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Abstract—The paper presents an algorithm for automatic
generation of piecewise linear Bode plots. The algorithm is
complete in the sense it covers for all posible locations of poles
and zeros of transfer functions, including unstable poles and poles
and zeroes at the imaginary axis. The starting transfer function is
factored into a canonical form, and thirteen elementary transfer
function types are defined by their canonical forms. The thirteen
elementary transfer function types are shown to be derived from
just five generic transfer function types, and piecewise linear
Bode plots are defined and depicted for all five of the generic
types. For all thirteen elementary transfer function types the
nodes they introduce in the piecewise linear plots are specified,
as well as the algorithms how they affect the node altitudes.
Finally, a three stage algorithm that produces both the Bode plots
and the exact numerically computed frequency response plots
is described. The algorithm is implemented in a command line
based program, illustrated in a filter example, and future work
directions are indicated, aiming a graphical user interface and
integration of the program to a linear system symbolic analysis
software suite.

I. INTRODUCTION

Electric circuit design was the first discipline where com-
puter aided analysis became widely spread. Pioneering work
of [1], expanded and updated in [2], is still a foundation stone
upon which the analysis tools were built. In its basis, the
approach of [1], [2] is numerical, which results in reduced
efforts to build circuit and the cost of playing with their
parameters. Frequency response plots, which are focused in
this paper, are covered in [1], [2] within the AC analysis, and
frequency response of linear or linearized circuits is readily
obtained as the program output. In the control systems area,
which applies Bode plots [3] in the frequency response method
to design control loops [4], [5], computer aided design tools
provide amplitude and phase plots through various packages,
like the control package for GNU Octave [6]. Both of the
approaches result in smooth numerically computed curves,
corresponding to exact frequency response equations. The
results are accurate, but they lack clear information needed
for the design: which parameters to tune to obtain desired
response?

The design oriented analysis is pioneered by R. D. Middle-
brook [7], [8], where presentation of mathematically obtained
data in a convenient and intuitive manner is focused in order to
facilitate effective and creative system synthesis. The approach
is expanded and documented in [9], [10], and [11]. Aim
of this paper is to follow this path, and to formalize and
completely cover the Bode plots in an algorithmic manner.

Under the term “Bode plots” so called “asymptotic” plots are
assumed. Although the authors agree that the terminological
issues are less relevant, we must state that “asymptotic plot”
is the term accurate only for some of the “elementary transfer
functions”, that are going to be defined formally somewhat
later. In some of the cases, the linear plot is exact, and there are
no asymptotes there. On the other hand, in some other cases
asymptotes constitute only a part of the corresponding Bode
plot for the elementary transfer function. However, in all of the
cases, the resulting Bode plot is piecewise linear. Thus, under
“Bode plot” we will assume piecewise linear approximation
of the amplitude and phase response of a considered transfer
function or an impedance. The term “transfer function” will
be used both for actual transfer functions of linear systems or
for the network impedances [9], [10] and admittances.

Classical circuit theory textbooks [12], [13] address Bode
plots, but primarily in examples and in a rather intuitive fash-
ion, focusing to cases frequently encountered in practice. Some
other textbook examples, not to be cited here, provide either
incomplete, either incomplete and overly simplified coverage
of the topic. Some of the approaches are so rough to prevent
estimating the phase margin, which is essential in the control
loop design. Aim of this paper is to provide complete algorith-
mic approach to creating piecewise linear approximations of
the amplitude and phase frequency response, understood under
the term “Bode plots”. The approach is algorithmic enough
and complete only when it can be programmed and when
all possible situations are covered, including unstable transfer
functions, which do exist in control systems and need to be
stabilized, and resonant cases with poles on the imaginary
axis, resulting in infinite values in the logarithmic amplitude
response plot. To program the proposed algorithm, Python
programming language [14] will be used, accompanied by
PyLab modules NumPy [15], SciPy [16], and matplotlib [17].
The choice is made due to high level programming capabilities
of Python and its modules, with advanced data types and
powerful list processing methods, additionally requiring all of
the used software tools to be free software.

To summarize, aim of the paper is to provide an algorithm
to generate piecewise linear frequency response Bode plots
for amplitude and phase of linear systems with lumped pa-
rameters. The algorithm is required to be complete, to cover
all possible locations of poles and zeros. Motivation to design
such algorithm is in the design oriented analysis, to provide
simplified and clear information how specific discrete values
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of design variables affect the frequency response, in order
to facilitate efficient frequency response shaping during the
design process.

II. PROBLEM STATEMENT

Let us consider a transfer function H(s) of a linear lumped
parameter system. Its frequency response is a complex func-
tion H(jω) for ω ≥ 0, representing values of H(s) at
the upper ray of the imaginary axis. As the system being
considered is a lumped parameter one, H(s) is a rational
function of complex frequency s, and it can be factored and
written in a canonical form

H(s) = K

kz∏
i=1

(Hz,i(s))
lz,i

kp∏
i=1

(Hp,i(s))
lp,i (1)

where K ∈ R and kz, kp, lz,i, lp,i ∈ N. The factorization
into a canonical form is algorithmic, though the choice of the
canonical form is somewhat arbitrary, and the choice criterion
applied in this paper is that the canonical form should be
intuitive. All aspects of the canonical form are going to be
formally specified somewhat later, and at this point it is suffi-
cient to note that the factorization is performed into a constant
K, zero producing elementary transfer functions Hz,i(s), and
pole producing elementary transfer functions Hp,i(s). Each of
the zero producing and pole producing elementary functions
produces either one zero or pole, either a pair of complex
conjugate zeros or poles.

Aim of the algorithm is to generate piecewise linear approx-
imations of the amplitude response

a(ω) = 20 log |H(jω)| (2)

and the phase response

ϕ(ω) = arg (H(jω)) (3)

For phase response plots of the elementary transfer functions
we generally assume ϕ ∈ [−180◦, 180◦), with some excep-
tions introduced by mirroring of elementary transfer functions
containing pole or zero pairs. For the entire transfer function
phase response plot, the curve has not been reduced to this
range for the sake of its readability, though the reduction could
be easily performed in a straightforward manner.

Substituting (1) into (2) in order to get the logarithmic am-
plitude response, the products of elementary transfer functions
transform to sums of their logarithmic equivalents

a(ω) = 20 log |K|+∑kz

i=1 lz,i 20 log |Hz,i(s)|+∑kp

i=1 lp,i 20 log |Hp,i(s)|
(4)

and substituting (1) into (3) transforms the products to sums
of phase responses of elementary transfer functions

ϕ(ω) = arg (K)+∑kz

i=1 lz,i arg (Hz,i(s))+∑kp

i=1 lp,i arg (Hp,i(s)) .

(5)

Thus, the task of creating amplitude and phase plot of the fre-
quency response is reduced to summing frequency responses
of elementary transfer functions.

The choice of elementary transfer functions is somewhat
arbitrary. Some textbooks do not provide complete coverage
of the complex plane by allowed places of poles and zeros,
focusing to frequently encountered responses only, like re-
stricting the attention to stable poles, or even to real axis only.
In this paper, to provide complete coverage and an intuitive
set of elementary transfer functions for the canonical form, the
following list of elementary transfer functions is proposed:

1) constant, Ha(s)
2) pole at the origin, Hb(s)
3) zero at the origin, Hc(s)
4) stable real pole, Hd(s)
5) left half plane real zero, He(s)
6) unstable real pole, Hf (s)
7) right half plane real zero, Hg(s)
8) stable pair of poles, Hh(s)
9) left half plane pair of zeros, Hi(s)

10) unstable pair of poles, Hj(s)
11) right half plane pair of zeros, Hk(s)
12) pair of poles at the imaginary axis, Hl(s)
13) pair of zeros at the imaginary axis, Hm(s).

The set of elementary transfer functions is not minimal. Allow-
ing negative exponents lz,i and lp,i would reduce the set from
thirteen elementary transfer functions to seven. Furthermore,
allowing ± sign in some of the elementary transfer functions
would further reduce the set to only five transfer functions,
which is the minimal set if we exclude infinite Q-factors
as an option (otherwise the set would be reduced to only
four transfer functions, but numerical computation problems
with infinite Q-factor values would emerge). The choice is
made following the logic of the design oriented analysis, to
provide an intuitive set, and to provide information how each
elementary transfer function affects the frequency response.

III. FREQUENCY RESPONSES OF ELEMENTARY TRANSFER
FUNCTIONS

In this section, thirteen elementary transfer functions will
be defined by specifying their canonical forms and their fre-
quency responses in terms of piecewise linear approximation,
which sometimes really is asymptotic, but sometimes not only
asymptotic. For the five “really elementary” transfer functions,
the plots will be provided, while for the others appropriate
sign changing relations, i.e. mirroring, will be indicated, being
sufficient to provide complete description of the plots. Critical
points of the elementary transfer functions, named nodes, in
which line segments of the the piecewise linear curves change
their directions, will be defined, as well as the effects they
cause to other nodes, both in the amplitude and in the phase
response.

A. Constant
The first elementary transfer function is a constant,

Ha(a) = K (6)
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Fig. 1. Ha(s), amplitude response.

where K ∈ R. For linear lumped parameter systems the
constant is necessarily real, and it could be either positive or
negative. For the constant equal to zero there is not much to
plot, thus this case is excluded from the analysis. Also, in the
case K = 1 it would be assumed that this elementary transfer
function is not present in the product of elementary transfer
functions (1), since it would not produce any change in the
frequency response plots.

Amplitude response of the constant is

aa(ω) = 20 log |K| (7)

and it only shifts all of the amplitude response nodes in
the vertical direction (modifies so called “altitudes”), not
introducing any nodes of its own. The response is depicted
in Fig. 1.

The phase response of the constant depends on its sign, and
it is

ϕa(ω) =

{
0, for K > 0
−π, for K < 0.

(8)

Again, new nodes are not introduced, and the phase response
is either not affected, for K > 0, either is shifted down for
180◦ for K < 0 for all of the phase response nodes. The phase
response for both of the cases is depicted in Fig. 2.

It is worth to mention that in this case the plot is exact,
there are no approximations being introduced, there are no
asymptotes.

B. Pole at the origin

A frequent case encountered in practice is to have a pole
at the origin. The elementary transfer function is specified by
its canonical form

Hb(s) =
ωp

s
(9)

where ωp > 0, resulting in the amplitude response

ab(ω) = −20 log
ω

ωp
(10)
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Fig. 2. Ha(s), phase response.
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Fig. 3. Hb(s), amplitude response.

and the phase response

ϕb(ω) = −π

2
. (11)

As for the constant, in this case both the amplitude and the
phase response are exact, there are no approximations being
introduced. Besides, they are linear, there are no changes in the
piecewise linear curve direction, and new nodes do not have
to be introduced. The amplitude response of this elementary
transfer function is depicted in Fig. 3, while the phase response
is depicted in Fig. 4.

For the amplitude response, this elementary transfer func-
tion increases the level of the amplitude response at each node
for 20 dB log

ωp

ω , where ω is the angular frequency of the
node. The overall phase response is affected by this elementary
transfer function such that for all nodes the phase is reduced
by 90◦.

In this case, the piecewise linear plot, which happened to
be linear, is exact, approximations are not required.
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Fig. 4. Hb(s), phase response.

C. Zero at the origin

The next elementary transfer function is zero at the origin,
specified by its canonical form

Hc(s) =
s

ωz
(12)

where ωz > 0, which results in the amplitude response

ac(ω) = 20 log
ω

ωz
(13)

and the phase response

ϕc(ω) =
π

2
. (14)

Again, the piecewise linear plot is exact and purely linear.
This elementary transfer function does not introduce any
nodes. To implement automatic adjustment of node amplitudes
and phases, it is worth to note that ac(ω) = −ab(ω) and
ϕc(ω) = −ϕb(ω) assuming parameter ωz of Hc(s) having
value equal to the value of the parameter ωp of Hb(s).

D. Stable real pole

The next elementary transfer function to be considers is
the stable real pole, i.e. the pole in the left half plane. This
elementary transfer function is characterized by

Hd(s) =
1

1 + s
ωp

(15)

where ωp > 0, which results in the amplitude response of

ad(ω) = −10 log

(
1 +

(
ω

ωp

)2
)

(16)

and the phase response of

ϕd(ω) = − arctan

(
ω

ωp

)
. (17)

In this case, the piecewise linear representation is approximate.
For the amplitude response, it is entirely asymptotic, as
depicted in Fig. 5. For the phase response, the piecewise linear
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Fig. 5. Hd(s), amplitude response.

representation is asymptotic in two out of three segments,
as depicted in Fig. 6, while the third segment is somewhat
arbitrary, to connect the parallel asymptotes, as detailed in
[9], connecting the asymptotes by a line segment from ωp/10
to 10ωp.

Regarding the nodes, the amplitude response adds a node at
ωp. Before that frequency, for ω ≤ ωp, this elementary transfer
function does not affect the overall amplitude response. After
that frequency, for ωp < ω, the nodes are shifted down for
20 dB log ω

ωp
.

The phase response adds nodes at ωp/10 and at 10ωp. For
ω ≤ ωp/10, the overall phase response is not affected. For
ωp/10 ≤ ω < 10ωp, the overall phase response is affected
such that the phase is reduced by 45◦ log 10ω

ωp
. For 10ωp ≤ ω,

the overall phase response is affected such that the phase is
shifted down for 90◦. Contributions of this elementary transfer
function to overall amplitude and phase response are depicted
in Figs. 5 and 6.

The piecewise linear representation of this elementary trans-
fer function is approximate. As detailed in [9], the maximum
of the error caused by the approximation is 3 dB for the
amplitude response, at ωp, while the maximum of the error
for the phase response is about 6◦. In Figs. 5 and 6 the exact
responses are plotted in thin lines.

approximate

E. Left half plane real zero

Opposite type of the elementary transfer function to the
stable real pole is the left half plane real zero, caused by a zero
of the transfer function (1) at s = −ωz . For ωp of Hd(s) being
equal to ωz of He(s), the two elementary transfer functions
would cancel out, thus they are the opposites. The elementary
transfer function He(s) in its canonical form is

He(s) = 1 +
s

ωz
(18)
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Fig. 6. Hd(s), phase response.

where ωz > 0, resulting in the amplitude response of

ae(ω) = 10 log

(
1 +

(
ω

ωz

)2
)

(19)

and the phase response of

ϕe(ω) = arctan

(
ω

ωz

)
. (20)

Relations of this elementary transfer function responses to
the responses of Hd(s) are given by ae(ω) = −ad(ω) and
ϕe(ω) = −ϕd(ω), for the parameter values ωz = ωp. Thus,
these responses need not to be plotted here, they are just
mirrored responses shown in Figs. 5 and 6. This elementary
transfer function adds nodes at ωz for the amplitude response
and ωz/10 and 10ωz for the phase response. The responses are
approximate in the same manner as the responses of Hd(s).

F. Unstable real pole

This elementary transfer function is frequently omitted from
consideration in popular textbooks, since stable open loop
systems are focused. However, such response is possible in real
systems, an example of such is the peak limiting current mode
controlled buck converter in the discontinuous conduction
mode for the steady state duty ratio of D > 1

2 . The canonical
form of the elementary transfer function is

Hf (s) =
1

1− s
ωp

(21)

where ωp > 0, resulting in the amplitude response of

af (ω) = −10 log

(
1 +

(
ω

ωp

)2
)

(22)

and the phase response of

ϕf (ω) = arctan

(
ω

ωp

)
. (23)

Relation of Hf (s) to Hd(s) is af (ω) = ad(ω) and ϕf (ω) =
−ϕd(ω), meaning that the amplitude responses are equal,

while the phase responses are mirrored. The elementary trans-
fer function Hf (s) introduces the same critical points as
Hd(s), and introduces the same level of approximation.

G. Right half plane real zero

A complement of unstable real pole is the left half plane
real zero elementary transfer function, specified by the transfer
function canonical form

Hg(s) = 1− s

ωz
(24)

where ωz > 0, which results in the amplitude response of

ag(ω) = 10 log

(
1 +

(
ω

ωz

)2
)

(25)

and the phase response of

ϕg(ω) = − arctan

(
ω

ωz

)
. (26)

For parameter values ωz = ωp, relation of the responses
of Hg(s) to the responses of Hd(s) are given by ag(ω) =
−ad(ω), ϕg(ω) = ϕd(ω). The elementary transfer function
adds the same nodes as Hd(s), and introduces the same level
of approximation.

Elementary transfer functions Hd(s), He(s), Hf (s), and
Hg(s) form a group of real axis excluding origin poles and
zeros, sharing the same nodes and similar amplitude and phase
responses. They could have been treated as a single response
type, but in this approach they are treated as four distinct
elementary transfer functions to underline different effects they
cause to the frequency response.

H. Stable pair of poles

The next group containing four elementary transfer func-
tions starts with the pair of complex conjugate poles, specified
by a canonical form of the elementary transfer function

Hh(s) =
1

1 + s
Qp ωp

+ s2

ω2
p

(27)

where ωp > 0 and Qp > 0. The assumption that the
elementary transfer function represents a complex conjugate
pair of poles results in Qp > 1

2 . This elementary transfer
function results in the amplitude response

ah(ω) = −10 log

((
1−

(
ω
ωp

)2
)2

+
(

ω
Qp ωp

)2
)

(28)

and the phase response

ϕh(ω) = − arctan

(
1

Qp

ω ωp

ω2
p − ω2

)
. (29)

The responses are dependent on two parameters, ωp and Qp,
resulting in somewhat more complex piecewise linear plotting
rules. The rules are detailed in [9], and the resulting plots are
depicted in Figs. 7 and 9.

For the amplitude response, the elementary transfer function
introduces a node at ωp. For ω ≤ ωp, the overall amplitude
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Fig. 7. Hh(s), Qp = 10, amplitude response.

response is not affected. For ωp < ω, the amplitude response is
reduced by 40 dB log ω

ωp
. Besides that, the amplitude response

includes an overshoot which at ω = ωp equals qp = 20 logQp.
In the piecewise linear representation, this overshoot is rep-
resented by a vertical line segment at ωp of qp in height, as
depicted in Fig. 7.

For the phase response, let us introduce the transition zone
parameter according to [9] first, as

r = 10
1

2Qp . (30)

This parameter is dependent on the Q-factor Qp and specifies
the nodes and thus the phase response transition zone. The
dependence of r on Qp is depicted in Fig. 8, and it sharply
decreases from r = 10 for Qp = 1

2 to its asymptotic value
of 1 as Qp increases. The nodes are introduced at ωp/r and
at r ωp. For ω ≤ ωp/r the overall phase response is not
affected. For ωp/r < ω ≤ r ωp the phase response is reduced
by 90◦

log r log r ω
ωp

. For r ωp < ω the overall phase response
is reduced by 180◦. The phase response of this elementary
transfer function is shown in Fig. 9.

For Qp = 1
2 , the complex conjugate pair reduces to a

repeated pole at the real axis, and both the amplitude and
the phase response of the piecewise linear Bode plot are
equal for both of the approaches, providing consistency of
the approximate analysis.

As already indicated, both the amplitude response and the
phase response are approximate, and the error is dependent on
Qp. In Figs. 7 and 9 the exact responses are plotted in thin
lines.

I. Left half plane pair of zeros

As already indicated, the elementary transfer function
Hh(s) is a basis for a group of four elementary transfer
functions, like Hd(s) is the basis for the group that also
involves He(s), Hf (s), and Hg(s). The first of the elementary
transfer functions based upon Hh(s) is its opposite

Hi(s) = 1 +
s

Qz ωz
+

s2

ω2
z

(31)
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Fig. 8. Dependence of r on Qp.
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Fig. 9. Hh(s), Qp = 10, phase response.

where ωz > 0 and Qz > 0, resulting in the amplitude response

ai(ω) = 10 log

((
1−

(
ω
ωz

)2
)2

+
(

ω
Qz ωz

)2
)

(32)

and the phase response

ϕi(ω) = arctan

(
1

Qz

ω ωz

ω2
z − ω2

)
. (33)

Assuming the parameter values ωz = ωp and Qz = Qp,
relation of the responses of Hi(s) to the responses of Hh(s)
are ai(ω) = −ah(ω), and ϕi(ω) = −ϕh(ω). The nodes are
the same as for Hh(s), and both the amplitude and the phase
responses are mirrored.

J. Unstable pair of poles

The next in this group of elementary transfer functions
is caused by an unstable pair of complex conjugate poles,
specified by its canonical form

Hj(s) =
1

1− s
Qp ωp

+ s2

ω2
p

(34)
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where ωp > 0 and Qp > 0. This elementary transfer function
results in the amplitude response

aj(ω) = −10 log

((
1−

(
ω
ωp

)2
)2

+
(

ω
Qp ωp

)2
)

(35)

and the phase response

ϕj(ω) = arctan

(
1

Qp

ω ωp

ω2
p − ω2

)
. (36)

The responses are related to the responses of Hh(s) by
aj(ω) = ah(ω) and ϕj(ω) = −ϕh(ω), sharing the same
nodes, the same amplitude responses, and mirrored phase
responses.

K. Right half plane pair of zeros

The last in this group of elementary transfer functions is
specified by its canonical form

Hk(s) = 1− s

Qz ωz
+

s2

ω2
z

(37)

where ωz > 0 and Qz > 0, and results in the amplitude
response of

ak(ω) = 10 log

((
1−

(
ω
ωz

)2
)2

+
(

ω
Qz ωz

)2
)

(38)

and the phase response of

ϕk(ω) = − arctan

(
1

Qz

ω ωz

ω2
z − ω2

)
. (39)

Assuming parameter values ωz = ωp and Qz = Qp, the
responses are related to the responses of Hh(s) such that
ak(ω) = −ah(ω), ϕk(ω) = ϕh(ω). The nodes are the same
as for Hh(s), the amplitude response is mirrored, while the
phase responses are the same.

L. Pair of poles at the imaginary axis

The last group of elementary transfer functions considers
two elementary transfer functions: pair of poles at the imagi-
nary axis and pair of zeros at the imaginary axis. This group
of elementary transfer functions had to be separated to avoid
numerical problems that would be caused by the infinite value
of corresponding Q-factors.

Pair of poles at the imaginary axis is specified by the
elementary transfer function in its canonical form

Hl(s) =
1

1 + s2

ω2
p

(40)

where ωp > 0, resulting in the amplitude response of

al(ω) = −10 log

(
1−

(
ω
ωp

)2
)2

(41)

and the phase response of

ϕl(ω) =

{
0, ω < ωp

−π, ωp < ω.
(42)
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Fig. 10. Hl(s), amplitude response.

The amplitude response is specific in the sense it contains
a singularity for a finite value of ω, for ω = ωp, which is
the node for the amplitude response. The piecewise linear
representation of the amplitude response is depicted in Fig.
10, and it contains two asymptotes, for ω → 0 and for
ω → ∞. The asymptotes intersect at ωp, which is the node.
The piecewise linear representation of this elementary transfer
function does not affect the overall amplitude response for
ω ≤ ωp, while for ωp < ω it decreases the amplitude nodes
for 40 log ω

ωp
. At ω = ωp the elementary transfer function has

a pole, resulting in the amplitude response singularity, which
is indicated by an arrow in Fig. 10, since there is no other
way to indicate infinity in the response. The exact amplitude
response is indicated by the thin line. The piecewise linear
representation is approximate, having significant error at some
values of ω.

Contrary to the piecewise linear representation of the am-
plitude response, the piecewise linear representation of the
phase response is exact, as depicted in Fig. 11. For ω ≤ ωp

the overall phase response is not affected by this elementary
transfer function. For ωp < ω, the overall phase response
is affected such the phases for all nodes are decreased for
180◦. This response is somewhat peculiar in the sense it is
discontinuous. This requires two nodes for the phase response
at the same frequency, ωp. At the first of these nodes, in terms
of the node index, not frequency, the phase response is not
affected; at the second, it is reduced by 180◦.

M. Pair of zeros at the imaginary axis

The last of the elementary transfer functions considers
the pair of zeros at the imaginary axis, represented by the
elementary transfer function canonical form

Hm(s) = 1 +
s2

ω2
z

(43)
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Fig. 11. Hl(s), phase response.

where ωz > 0, and it is the opposite of Hl(s), having the
amplitude response

am(ω) = 10 log

(
1−

(
ω
ωz

)2
)2

(44)

and the phase response

ϕm(ω) =

{
0, ω < ωz

−π, ωz < ω.
(45)

Assuming the parameter value ωz = ωp, relation of the
frequency responses of Hm(s) to the responses of Hl(s) are
am(ω) = −al(ω) and ϕm(ω) = ϕl(ω). The responses of
the two elementary transfer functions share the same nodes.
The amplitude response is mirrored, while the phase response
is the same. Actually, it is mirrored, but restriction that the
phase response of elementary transfer functions is within
[−180◦, 180◦) reduced the phase response to be the same,
by shifting down for 360◦ at ω > ωp.

N. A constraint

After the elementary transfer functions have been defined,
in order to provide unique factorization let us introduce a
constraint here: in the factorization of (1) only one of the
elementary transfer functions Ha(s), Hb(s), and Hc(s) is
present.

IV. THE ALGORITHM FOR CREATING THE BODE PLOTS

The algorithm described in this paper starts with the transfer
function factored into canonical form of (1). To achieve
the factorization, either exact factorization may be applied
using computer algebra tools, like Maxima [18] or SymPy
[19], either approximate methods described in [9], [10], [11]
might be used. This task is planned to be automated in near
future. The factored transfer function of (1) is specified in an
input file, where a line corresponds to an elementary transfer
function. The elementary transfer functions are specified by
several fields. The first field specifies the type of elementary
transfer function, and it is followed by one or two fields that

specify the elementary transfer function parameters: K for
Ha(s), ωp or ωz for Hb(s) to Hg(s), and for Hl(s) and
Hm(s), while for Hh(s) to Hk(s) ωp or ωz and Qp or Qz are
specified. The next field contains exponent of the elementary
transfer function, labeled by lp,i and by lz,i in (1). A frequent
value of this parameter is 1. The following field contains a
label assigned to the elementary transfer function. Finally,
the last two fields contain flags indicating whether the final
diagram will contain Bode plot of the elementary transfer
function besides the plot of (1) and whether the final plot
will contain exact plot of the elementary transfer function.

Besides the lines that specify elementary transfer functions,
the input file contains two additional lines to specify values
of ωmin and ωmax that define the frequency range in which
the frequency response is plotted. The final line specifies flags
whether the Bode plot and/or the exact plot are included in
the final diagram. As a matter of fact, the final diagram needs
not to be generated at all: the program might be run just to
generate and save the data that the user might use later to
create his/her own diagrams.

A. Parsing

The first part of the program is a parser, which is considered
as an auxiliary part, not the part of the algorithm itself. The
parser initialized the data structures and goes through the input
file, firstly trying to parse the lines that specify elementary
transfer functions. This step involves identifying elementary
transfer function type and checking the parameter values such
that all ωp and ωz values are positive floats, that Qp and Qz

values are floats greater that 1
2 , and that exponents are positive

integers. If an elementary function specifying line does not
pass a parsing requirements, the program quits and the user
is informed about the problem. Similar procedure applies for
the final three lines that specify ωmin, ωmax, and the diagram
plotting flags. Also there are some auxiliary topics: following
the conventions set in [1], the first line of the file contains the
transfer function name; comment lines might be added and
they are indicated by starting the comment line with #, as in
Python and some other programming languages.

The data structure provided by the parser contain lists of
parameter values, including the labels and the flags, for each
of the elementary transfer function types, as well as the display
values of ωmin and ωmax, and the diagram plotting flags.

B. Setting the nodes

The first pass of the algorithm sets the nodes for the
amplitude and the phase response and the frequency ranges
both for computing the plot and for displaying the plot. The
display range is always a subset of the computing range. To
achieve this goal, the program initializes lists of amplitude
nodes and phase nodes as empty lists, and passing through the
data structure adds the nodes as specified by the elementary
transfer function descriptions given in Section III.

After the lists of nodes required by the elementary transfer
functions is generated, the task is to determine frequency range
for computing the plot. For the union of the node frequencies
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for the amplitude plot and the phase plot the minimum and the
maximum are determined. To avoid exceptions, it is worth to
mention that in the case the only elementary transfer function
in (1) is either Ha(s), Hb(s), or Hc(s), the initial set of
node frequencies, before adding the border frequencies, is an
empty set; this should be handled by the program smoothly,
just by skipping the search and by taking the display border
frequencies as the computational border frequencies. Possible
candidates for the computing range limits ωmin and ωmax

are determined as one tenth of the minimal node frequency
and ten times the maximal node frequency. If the display
frequency range is wider than the range required by the nodes,
the values of ωmin and ωmax are adjusted to cover the entire
display range. Finally, the values of ωmin and ωmax are
added as the nodes both for the amplitude response and for
the phase response. When the values of ωmin and ωmax are
determined, an array object of frequency values to determine
the exact amplitude and phase response is created using the
logspace function. The number of data points is determined
automatically, depending on ωmin and ωmax, to provide about
100 data points per decade.

After the node frequency values are set, the lists of node
frequencies are converted to array data type of the NumPy
module [15], and associated arrays of the amplitude response
values and the phase response values are initialized as objects
of the matching length containing zeros. The second pass
of the algorithm is required to adjust these values, which
essentially creates the piecewise linear Bode plot. The third
pass sets the vertical line segments and/or the arrows that
correspond to infinite resonant responses.

C. Adjusting the nodes

The second pass of the algorithm adjusts the nodes, both
for the amplitude and the phase response. The algorithm is
described in Section III for each of the elementary transfer
functions. The program passes through the data structure
created by the parser for each of the elementary transfer
function types and adjusts the node altitudes as required.

Besides adjusting the node altitudes, the second pass of
the algorithm possesses information about ωmin and ωmax,
thus able to create the database of Bode plots for each
of the elementary transfer functions contained in (1), the
exact frequency responses for all of the elementary transfer
functions, and the exact frequency response of (1) according
to (2) and (3).

D. Resolving resonances

The third pass of the algorithm starts at the point when the
Bode plots are almost finished, and only “resonant responses”
caused by Qp and Qz values should be indicated, as well as
the infinite values in the logarithmic plots of the amplitude
responses caused by Hl(s) and Hm(s). It should be noted
that this phase of the algorithm involves amplitude response
only. The third pass of the algorithm starts by initializing the
lists of line segment patches and the list of arrow patches as
empty lists.

The first part of “resolving resonances” considers elemen-
tary transfer functions Hh(s) to Hk(s) that contribute to the
line segment patches. Values of the amplitude response at
corresponding value of ωp or ωz are read from the piecewise
linear Bode plot of the amplitude response, and having these
values and the value of corresponding qp or qz , the vertical
line segment patch is created.

The second part of “resolving resonances” considers ele-
mentary transfer functions Hl(s) and Hm(s) that create arrow
patches. Values of the amplitude response at corresponding
value of ωp or ωz are read from the piecewise linear Bode
plot of the amplitude response, and these values are used as
starting points for the arrows. The arrows point upwards for
Hl(s) and downwards for Hm(s). The length of the arrow
that indicates infinite response is chosen to be standardized to
equivalent 20 dB.

This concludes the algorithm, and all the data that specify
both the exact plots and the piecewise linear Bode plots are
constructed. If the user requires, an informative plot is created,
containing curves specified by the flags. This is convenient in
the control loop design process, but publication quality graphs
usually require access to the created database of plots, to adjust
ticks and grids, and to add some labeling manually, according
to the user wishes.

V. AN EXAMPLE

To illustrate application of the described algorithm, an
equiripple group delay filter with amplitude corrector, inspired
by [20], [21] is selected. The filter contains 14 poles and 12
zeros. Filter applications are not particularly suited for Bode
piecewise linear approximation, since both the poles and zeros
are closely grouped in the complex plane, resulting in tendency
of the approximation error to accumulate. Thus, the example
should be considered as a particularly hard test for the method.

Transfer function of the considered filter Hvbl(s) is factored
according to (1) into the following list of elementary transfer
functions

1) Ha(s), K = 1
2) Hh(s), ωp = 1.15148675, Qp = 0.61625492
3) Hh(s), ωp = 0.95360261, Qp = 0.51157670
4) Hh(s), ωp = 0.98559505, Qp = 0.53174411
5) Hh(s), ωp = 1.02900047, Qp = 0.56136078
6) Hh(s), ωp = 1.07702300, Qp = 0.60099034
7) Hh(s), ωp = 1.11337090, Qp = 0.65696211
8) Hh(s), ωp = 1.07821613, Qp = 0.79159298
9) Hm(s), ωz = 3.1335590

10) Hm(s), ωz = 3.7630714
11) Hm(s), ωz = 4.7859023
12) Hm(s), ωz = 6.0011218
13) Hm(s), ωz = 7.3087231
14) Hm(s), ωz = 8.6935655

where each elementary function type is followed by its pa-
rameters.

Diagrams containing piecewise linear Bode plots accom-
panied by the exact plots are given in Figs. 12 and 13 for
the amplitude and the phase response, respectively. Value



ELECTRONICS, VOL. 21, NO. 2, DECEMBER 2017 85

10−3 10−2 10−1 100 101 102 103

ω/ωn

−280

−240

−200

−160

−120

−80

−40

0
a
(ω

)
[d

B
]

exact
Bode

Fig. 12. Hvbl(s), amplitude response.
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Fig. 13. Hvbl(s), phase response.

ωn in the diagrams indicates the normalization frequency. In
the amplitude response, the diagram is polished manually,
such that the arrows that would indicate the infinite response
are replaced by the lines that spread to the diagram border.
Regardless the fact that the poles and zeros are close, the
approximation is acceptable. Numerous undershoots caused by
low Q factor values of the pole are observed around ω ≈ ωn.
Infinite response caused by zero pairs on the imaginary axes
are correctly handled. In phase response, correct handling of
discontinuities caused by the imaginary axis zero pairs could
be observed.

VI. FUTURE WORK

At present stage, the described algorithm is implemented
in a command line interface based program. The use of such
program requires some sort of computer usage competence,
which is not common to the majority of users nowadays. Thus,
to increase availability, a graphical user interface is planned
to be created. Another direction of program development is
to provide automatic creation of the canonical form of (1)
on the basis of the transfer function specified as a rational

function of s. Finally, the algorithm is intended to be included
in a comprehensive symbolic analysis software suite for linear
systems.

VII. CONCLUSION

In this paper, an algorithm for creating piecewise linear
Bode plots of amplitude and phase frequency responses of
lumped parameter linear systems is proposed. The algorithm
is complete in the sense that it covers for poles and zeros
placed at arbitrary locations in the entire complex plane.

The transfer function is factored into a specified canonical
form, as products of elementary transfer functions. Thirteen
elementary transfer functions are defined, and plotting piece-
wise linear amplitude and phase Bode plots is defined for
each of them. It is shown that the thirteen elementary transfer
functions have their roots in only five generic transfer function
types. Piecewise linear Bode plots are depicted for all of these
five generic types, and specified for other elementary transfer
functions by appropriate mirroring.

The algorithm to generate piecewise linear Bode plots is
based upon introducing nodes in both the amplitude and the
phase frequency response. The nodes are defined as points
where the response, either amplitude or phase, changes its
slope. For each of the elementary functions the list of nodes
it introduces both in the amplitude and in the phase response
is presented, as well as the algorithm how to modify the node
altitudes according to the effects caused by the elementary
transfer function.

Finally, the algorithm to generate the Bode plots is described
as a three stage algorithm. In the fist stage, just after the
input file parsing, frequencies of the nodes specified by the
elementary functions of the transfer function factorization into
canonical form are collected, and the border frequencies for the
plots are included in the list of node frequencies. In the second
stage, node altitudes are updated according to specifications
given for each of the elementary transfer function types. In
the third stage, overshoots and undershoots in the amplitude
response created by complex conjugate pairs of pole or zeros
are resolved, separately for the pairs outside the imaginary
axis, and for the pairs located on the imaginary axis, creating
linear segment patches for the overshoots or undershoots
or arrow patches that indicate infinite logarithmic amplitude
response, respectively. Output of the program is a diagram and
a data structure that allows the user to create own diagrams
to tweak the appearance if required.

An issue worth addressing is computational complexity of
the proposed algorithm in comparison with standard general
purpose tools that might provide Bode plots. The first dif-
ference to be underlined is in the size of the data set that
describes the plot: in the case of piecewise linear Bode plot
the size is related to the number of poles and zeros, and it
is much smaller than the data sets that characterize standard
smooth frequency response plots. Actually, this is the main
reason that Bode plots are still in use today: the reduced data
set is much easier to handle by human cognitive capacities
in the design process. In smooth frequency response plots, the
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number of poles and zeros of the transfer function is not related
to the data set size, instead it is determined by the number of
data points required to provide the diagram detailed enough,
frequently containing excessive number of points covering
parts of the frequency response where not much happens.
Assuming that computational complexity to generate one data
point is about the same in both approaches, the conclusion is
that the asymptotic Bode plot approach requires significantly
reduced computational effort. Furthermore, smooth phase re-
sponse plots require numerous arctangent (actually, atan2)
computations, which are computationally more demanding
than the arithmetic required by the asymptotic plots. How-
ever, it is worth to note that asymptotic Bode plots require
transfer function factorization, which standard approach does
not. However, factorization is required in the design process
anyhow, to properly understand dynamics and to adequately
place poles and zeros of the compensating regulator. Finally,
with modern computers computational efficiency in creating
the frequency response plot should not be a critical issue
nowadays, and the main reason for using the asymptotic Bode
plot approach is in its cognitive value, clear and concise
presentation of the system dynamics.
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number of poles and zeros of the transfer function is not related
to the data set size, instead it is determined by the number of
data points required to provide the diagram detailed enough,
frequently containing excessive number of points covering
parts of the frequency response where not much happens.
Assuming that computational complexity to generate one data
point is about the same in both approaches, the conclusion is
that the asymptotic Bode plot approach requires significantly
reduced computational effort. Furthermore, smooth phase re-
sponse plots require numerous arctangent (actually, atan2)
computations, which are computationally more demanding
than the arithmetic required by the asymptotic plots. How-
ever, it is worth to note that asymptotic Bode plots require
transfer function factorization, which standard approach does
not. However, factorization is required in the design process
anyhow, to properly understand dynamics and to adequately
place poles and zeros of the compensating regulator. Finally,
with modern computers computational efficiency in creating
the frequency response plot should not be a critical issue
nowadays, and the main reason for using the asymptotic Bode
plot approach is in its cognitive value, clear and concise
presentation of the system dynamics.
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