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Epilepsy Detecting and Halting Mechanism
Using Wireless Sensor Networks

Sayantani Basu, Ananda Kumar S. and Bhuvana Shanmugam

Abstract—Epilepsy is a condition that affects thousands of 
people worldwide. In the laboratory setting, it becomes difficult to 
monitor patients and analyze when the next seizure would recur. 
Although algorithms have been proposed for deriving when the 
next seizure is probable, it is difficult to generalize such models 
for the various types of epilepsy that are occurring every day. A 
more promising solution is the use of Wireless Sensor Networks 
(WSNs) that is proposed to simulate small electrodes used in 
EEG that will be placed on the scalp of the patient as a wearable 
device along with a portable kit that is capable of monitoring the 
patient in both ambulatory and resting condition. As much as a 
detection system is required for epilepsy, a halting mechanism is 
also needed to prevent such high flow of bio-electrical signals in 
the brain during seizures. It is estimated that millions of brain 
cells die during epileptic seizures, which can prove detrimental 
or even fatal in some cases. In order to overcome this, an IoT-
based epilepsy detection and halting system with wireless sensor 
networks and focal cooling mechanism has been proposed in 
order to regionally cool the regions of the brain when a seizure is 
probable or suddenly occurs.

Index Terms—epilepsy, seizure detection, seizure halting, 
wireless sensor networks.
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I. Introduction

Wireless sensor networks (WSNs) are a class of wireless 
networks that use sensors to monitor a specific 

environment. WSNs have made their way to several interesting 
applications in healthcare over the last decade [1]. In addition 
to being of potential use to patients, such systems also find 
considerable applications for children and elders.

Usually the group of sensors carried or worn by the patient 
(in the form of wearable sensors) forms the Body Area Network 
(BAN). The sensors located in the immediate surrounding 

environment form the Personal Area Network (PAN). Generally, 
monitoring systems consist of healthcare professionals viewing 
and interacting with the patient via a Graphical User Interface 
(GUI) in the form of a mobile application whereas in detecting 
systems, an algorithm judges the condition of a patient using 
Artificial Intelligence and Statistical models. 

In the healthcare domain, WSN systems commonly comprise 
the following components: (i) BAN Subsystem, (ii) PAN 
Subsystem, (iii) Wide Area Networks (WAN), (iv) Gateway to 
Wide Area Networks (GWAN), and (v) Patients and other users. 
The BAN subsystem consists of an ad hoc sensor network that 
is wearable by the patients. Some examples include RFID tags, 
accelerometers and EEG sensors. Care should be taken so that 
the sensors do not cause any harm to the patients since they will 
be required to wear them for prolonged durations. The PAN 
subsystem consists of the devices in the immediate surrounding 
environment of the patient. Such a subsystem is also capable 
of features like location tracking, which may necessitate the 
use of RFID, Bluetooth, Near Field Communication (NFC) and 
GPS facilities as well. The Medium Access Control (MAC) 
layer should be made energy efficient to make the system 
low-power. All constituents among a subsystem should be 
interconnected appropriately. The WAN subsystem is needed 
for remote monitoring scenarios. If the healthcare system 
is to be implemented globally, satellite networks may also 
be employed. GWAN is used for the purpose of connecting 
PAN subsystem and WAN subsystem to the WAN. Finally, as 
mentioned earlier, the entire system is used by patients or other 
users like children or elders. 

The evolution of IoT (Internet of Things) has resulted in 
efficiency and better exchange of data using technologies like 
WSNs and embedded systems. The present work has focused 
on an IoT-based system involving usage of WSNs for detecting 
and halting epilepsy. Epilepsy is a condition of the brain defined 
by at least 2 unprovoked seizures occurring at >24 hrs apart and 
one unprovoked seizure or probable seizures occurring during 
the next 10 years [2]. This disease affects thousands of people 
worldwide and can be fatal in extreme conditions. Epilepsy 
detection has been an important topic in medical research. 
The exact cause of epilepsy and how to completely cure it 
is still an unsolved puzzle. Research has uncovered various 
types of epilepsy, broadly categorized as generalized epilepsy 
and partial epilepsy, and specific types including childhood 
epilepsy, temporal lobe epilepsy and focal epilepsy. 

Epilepsy is most commonly detected using the technique of 
EEG (Electroencephalography). The graphs are then analyzed 
by doctors or healthcare professionals who determine the type 
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of epilepsy and the associated course of treatment. In some 
cases, MRI and CT imaging is also used. However, in most 
cases, EEG graphs show continuing occurrences of seizures 
or only slightly decrease using medications. Most medications 
even cause harmful side effects.  In other words, it is difficult 
for doctors to determine the exact type and origin of seizures 
from a single EEG report. It is even more challenging to predict 
the occurrence of the next possible seizure and immediately 
halting it. Common approaches to reduce epileptic seizures 
include using one or a combination of medications, surgery, 
brain stimulation and focal cooling [3].

During an epileptic attack, seizures may happen due to 
sudden misfiring or incorrect connections in neurons in the 
brain. This results in sudden increases in electrical voltage in 
the neural cells. Each epileptic attack damages hundreds of 
brain cells that can be very harmful for the patients. As a result, 
it is important to halt or at least reduce the intensity to prevent 
such damages.

In the present work, a model has been proposed that uses 
WSNs to monitor and detect epileptic seizures as well as a me-
chanism using focal cooling to halt the seizures.

The rest of this paper is organized as follows: Section 
II gives an overview of previous related work. Section III 
discusses about the proposed method. Section IV highlights the 
implementation and results. Section V concludes the paper and 
suggests possible future work.

II. Related Work

Previously, several methods have been proposed for 
seizure detection. Lay-Ekuakille et al. [4] have developed a 
system using WSNs to detect epilepsy from joint EEG-ECG-
Ergospirometric signals. It consists of a wireless ECG and EEG 
systems. It uses a K4b2, which is a device worn by patients 
for pulmonary monitoring purposes. It can be worn while the 
patient is in motion and operates on battery power. Generally, 
the wave ranges for a normal EEG have been observed to be 
as follows [5]: (i) alpha (8-13 Hz), (ii) beta (13-30 Hz), (iii) 
delta (0.5-4 Hz) and (iv) theta (4-7 Hz). Along with acquiring 
the ECG and EEG signals, authors have then measured the 
Heart Rate Variability (HRV) before and after exercise, while 
simultaneously observing the corresponding changes in the 
Average Message Transmission Time (AMTT). Amplitudes 
over 45 and 100 microvolts imply suspected cases of epilepsy. 
The authors have noted that a simulator can enhance their 
results and that the method can be improved if WSNs can be 
related to the foci.

Otoum et al. [6] have developed Epilepsy Patients Moni-
toring System (EPMS) using WSNs. More specifically, they 
have proposed an SMAC (Sensor Medium Access Control) 
based system in order to reduce the power consumption of the 
system. They have designed the system using MICAz sensor 
motes (developed by Crossbow Technology). The EPMS 
consists of five sensor nodes that acquire the seizure infor-
mation and pass it on to the coordinator. The coordinator then 
sends the information to the receiver. They have evaluated the 

performance of their system using NS2 simulator. Their SMAC 
protocol has shown lower average delay in packets compared 
to the ZigBee protocol. Their future work suggests allowing 
patients more freedom of movement by incorporating GPS and 
routing protocols.

Sareen et al. in [7] have proposed a mobile framework to 
predict seizures from EEG data. They acquired the EEG sig-
nals using Emotiv EPOC headset containing 14 sensors. They 
have extracted the desired features using fast Walsh-Hadamard 
transform (FWHT) and Higher Order Spectral Analysis (HOSA). 
Then k-means has been used to obtain a classification accuracy 
of 94.6%. They have tested their model in Amazon EC2 cloud. 
The data stored in the cloud is also used to connect to other 
family members and doctors in case of medical emergencies. 
A drawback of their work is they are only predicting seizures 
and not proposing any first hand technique of combatting the 
seizures by the time medical help arrives.

Salem et al. [8] have proposed a Discrete Wavelet Transform 
(DWT) and Ant Colony Optimization (ACO) based approach 
with WSNs for detecting seizures. They have acquired the data 
by placing electrodes on the scalp of the patient and acquiring 
the data and forwarding it to a transceiver and storing the 
data on a Local Processing Unit (LPU). They have identified 
the ictal period (during which a seizure is occurring) as being 
characterized by a discharge of polymorphic waveforms of 
varying amplitude and frequency that exhibit continuous spikes. 
Their model has shown a detection rate (DR) of 100% and a 
False Alarm Rate (FAR) of 9%. The shortcoming of this model 
is that the data is being processed after recording, that is, it is not 
being implemented in a real-time scenario.

Borujeny et al. in [9] have proposed an algorithm using 
WSNs and k-nearest neighbors (kNN) for detection of epilepsy 
using accelerometry and have proved that it gives better 
performance compared to using neural networks. For the 
purpose of acquiring signals, they have used MICAz wireless 
motes. Three 2D accelerometer sensors are placed on the left 
thigh, left arm and right arm of the patient. The system is also 
capable of monitoring the patient and sending the location of the 
patient to the family members or hospital staff when a seizure 
occurs. However, the system is capable of detecting epilepsy 
only when the acquired signals show at least 50% of seizures. 

Kramer et al. [10] have designed a system that works to 
detect seizures and alert close family members of an epilepsy 
patient. The motion sensing unit comprising an accelerometer 
and transmitter were fitted in the form of a bracelet on the 
patient’s wrist. They have developed an algorithm using time 
and frequency domain analysis to map the motion of the subject 
with previously gathered ictal data obtained from video EEG. 
Their system correctly identifies 91% of the captured seizures. 
They have suggested refining the algorithm to have above 95% 
accuracy and test it on larger populations.

Jeppesen et al. in [11] have developed a portable device 
capable of seizure detection that uses Near infrared spectroscopy 
(NIRS). For recording the signals, they have used two PortaLite 
wireless NIRS devices. They have then evaluated the changes 
in levels of oxygenated- (HbO), deoxygenated- (HbR) and 
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total-hemoglobin (HbT). Their method has shown that the 
levels change by 6-24% during seizures. They have suggested 
individual tailor-made seizure detection for patients in the future.

Yilmaz and Dehollain [12] have used a wireless approach 
for data transmission for the purpose of monitoring intracranial 
epilepsy. They have used inductive coupling which is perfor-
med with the same frequency as that of the power transfer. 
Implantation is necessary in order to sense the signals and full-
duplex communication has been established between the implant 
and the external unit. The authors have suggested using energy-
per-bit connections between the uplink and downlink channels for 
future designers.

Conradsen et al. in [13] have suggested a wireless surface 
electromyography (sEMG) device that can be used for recording 
epileptic seizures. Their system was capable of detecting 4 out of 
7 seizures with a false detection rate of 0.003/h. However, in some 
instances the model was unable to record data and the authors 
have suggested testing sEMG on the biceps instead of the tibia.

El Menshawy et al. [14] have developed an algorithm for 
automated detection and analysis of epileptic seizures using signal 
processing techniques. Using MATLAB, they have also used 
feature extraction to reduce the vector space. They have stated 
that the limitation is that their approach has no error detection 
mechanism and absence of domain ontology for EEG.

TABLE I 
Survey Table

Reference Proposed Work Limitations Year

Lay-Ekuakille 
et al.
[4]

EEG, ECG and HRV 
analysis

WSNs not related 
to the foci 2013

Otoum et al. 
[6]

EPMS and SMAC for 
monitoring

Does not allow 
patients enough 
freedom of 
movement

2015

Sareen et al. 
[7]

Mobile framework 
using FWHT and HOSA 
in cloud

Only predicting 
seizures 2016

Salem et al. 
[8]

DWT and ACO 
approach with LPU

It is not 
implemented in a 
real-time scenario

2014

Borujeny 
et al. 
[9]

kNN based detection 
model with 
accelerometer sensors

Detects only >50% 
of seizures 2013

Kramer et al. 
[10]

Bracelet for ictal 
data analysis using 
accelerometry

Not tested on 
larger populations 2011

Jeppesen et al. 
[11]

NIRS and changes in 
HbO, HbR and HbT 
levels in blood

Seizure detection is 
not tailor-made for 
different patients

2015

Yilmaz and 
Dehollain [12]

Inductive coupling 
and full-duplex 
communication between 
internal implant and 
external sensing unit

No presence of 
energy-per-bit 
connections 
between uplink and 
downlink channels

2014

Conradsen 
et al.
[13]

sEMG placed on tibia 
for detection of seizures

Unable to record 
data in some cases; 
Not tested on 
biceps of patient

2012

El Menshawy 
et al.
[14]

Automated detection 
using signal processing 
and feature extraction

No error detection 
mechanism; 
Absence of domain 
ontology

2015

III. Proposed Method
In the proposed method, the data is first acquired using 

WSNs. The EEG signals are recorded and processed simulta-
neously. This proposed system will work with inputs of both 
non-seizure as well as seizure data. 

An independent component analysis is performed on the 
data in order to extract the channel spectra for quantitative 
analysis. The unwanted artifacts are then rejected by visualizing 
the 2-D component maps and individual activity power spectra 
of each of the components. Once this step is completed, the 
peak and amplitude (peak-to-peak) are calculated for each of 
the remaining channels. 

The data points are then plotted for both seizure and 
non-seizure data. The classification boundary is then used 
for detection of the seizure data. Additionally, focal cooling 
mechanisms can also be included in this system for halting the 
seizures whenever they are detected. The proposed methodology 
is shown in Fig. 1. The entire proposed methodology consists of 
the following steps:

1. Data Acquisition from Epilepsy patient using WSN 
electrodes: Data is acquired from the patient through 
wireless electrodes.

2. Input Seizure/Non-seizure data: The data (seizure/non-
seizure) is input into the system. 

3. Perform ICA: Independent Component Analysis is 
performed to evaluate the spectra of the EEG. ICA is 
also later used to perform artifact rejection.

4. Plot Channel Spectra: The channel spectra are plotted to 
find the frequencies at which peaks occur in seizure and 
non-seizure data.

5. Plot Activity Power Spectrum for each component: The 
activity power spectrum is also a useful parameter for 
visualizing peak and amplitude of seizures occurring in 
every individual Independent Component (IC).

6. Rejection of Artifacts: Rejection of artifacts is done to 
eliminate all unwanted signals which may give erroneous 
results in the model. This is done manually based on the 
ICA, channel spectra and activity power spectra.

7. Calculate peak and amplitude from Activity Power 
Spectrum: After rejection of artifacts, the activity power 
spectrum is considered only for the useful components.

8. Plot obtained data points: The data points are plotted 
using the peak and amplitude values obtained.

9. Classification boundary for seizure detection: A classi-
fication boundary is set for classifying seizure and non-
seizure data.

10. Focal Cooling for Halting: Based on the classification, 
focal cooling is used to lower the temperature of the 
electrodes which can help in controlling and possibly 
halting the seizures.

IV. Implementation and Results

The EEGLab Toolbox [15] in MATLAB has been used for 
the purpose of this simulation. Data was obtained from the 
PhysioNet [16] database on CHB-MIT Scalp EEG [17]. This 
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dataset contains both seizure and non-seizure EEG data of ep 
ilepsy patients.

Fig. 1.  Proposed Methodology.

A. Data Acquisition
The data considered from subject chb21 was evaluated for 

both non-seizure data and seizure data. The EEG signals were 
acquired using 28 electrodes. The locations of all the electrodes 
on the scalp are shown in Fig. 2.

Fig. 2.  Locations of 28 channels (WSN electrodes).

The EEG signals that have been acquired using this setup 
are shown in Fig. 3.

Fig. 3.  Acquired EEG signals.

B. Independent Component Analysis (ICA)
In order to evaluate the spectra of the EEG, an ICA 

(Independent Component Analysis) was first performed on the 
given data. A rank of 21 was used for ICA in this experiment. 
ICA in EEG data is used to distinguish the particular regions 
of the brain contributing to robust EEG signals. The 2-D 
component maps of all the ICA components of non-seizure and 
seizure data are shown in Fig. 4 and Fig. 5 respectively.

Fig. 4.  2-D Component plots of non-seizure data.

Fig. 5.  2-D Component plots of seizure data.
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C. Channel Spectra
Once ICA has been performed, the spectrum of the EEG 

can be plotted to visualize the frequencies at which peaks 
are occurring and hence, quantitatively detect the possibility 
of seizures [18]. The channel spectrums for non-seizure and 
seizure data are shown in Fig. 6 and Fig. 7 respectively.

D. Activity Power Spectrum
The single channel activity power spectrum is then plotted 

for all the ICA components in both non-seizure and seizure 
data. Like the channel spectrum, the activity power spectrum 
also provides insights into information about peaks occurring in 
seizure and non-seizure data. One such activity power spectrum 
is shown in Fig. 8.

Fig. 6.  Channel spectrum in non-seizure data.

Fig. 7.  Channel spectrum in seizure data.

Fig. 8.  Activity power spectrum for single component.

E. Artifact Rejection
Artifacts are unwanted signals due to eye blinking, heartbeat, 

muscle activity and so on that result in unwanted signals in EEG 
data. In order to retain only the brain signals, it is important to 
reject the artifacts using ICA. In this case, artifact rejection was 
done manually by visualizing each component.

F. Detection of Seizure Data
After the process of artifact rejection, only those components 

were retained that contributed to brain activities. From each 
graph, the peak and amplitude (peak-to-peak) was calculated. 
A separate set of data points were then obtained for non-seizure 
and seizure data. The points were then plotted as shown in 
Fig. 9 and a classification boundary (the line that was deemed 
best-fit) was set for detecting and separating seizure data from 
non-seizure data. This provides a suitable model for a particular 
subject (patient) and future prediction can be done based on the 
peak and amplitude.
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Fig. 9.  Classification boundary for detection of seizure data.
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An average classification accuracy of 90% and false positive 
rate of 9% was obtained using the proposed detection system. 
The proposed system performs at par with previously proposed 
systems having average accuracy 94.6% [7], detection rate 
100% and false positive rate 9% [8], accuracy 91% and false 
negative rate 9% [10] efficiency 30% [11] and sensitivity 57% 
[13].

Hence, given any EEG sample, the proposed methodology 
can be followed and the detection of seizures can be carried out 
using its activity power spectrum and plotting its data point.

When seizures are detected, a focal cooling mechanism can 
be incorporated along with the mobile WSN EEG electrodes 
to cool the focal region in order to prevent impending seizures 
from arising. 

V. Conclusion and Future Work

In this paper, an IoT-based system using wireless sensor 
networks has been proposed by incorporating machine learning 
for detection of seizures and a focal cooling mechanism 
for halting of seizures in epilepsy patients. This system is 
particularly helpful in the case of mobile EEG, especially in 
cases of patients with epilepsy who require monitoring even in 
ambulatory condition. The classification approach for detection 
of seizures has obtained 90% classification accuracy and 
9% false positive rate, which is competent with the previous 
approaches.

Future approaches with regard to this work include enhan-
cing the system with more advanced wireless electrodes and 
more advance machine learning algorithms.
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