental results confirm that the modified 
CFOA is electronically controllable. 
 

Index Terms— CFOA, Fractional-order proportional integral 
derivative. 
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I. INTRODUCTION 

EVERAL active elements for analogue signal processing 
have recently been proposed. Some applications of these 

components have been given in the literature, for example, 
differentially buffered transconductance amplifiers (DBTAs) 
[1], current differencing transconductance amplifiers 
(CDTAs) [2], current follower transconductance amplifiers 
(CFTAs) [3], current conveyor transconductance amplifiers 
(CCTAs) [4-8], differential difference current conveyor 
(DDCC) [9-10] and others. Unfortunately, for the most part, 
development of the applications will be done via a simulation 
program with a transistor model of the active components of 
some bipolar or CMOS technology where practical usability is 
questionable. Attributable, experimental verification via their 
on-chip fabrication is expensive and time-consuming [11]. 

Among the mentioned active elements, the current feedback 
operational amplifier (CFOA) is an interesting active 
component, especially suitable for a class of analogue signal 
processing [12-14]. This device can operate in both current 
and voltage modes, provides flexibility and enables a variety 
of circuit designs. In addition, it can offer advantageous 

features, such as high slew rate, freedom from parasitic 
capacitances, wide bandwidth and simple implementation [15-
18]. 
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Nowadays, the CFOA can be found commercially, for 
example, the AD844 from Analog Devices Inc. [13]. 
However, the CFOA cannot be controlled by the electronic 
controllability of the hysteresis of the output signal. The 
electronic control method has become more popular more than 
those by passive elements (i.e., resistors and capacitors) due to 
how it can easily be adapted to automatic or microcontroller-
based controls. Diamond transistors (DT) are readily available 
commercially (commercially marked OPA 860) [19] and 
belong to the group of well-known commercial products 
commonly used for wide-bandwidth systems, including high 
performance video, RF and IF circuitry. It includes a 
wideband, bipolar operational transconductance amplifier 
(OTA) and voltage buffer amplifier. The transconductance of 
the OPA860 can be adjusted with an electronic control, 
allowing bandwidth, quiescent current, and gain trade-offs to 
be optimized. Used as a basic building block, the OPA860 
simplifies the design of AGC amplifiers, LED driver circuits 
for fibre optic transmission, integrators for fast pulses, and 
fast control loop amplifiers and control amplifiers for 
capacitive sensors and active filters. Concrete experiments 
have led to the observation that the OPA860 is a useful 
element for analogue signal processing in the frequency range 
of units and tens of wide bandwidth. 

Proportional integral derivative (PID) control has been 
adopted in many engineering applications [20-22]. Recently, 
several literature reviews have studied mechanical systems 
described by fractional-order state equations [23-25], i.e., 
equations involving so-called fractional derivatives and 
integrals [26-28]. A fractional-order PIλDδ controller, first 
proposed by Podlubny, is a generalization of a PID controller, 
involving an integrator of order and a differentiation of order 
[29]. Expanding derivatives and integrals to fractional orders 
can adjust a control system’s frequency response directly and 
continuously. This great flexibility makes it possible to design 
more robust control systems [30]. Several methods have been 
reported for fractional-order PIλDδ design. At the present time, 
there are numerous methods for the approximation of 
fractional derivatives and integrals, and fractional calculus can 
be easily used in a wide variety of applications (e.g. control 
theory, new fractional controllers, system models, electrical 
circuits theory, fractances, capacitor theory, etc.) [31-49]. 

Existing evidence has confirmed that the best fractional-

S



26 ELECTRONICS, VOL. 21, NO. 1, JUNE 2017  

order controller can outperform the best integer-order 
controller. It has also been answered in the literature why 
fractional-order control should be considered even when 
integer (high)-order control works comparatively well [50-
51]. Fractional-order PIλDδ controller tuning has reached a 
matured state of practical use. Because (integer-order) PID 
control dominates the industry, we believe that fractional-
order PIλDδ will gain increasing impact and wide acceptance. 
Furthermore, we also believe that, based on some real world 
examples, fractional-order control is ubiquitous when the 
dynamic system is of a distributed parameter nature [52]. 

In this paper, the conception of this active element for 
experimental purposes is built from commercially available 
devices. There is the diamond transistor and a wideband 
voltage buffer designed (OPA860) for positive and negative 
W terminals. Note that the manufactured CFOA [53] does not 
provide this feature. It is necessary to have two positive 
current outputs for the proposed fractional-order PIλDδ. The 
CFOA is applied for fractional-order PIλDδ design. To match 
the criteria of industrial applications, the best fractional-order 
controller can outperform the best integer-order controller. 
Similarly, a circuit exhibiting fractional-order behaviour is 
called a fractance. The design of fractances can be performed 
easily using any of the rational approximations or a truncated 
continued fraction expansion (CFE), which also gives a 
rational approximation. Generally speaking, there are three 
basic fractance devices. The most popular is a domino ladder 
circuit network. Very often used is a tree structure of electrical 
elements [54]. Therefore, fractional-order PIλDδ causes the 
result 0 < λ, δ ≤ 1, and the fractional order is approximated 
using a fractance circuit. 

II. CFOA ELEMENT BASED ON OPA860 

In Fig. 1, the schematic symbol of the CFOA, which was 
given in the paper [53], has been shown with an additional 
output terminal of W-, which is the negative of the W terminal. 
The proposed behavioural model of the CFOA is given in Fig. 
1, where Y and X are input terminals and Z, W, and W- are 
output terminals. Its definition is shown in the matrix as 
follows (1): 
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Fig. 1. CFOA elements’ circuit symbol. (a) schematic symbol (b) equivalent 
circuit. 
 

From the advantage already mentioned in the introduction, 
CFOA can constructed from commercially available devices, 
as is shown in Fig. 2. It consists of the diamond transistors 
(OPA 860), where gm represents the amplifier gain of the 
CFOA for a negative W terminal (W-) implemented with 
diamond transistors. In this paper, the idea to develop the 
features of the CFOA increased by the using the Buffer of 
OAP860, which can be useful in the work for the propose FO-
PID voltage mode. 
 

 
 

Fig. 2. The CFOA using commercially available devices numbers OPA 860. 
 

The principle negative W terminal of CFOA. Fig. 3 through 
Fig. 8 show the main features obtained by simulations of the 
CFOA element shown in Fig. 2. The result presented in Fig. 3 
is that the voltage transfer between the Y and X ports of the 
proposed CFOA is approximately 185 MHz, and current 
transfers between the X and Z ports being approximately 81 
MHz is shown in Fig. 4. The simulations results lead to the 
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observation that the CFOA is a useful element for the 
frequency range of units and tens of megahertz (MHz). Later, 
Fig. 5 through Fig. 8 show the DC transfer characteristic 
between the Z and W+ ports. It also shows the DC transfer 
characteristic between the Z and W- ports. This 
transconductance gain can be controlled by the bias current IQ1 

and adjust the gain adjustable resistor (RL) from 100 Ω to 500 
Ω, and IQ2 = 11.2 mV. The results presented show high 
linearity input voltage (Z) from -4 to 4 volts. 
 

 
 

Fig. 3. Voltage transfer between the Y and X ports of CFOA. 
 

 
 

Fig. 4. Current transfers between the X and Z ports of CFOA. 
 

 
 

Fig. 5. DC transfer characteristic between the Z and W ports. 
 

 
 

Fig. 6. DC transfer characteristic of the Z port while adjusting the 
transconductance gain of IQ1. 

 
 

Fig. 7. DC transfer characteristic between the Z and W- ports while adjusting 
the transconductance gain of IQ2. 
 

 
 

Fig. 8. DC transfer characteristic between the Z and W- ports while adjusting 
the gain adjustable RL. 
 

Results suitable for applications in practice bases for 
proportional integral derivative (PID) were introduced in 
some recent works, replacing offers by simulation programs 
with transistor models of active components of some bipolar 
or CMOS technology. The above designs of topologies of 
CFOA for analogue signal processing useful wide band up the 
prototyping most applications of special active elements, 
which are not currently available on the chip. 

III. CFOA FRACTIONAL-ORDER PID 

The design realisation and performance of the fractional-
order PIλDδ controller have been presented. The fractional-
order PIλDδ is constructed using two circuits exhibiting 
fractional order behaviour, called a fractance [54] of orders λ 
and δ (0 < λ, δ ≤ 1). The most popular is a domino ladder 
circuit network [55-56]. However, from the results of study in 
earlier research, resisters and capacitors are untraceable on the 
market [57-62]. Therefore, this research will focus the design 
in accordance with market aplikasi that actually works. In this 
section, a comparison of integer-order PID and fractional-
order PIλDδ is made using PSPICE and by practical 
experimentation.  

A. Analogue Realization: Fractance Circuits (domino 
ladder circuit network) 

The design of fractances can be performed easily using the 
rational approximations, which also give a rational 
approximation. The relationship between the finite domino 
ladder network, shown in Fig. 9, and the continued fraction 
(4) provides an easy method for designing a circuit with a 
given impedance Z(s).  
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Fig. 9. Finite domino ladder network. 
 

Let us consider the circuit depicted in Fig. 9, where Z2k−1(s) 

and Y2k(s), k = 1, …, n, are given impedances of the circuit 
elements. The resulting impedance Z(s) of the entire circuit can 
be found easily if we consider it in the right-to-left direction 
[31,37]: 
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The rational approximation of the fractional 
integrator/differentiator can be formally expressed as: 
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where p and q are the orders of the rational approximation 
and P and Q are polynomials of degree p and q, 
respectively. 

The rational approximation of the fractional 
integrator/differentiator can be formally expressed as: 
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If we consider that Z2k−1  Rk−1 and Y2k  Ck−1 for k = 1, 

…, n in Fig. 9, then the values of the resistors and 
capacitors of the network are chosen as R1=51Ω, R2=535Ω, 
R3=5.6kΩ, R4=13kΩ, R5=820kΩ, C1=470pF, C2=820pF, 
C3=3.9nF and C4=820pF. 

≡ ≡

Therefore, the direct calculation of circuit elements was 
proposed. The impedance of the domino ladder circuit 
network (or transmission line) can written as: 

( ) ( )9 0.2

1
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where 0.8×10-9 is independent of the angular frequency and α 
= 0.2. 
 To demonstrate the performance of the proposed domino 
ladder circuit network, the measured prototype used is shown 
in Fig. 10. 
 

 
 

Fig. 10. The measured prototype domino ladder circuit network. 

 

 
 

Fig. 11. Magnitude of the input impedance of the domino ladder circuit 
network compared to that of a conventional capacitor. 

 

 
 

Fig. 12. Phase experiment of the frequency variations of the domino ladder 
circuit network compared to simulation. 
 

From the simulation and experimental results in Fig. 11 and 
Fig. 12, the Magnitude and Phase of the domino ladder circuit 
network are compared to those of a conventional capacitor. 
The results confirm that the domino ladder circuit network 
characteristics presented work correctly from a theoretical 
perspective. 

 

B. Synthesis of proposed fractional-order PIλDδ employing 
CFOA 

A fractional-order PIλDδ controller is composed of 
proportional fractional-order integral and fractional-order 
derivative terms. The proposed fractional-order PIλDδ 
controller employs three CFOA, a grounded domino ladder 
circuit network (Z(S)) and resistors as shown in Fig. 13. The 
transfer function of fractional-order PIλDδ can be written as: 
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Here, the proportional constant, 
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The transfer function of the fractional-order PIλDδ controller is 
given by 

2
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where gm(odd number) is shown in (2) and gm(even number) is shown in 
(3), respectively. 
 

 
 

Fig. 13. Analogue fractional order PIλDδ controller. 

From (13), the controller’s parameters can be assigned to 
the required values by adjusting the corresponding resister. 
Additionally, it can be seen that the fractional-order PIλDδ 
parameters (Kp, Ki and Kd) can be independently electronically 
controlled by the current transfers IQ1-IQ6, respectively. 

IV. SIMULATION AND EXPERIMENTAL RESULTS 

In this section, a comparison of integer-order PID and 
fractional-order PIλDδ is made using the PSPICE simulation 
program and by practical experimentation. To prove the 
performances of the proposed controllers, the Diamond 
transistors (DT) employed in CFOA of the proposed circuit 
were simulated and experimented with by using the 
commercially available OPA 860. Fig. 2 depicts a schematic 
description of the internal construction of the CFOA. 

Fig. 13 depicts an analogue implementation of a fractional-
order PIλDδ controller. A fractional-order integrator is 
approximated by the domino ladder circuit network 
impedance Z1(S), and fractional-order differentiator is 
approximated by the impedance Z2(S), where orders of both 
approximations are α = 0.2. In this case, if we use identical 
resistors (R-series) and identical capacitors (C-shunt) in the 
domino ladder circuit network, then the behaviour of the 
circuit will be that of a fractional-order 
integrator/differentiator. Realization and measurements of 
such types of controllers were done in this paper. 

The transfer function of the fractional-order PIλDδ controller 
can be evaluated and rewritten as a fractional order: 
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Fig. 14. Fractional-order PIλDδ-controlled System. 
 

To validate the practical application of the proposed 
controller, a passive low-pass filter was used to realize a 
closed-loop control system, as depicted in Fig. 14. For the 
low-pass filter, the circuit shown in Fig. 15 with an addition 
output terminal is chosen. The transfer function of the 2nd-
order Sallen-Key Low-pass filter can be written as: 
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This Sallen-Key low-pass filter has the following transfer 
function with the values of R1=30 kΩ, R2=18 kΩ, C1=10 nF 
and C2=4.7 nF. Therefore, direct calculation of circuit 
elements was proposed. The Sallen-Key low-pass filter can 
written as: 

2

39401103.23
.

8888.89 39401103.23
out

LP
in

V
H

V s s
= =

+ +                           (17) 

 
From (15), the R and C values for the Sallen-Key low-pass 
filter can be calculate at a given cut-off frequency (fc), quality 
factor (Q) and Damping ratio (ζ) as follows: fc = 1 kHz, Q = 
0.7, and ζ = 0.7. 
 

 
 
Fig. 15. Sallen-Key Active Filter. 
 

A. Comparison in Simulation 

To demonstrate the performance of the proposed fractional-
order PIλDδ controller, the PSPICE simulation program was 
used for the examinations. The CFOAs of the proposed 
fractional-order PIλDδ controller were simulated by using the 
domino ladder circuit network from (7) to achieve the 
behaviour of the circuit as a fractional-order 
integrator/differentiator. For the proposed fractional-order 
PIλDδ controller, PSPICE simulations are performed with 
R1=R5=R6=R7=R8=100 Ω, R2=200 Ω, R3=200 kΩ, R4=100 
kΩ, Z1(S)=Z2(S)=1/[(0.8×10-9)s0.2], and IQ1= IQ1= IQ1= IQ1= IQ1= 
IQ1= IQ1=11.2 mA for the circuits depicted in Fig. 13. 
Therefore, the fractional-order PIλDδ controller has the 
parameters that are calculated as Kp=1.06×103, 
Ki=662.50×106, and Kd=42.24×10-3. These proposed circuits 
were biased with the symmetrical ±5 V supply voltages. 
 

 
 

Fig. 16. Step response for PID and open-loop systems. 
 

In Fig. 16, the fractional-order PIλDδ controller is compared 
with integer-order PID. From Fig. 16, we can see that the 
overshoot of the unit step response with an open loop using 
the designed fractional-order PIλDδ c ntroller is much shorter 
than that using the designed integer-order PID controller. 

A closed-loop control system depicted in Fig. 14 can be 
constructed with the fractional-order PIλDδ controller in Fig. 
13 and the Sallen-Key low-pass filter with the transfer 
function given in (16). The simulated response for this 
fractional-order PIλDδ controller with unit step is given in Fig. 
17. It is observed that the proposed fractional-order PIλDδ 
controller system enters steady-state and follows the unit step 
input with a steady-state error compared with integer-order 
PID. 
 

 
 

Fig. 17. Closed-loop response of the system. 
 

 
 

Fig. 18. Real-time closed-loop response of system. 

 
For controlled system performance comparison, we have 

summarized some performance characteristics in Table 1 for 
the controlled system with both controllers. In any controlled 
system, the final step in the design process is the real-time 
controlled experiment. As can be observed from Fig. 18, the 
performances of the controllers are confirmation of the 
simulation results based on the identified model. 

 
TABLE I 

SIMULATION RESULTS OF THE PSPICE-BASED CONTROL SALLEN-KEY ACTIVE 

LOW-PASS FILTER 
 

Parameters 
Fractional order PIλDδ 

controlled 
Integer order PID 

controlled 

Max. overshot 2.24% 2.36% 
Rise time 234.37 µs 324.72 µs 
Settling time 269.06 µs 445.43 µs 

Steady-state error 553.66 µs 654.49 µs 

 
From Fig. 16 to Fig. 18, we can see that the overshoot, rise 

time, settling time and steady-state error of the unit step 
response using the designed fractional-order PIλDδ controller 
is much shorter than that using the designed integer-order PID 
controller. Thus, following our proposed design algorithms, 
the fractional-order PIλDδ controller outperforms the integer-
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order PID for the fractional-order systems considered.  

B. Experimental Verification in real-time 

A closed-loop control system prototype is shown in Fig. 19. 
The passive and active elements are the same as appeared in 
the simulation program. The responses of fractional-order 
PIλDδ and integer-order PID controllers are compared via the 
experimental setup of the control system. Fig. 20 and Fig. 21 
show responses of fractional-order PIλDδ and integer-order 
PID controllers per unit step. Fig. 22 and Fig. 23 show the 
real-time closed-loop response of the system for both the 
controllers. 

 

 
 

Fig. 19. The measured fractional order PIλDδ prototype. 
 

TABLE II 
EXPERIMENTAL RESULTS OF THE CIRCUIT PROTOTYPE-BASED CONTROL 

SALLEN-KEY ACTIVE LOW-PASS FILTER 
 

Parameters 
Fractional order PIλDδ 

controlled 
Integer order PID 

controlled 

Max. overshot 8.11% 12.17% 
Rise time 172.50 µs 202.90 µs 
Settling time 490 µs 950 µs 

Steady-state error 750 µs 1.25 ms 

 
 

 
 

Fig. 20. Real-time closed-loop response of the Integer-order system. 
 

 
 

Fig. 21. Real-time closed-loop response of the Fractional-order system. 
 

 
 

Fig. 22. Real-time closed-loop response of the Integer-order system. 
 

 
 

Fig. 23. Real-time closed-loop response of the Fractional-order system. 
 

For control system performance enhancement comparison, 
we have summarized some performance characteristics in 
Table 2 for the feedback control system with both controllers. 
As seen, the experimental results confirm the theoretical 
results very well. 
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V. CONCLUSION 

The modified version of the building block, the so-called 
current feedback operational amplifier (CFOA), has been 
introduced in this paper. This modification can be achieved by 
using Diamond Transistor (DT) instead of going through 
complicated IC fabrication process.  Modification of the 
CFOA has been applied as a fractional-order proportional 
integral derivative (PIλDδ) controller. In this CFOA 
application, two fractional-order proportional integral 
controllers have been designed to improve the performance of 
fractional-order systems, which can model many real systems 
in control engineering. Comparisons have been made between 
the fractional-order proportional integral controllers and the 
traditional integer-order PID controller. From the simulation 
and experimental results, we can see that the overshoot, rise 
time, settling time and steady-state error of the unit step 
response using the designed fractional-order PIλDδ controller 
is much shorter than that using the designed integer-order PID 
controller.  
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