
Abstract—In this paper, a new hybrid test strategy, called
hybrid-based self-test (HYBST), is presented to test complex
digital circuits such as microcontrollers. This test strategy
integrates the signature multi-mode hardware-based self-test
(SM-HBST) with the software-based self-test (SBST). In this test
strategy, the microcontroller is divided into a number of main
modules, and then test subroutines are used to functionally test
each module, based on its instruction set architecture (ISA).
The ISA is used to generate test subroutines that represent test
pattern generators (TPGs) and part of the test controller. The SM-
HBST represents the other part of the test controller and the test
response compaction (TRC). The experimental results illustrate
the superiority of the HYBST in the memory utilization, test
application time, testing of internal modules of the microcontroller,
and testing of general-purpose input-output (GPIO) pins of the
microcontroller. In addition, an integrated test solution for fault
diagnosis of the circuit boards including random logic integrated
circuits (ICs) and microcontroller chips is presented to indicate a
real practical test strategy.

Index Terms—Testing of digital circuits; Built-In Self-test
for digital circuits; Testing of microcontroller circuits; Software-
based self-test; Hardware-based self-test; Hybrid-based self-test.

Original Research Paper
DOI: 10.7251/ELS1822059E

I. Introduction

With the advent of complex integrated circuits (ICs), the
stream data of bits at the available test points of the printed

circuit boards (PCBs) or the complex ICs on the circuit under
test (CUT) become very complex. Testing the CUT for correct
operation after manufacturing is an important issue. It is to apply
proper test patterns to the CUT, and the test response generated
from the CUT is analyzed to locate the faulty source components.
Several testing approaches achieve this objective. Most of
them fall into two main categories: in-circuit testing (ICT)

and functional testing [1-5]. The ICT requires a costly special
kind of the test fixture (bed of nails) [2]-[3], [6]. The functional
tester verifies that the CUT board performs the functions it was
designed for. Only CUT inputs and CUT outputs need to be
tested with inexpensive test fixture (edge connector) [5], [7]-[8].

Microcontrollers are considered an important part of the
electronic system. The complexity of microcontrollers with
poor accessibility makes their test process a difficult task using
external automatic test equipment (ATE) [2]-[3], [6]. Therefore,
empowering chip to test itself looks the suitable solution for the
microcontroller testing. The built-in self-test (BIST), considered
a mechanism of the hardware based self-test (HBST), provides
significant advantages not only for processor module but also
for other peripherals found in the microcontroller [6]. [8]-[9].
The BIST adds special hardware overhead to the circuit design
in the chip level, the board level, and the system level to realize
self-test operations. This hardware overhead is the test pattern
generator (TPG), the test response compactor (TRC), and the
BIST controller. The required test patterns generated from the
TPG are applied to the CUT board, and the test responses are
compacted using the TRC for fault diagnosis so that the CUT
board can be replaced and returned to the service [10]-[11].

The easiest way to test a small circuit is to apply all possible
test patterns, called exhaustive testing. This testing is not practical
for large circuits [1], [12]-[13]. The more common approach for
testing is to use computer algorithms for automatic test pattern
generation (ATPG) [2]-[3], [5], [14]-[15]. These algorithms are
effective at finding sequences of test patterns that can detect all
detectable hardware faults [14]-[15]. Pseudorandom testing is
widely used in testing of digital circuits, whose test patterns can
be generated by simple hardware circuits [1]-[3], [5]. Signature
analysis is a TRC technique that detects errors in stream data of
bits, caused by hardware faults. It compacts the test response
for each output node of the CUT board into a signature [4],
[6], [9]-[11]. After all required input test patterns are applied,
the reference (good) signature is generated. This signature is
compared with the corresponding measured signature. When
they are different, a fault is detected. The signature analyzer
(SA) requires the storage of fewer bits. The aliasing probability
of an n-stage signature analyzer approaches 2-n [16].

The signature analysis performs the hot functional test for
conventional digital random logic ICs, and memory devices [9].
By determining a unique signature for each node in the CUT
board, the fault detection and then fault location (fault diagnosis)
can be achieved. In addition, another test strategy was presented
to functionally test single-shot (SS) circuit on the PCB [17]. It
can test the SS circuit by measuring the time duration. The time

New Hybrid-Based Self-Test Strategy for Faulty
Modules of Complex Microcontroller Systems

Mohamed H. El-Mahlawy, Sherif Hussein, and Gouda I. Mohamed

Manuscript received 18 September 2017. Received in revised form 21
February 2018, 4 April 2018, and 28 July 2018. Accepted for publication 16
August 2018.

Mohamed H. El-Mahlawy is with Electrical Engineering department,
faculty of Engineering and Technology, Future University in Egypt (FUE),
Cairo, Egypt (corresponding author: +201121455800; email: mohamed.
elmahlawy@fue.edu.eg).

Sherif Hussein is with Computers department, military technical college,
Cairo, Egypt (email: sherif.i.morsy@gmail.com)

Gouda I. Mohamed is with Computers department, military technical
college, Cairo, Egypt (e-mail: gisalama@mtc.edu.eg).

ELECTRONICS, VOL. 22, NO. 2, DECEMBER 2018 59

duration is considered the signature of its proper functionality.
The HBST is limited to properly test digital CUT including a
microcontroller chip. Adding hardware parts of that HBST
have a negative impact on the circuit area and performance
degradation. The alternative to the HBST is the software-based
self-test (SBST) that promises an attractive and non-intrusive
test solution for embedded systems [18].

In the SBST strategy, no extra test hardware is required.
Fig. 1 illustrates the concept of the embedded SBST strategy,
where the test program is resided in the flash memory of a
microcontroller. During the application of the testing, the on-chip
test generation program emulates a TPG to generate required
test patterns, applied to main modules of a microcontroller.
In addition, the on-chip test application program collects the
test response and stores them in the memory. The stored test
response is compacted into a signature using the TRC program.
Test response can later be unloaded and analyzed by an external
ATE. At the final stage, the external ATE will provide a decision
about the microcontroller under test.

Microcontroller

 Memory

 CPU

TPG Program
MOV
LOOP
……

USART

Test program
MOV
ADD
…….
…..

ADC CCP EEPROM Timers

GPIO

External ATE

TRC TPG

ALU SHUMultiplier

TRC Program
MOV
JMP
….

Test
Controller

Fig. 1. Block diagram of the SBST strategy.

The SBST strategy is classified in two different categories.
The first category is functional in nature [19]. The functional
SBST strategy is either based on functional fault models [20]-[23]
or based on the checking experiment principle without assuming
any fault model [24]. It was found that these approaches are
not exactly suited for embedded processor cores and that they
achieve low fault coverage. The second category is structural in
nature and requires a structural fault driven test development.

L. Chen [25] presented a structural SBST strategy that
targets processor components using pseudo-random pattern
sequences. This strategy is not considered the regular structure
of critical components within a processor and hence leads to
large self-test code, large memory requirements, and excessive
test application time, even when applied to a small processor
model. N. Kranitis [26] presented a structural SBST strategy
for testing a processor in an embedded system, based on the

divide-and-conquer strategy and the instruction set architecture
(ISA) of the processor. For every component and its operations
within the processor, deterministic test patterns are generated to
detect structural faults. In addition, N. Kranitis [27] introduced
a hybrid-SBST strategy that combines deterministic test patterns
and random test patterns to test commercial processor cores.

The objectives of an effective SBST strategy are to increase
fault coverage, reduce self-test code, reduce memory utilization,
and reduce test application time. Therefore, the structural SBST
strategy is more efficient than the functional SBST strategy in
terms of fault coverage without system modifications, the size of
the self-test code, memory utilization, and test application time
[18], [26]-[28].

Most of recent researches utilize the SBST strategy for
embedded processors and large microprocessors. However,
the researches for testing of microcontrollers with small
memories, used in industrial applications, are limited.
N. Kranitis [29] proposed a low-cost SBST methodology for
Reduced Instruction Set Computer (RISC) processor cores with
the aim of producing small test code sequences. It is based on
two phases to test the functional modules such as the register file,
the arithmetic-logic unit (ALU), the shifter, and the multiplier in
the first phase. Then, the control and hidden modules are tested
in the second phase. In these phases, a few deterministic test
patterns (not ATPG) are used to utilize small test application
time. This methodology achieves 92% of the single stuck-at
fault coverage on the architecture of the Plasma/MIPS model
using the fault simulator. This test strategy, proposed in [29],
is limited only to test functional modules of the processor with
high fault coverage. However, the control and hidden models
are tested with low fault coverage. This proposal cannot test
microcontrollers with small memories, used in industrial
applications.

Dattatraya [30] proposed an expert work for fault diagnosis
of the Philips 89v52RD2 microcontroller. He proposed checking
experiments for every fault, based on the intelligent diagnostic
assessment and management of testing process. The knowledge
base consists of a procedural description of the test, and uses the
knowledge about troubleshooting process. The results obtained
are validated using experts and testing equipment under the
same input patterns for automation in knowledge acquisition and
updating process. This strategy is limited to test a microcontroller
with high fault coverage, and needs huge alteration to get the
proper knowledge base. In addition, the authors in [30] did not
illustrate the memory utilization, test application time, and the
fault coverage for the Philips 89v52RD2 microcontroller under
test. Therefore, the authors did not prove the applicability of this
test strategy.

The authors in this paper implemented the SBST strategy
to test two different families of the PIC microcontrollers
(PIC16F87X – PIC18F4X2) [6], [31]. It was found that the
SBST needs large space of memory for the instruction set code
that emulates the TPG, the TRC, and the test controller to realize
self-test operations. In addition, the SBST strategy cannot test
most modules in the microcontroller like timers, general-purpose
input-output (GPIO) pins and Capture/ Compare/PWM (CCP)

60 ELECTRONICS, VOL. 22, NO. 2, DECEMBER 2018

modules without the external ATE. Therefore, the SBST strategy
is limited to test microcontrollers with small memories. The
necessity to introduce a test strategy for testing microcontrollers
with small memories is highly required.

In this paper, the new test strategy for testing microcontrollers,
called hybrid-based self-test (HYBST), is presented. It integrates
the HBST strategy and the SBST strategy. Due to the diversity of
the digital CUT boards in the practical field, the signature multi-
mode hardware-based self-test (SM-HBST) strategy is highly
required. Therefore, the HYBST strategy integrates the SM-
HBST strategy and the SBST strategy. Based on divide-and-
conquer strategy, the microcontroller is structurally divided into
a number of main modules and test subroutines are constructed to
exhaustively test each of these modules. Generation of these test
subroutines requires knowledge of the ISA of the microcontroller.
The exhaustive testing guarantees the detection of all detectable
combinational faults, detected by single-pattern test generator
[1], [12]-[13]. This leads to achieve high fault coverage with
out performance degradation and without fault simulator. Test
subroutines, embedded in the microcontroller memory, gene
rate test patterns for each module in a microcontroller chip,
and the test response is then propagated to GPIO pins of a
microcontroller chip to be compacted by the external SM-
HBST. Test subroutines are used to emulate TPG and part of
the emulated test controller, running in the microcontroller
itself. The SM-HBST outside a microcontroller chip represents
the other part of the test controller and the TRC. To realize a
real practical test strategy, the merging of the presented HYBST
strategy with the developed software part of the SM-HBST
is applied as a fault diagnosis solution for electronic digital
boards that contains both conventional random logic ICs and a
microcontroller chip. It is evaluated on two different families of
Microchip microcontrollers; PIC18F4X2 and PIC16F87X [31].

This paper is organized into six sections. The presented
section introduces the previous published works. Section II
describes the basic concept of the microcontroller test strategy.
Section III describes the design and implementation of the SM-
HBST strategy. Section IV presents testing of microcontroller
modules, and states the comparisons between the HYBST
strategy and the SBST strategy using two different families of
microcontrollers. Section V presents fault diagnosis of the digital
circuit board including random logic ICs and a microcontroller
chip, and then section VI illustrates the experimental results of
the whole test strategy. Finally, the last section concludes the
presented paper.

II. Basic Concept on the Microcontroller Test Strategy

The microprocessor, considered a powerful computing
component, may use other components such as memory, timers,
and communication peripheral environment. On the other hand,
the microcontroller is designed to include the microprocessor and
its components in a single integrated circuit. Microcontrollers
are popular with industrial developers. The increasing logic-to-
pin ratio of the microcontroller poses very serious problems in
testing at the board level. These problems lead to an increasingly
long test pattern generation, long test application time, and low

fault coverage. In addition, the stream data bits at the available
test points of the CUT board are large so detecting a hardware
fault becomes difficult as well as locating the source faulty
node (nodes). The SM-HBST strategy is limited for complex
digital circuits such as microcontrollers that have heterogeneous
components with poor accessibility.

In this paper, the comparison criteria of testing performance
between different test strategies are based on the following:

1) Memory utilization (Data memory – Flash memory) is
considered to reduce hardware overhead and to leave the
largest space of the available memory for the application
program of that microcontroller.

2) Test application time (required number of clock cycles to
finish the test).

3) Testability of microcontroller modules reflects the
percentage of fault coverage. When the number of tested
modules increases, the fault coverage increases.

The SBST strategy cannot test all internal microcontroller
modules especially timers, GPIO pins and CCP module. If the
SBST strategy can test other modules in a microcontroller, then
it will need an external ATE to load measured signatures from
microcontroller memory for fault detection. The SBST strategy
cannot be applied to test microcontrollers with small memories
because it needs large space of memory for the software code
to emulate TPG, TRC and test controller of the BIST system.
To enable this test strategy to test digital CUT boards including
a microcontroller chip, more effort is needed to achieve the
criteria of the testing performance, and another test strategy is
required to handle this challenge.

 In this paper, a new test strategy that combines both the SM-
HBST strategy and the SBST strategy is called the hybrid-based
self-test (HYBST) test strategy. The HYBST divides the test
operation between a microcontroller chip and the SM-HBST.
The emulated TPG and part of the emulated test controller are
running in the microcontroller itself using test subroutines. In
addition, the TRC and the other part of the test controller are
running in the SM-HBST outside the microcontroller. Fig. 2
illustrates the block diagram of the HYBST strategy.

Microcontroller

SM-HBST

Random
Logic

 Memory

 CPU

Emulated TPG

USART

Emulated Test
Controller

ADC CCP EEPROM Timers

GPIO

ALU SHUMultiplier

TPGTRC

Control Unit

Fig. 2. Block diagram of the HYBST strategy.

ELECTRONICS, VOL. 22, NO. 2, DECEMBER 2018 61

Test development of the HYBST is divided into four main
phases to construct test subroutines of a microcontroller.
The first phase includes information extraction and modules
identification of a microcontroller. The second phase is the
instruction selection strategy depending on observability and
controllability. The third phase is the operand selection, and the
last one is the test routine development.

A. Information extraction phase
The information extraction phase shows the features of a

microcontroller. According to the divide-and-conquer strategy,
the microcontroller is divided into main modules. These
modules are the processor, the memory, timers, the pulse width
modulation (PWM), GPIO pins, the universal synchronous
asynchronous receiver transmitter (USART) and the analog-to-
digital converter (ADC). The information on every module is
collected to be effectively tested. The ADC module is tested by
[32]-[34], and it is not presented in this research. The memory
of the microcontroller can be divided into the random access
memory (RAM), the electrically erasable programmable read
only memory (EEPROM), and the flash memory. In addition,
the processor can be divided into an ALU and a multiplier. The
effectiveness of this phase is evaluated on certain microcontroller
families (PIC16F87X – PIC18F4X2). Table I presents the key
features of two microcontrollers.

Table I
Key Features of the Microcontroller

Key Features PIC16F877 PIC 18F452

FLASH Memory (14-bit Word) 8k Word 16k Word

Data Memory 368 Byte 1536 Byte

EEPROM (Byte) 256 256

I/O Ports 5 I/O Port 5 I/O Port

Timers 3 4

Capture/Compare/PWM Modules 2 2

Serial Communication USART USART

Multiplier - 8 × 8

ISA (instruction set architecture) 35 instruction 75 instruction

Operating speed in Million instruction
per second (MIPS) 5 MIPS 10-15 MIPS

B. Instruction selection phase
Based on the ISA of the microcontroller [31], it is found

that every module M performs a set of operations OM. IM,O is
denoted to the set of microcontroller instructions that, during
execution, enable the same control signals and cause module M
to perform operation O. It is evident that, for each module M,
there is at least one microcontroller instruction that, during its
execution, causes module M to perform operation O, i.e. IM,O ≠
Ø. After identification of the set IM,O for every module operation,
an instruction I was selected from the set IM,O.

These instructions, which belong to the same set IM,O:
1) Have different observability properties. When operation

O is performed, the outputs of module M conduct internal
microcontroller registers with different observability
characteristics.

2) Have different controllability properties. When operation
O is performed, the internal microcontroller registers
with different controllability characteristics conduct the
inputs of module M.

After identification of the set IM,O, select an instruction I Є
IM,O according to the following criteria:

Criterion 1: Discard instructions Є IM,O that when operation
O is performed, the outputs of module M do not propagate
to internal registers of the microcontroller. This means that
the faulty component output cannot be propagated. For
example, instructions CALL (call subroutine), RETFIE (return
from interrupt), RETLW (Return with literal in W register
(accumulator)) and SLEEP (go into standby mode) don’t
propagate to internal microcontroller registers.

Criterion 2: Between instructions IA and IB Є IM,O, if IA
requires a smaller instruction sequence to propagate the outputs
of module M to GPIO pins, IA is ranked higher priority than
IB. It means that IA is more easily observed than IB, and it
should be preferred over IB. For example, instruction XORWF
(Exclusive-OR W register and f (Register file address (0x00 to
0x7F))) is easily observed over XORLW (Exclusive-OR literal
and W register) because it can be used to directly transfer the
output to external ports.

Criterion 3: If instructions IA and IB Є IM,O have the same
priority based on criterion 2, another criterion is required.
Therefore, if IA requires a smaller instruction sequence to
generate a specific test pattern at the internal register of the
microcontroller, IA is ranked higher than IB. For example,
instruction INCF (Increment f) has higher priority over
INCFSZ (Increment f, skip if zero) because it uses less clock
cycles when it is executed.

At the end of this phase, test instructions are selected,
based on the above three criteria. They are considered the
main foundation of embedded test subroutines that test
microcontroller modules. After the OM and the IM,O set are
identified, the number of these instructions are reduced.
It should be noted that module M executes operation O
during its instruction execution but the module outputs are
not propagated to GPIO pins. It is not included in the IM,O
set according to Criterion 1. If part of the test response of a
module is not driven to a well accessible internal register (that
is the case of flag outputs, driving status register or special
function registers), an extra instruction sequence is required
to propagate to accessible registers and then to GPIO pins.
Table II and Table III illustrate the instruction reduction of the
CPU module of microcontrollers (PIC18F452 – PIC16F877).

C. Operand selection phase
Operand selection phase chooses the appropriate test patterns

to use it with test subroutines in order to get high fault coverage.
The presented test strategy in this paper is based on exhaustive
testing for test pattern generation to achieve high structural fault
coverage for each module of the microcontroller. It detects all

62 ELECTRONICS, VOL. 22, NO. 2, DECEMBER 2018

detectable combinational faults detected by single-test pattern
without using the fault simulator [1], [5], [6], [12]-[13].

Table II
Instruction Reduction of the CPU Module of the PIC16F877

Module
M

Operation O that can be executed by this
module

IM,O used to test this
module according

to Criteria 1, 2 & 3

CPU
ALU

ADDWF, ANDWF, CLRF, CLRW,
COMF, DECF
DECFSZ, INCF, INCFSZ, IORWF,
MOVF, MOVWF
NOP, RLF, RRF, SUBWF
SWAPF, XORWF, BCF, BSF, BTFSC,
BTFSS, ADDLW, ANDLW, CALL,
CLRWDT, GOTO, IORLW, MOVLW,
RETFIE, RETLW, RETURN, SLEEP,
SUBLW, XORLW

CLRF , CLRW,
MOVLW,
BCF, ADDWF,
SUBWF, XORWF,
IORWF, ANDWF,
COMPF, DECF,
INCF, MOVWF,
MOVF, BSF,
ADDLW, BTFSS,
GOTO, RETURN

35 instruction 19 instruction

The next sections present the fourth phase. It describes
the design and implementation of the SM-HBST strategy,
presented in section III. In addition, test subroutines that
test internal modules of a microcontroller are presented in
section IV. These test subroutines have been completely imple
mented using the previous SBST strategy with two different
compaction techniques and the HYBST strategy. Test subroutines
are developed for each of the microcontroller modules based on
the above three criteria using both assembly and C programming
languages.

Table III
Instruction Reduction of the CPU Module of of the PIC18F452

Module
M

Operation O that can be executed by this
module

IM,O used to test
this module
according to

Criteria 1, 2 & 3

CPU
ALU

ADDWF, ADDWFC, ANDWF, CLRF,
COMF, CPFSEQ, CPFSGT, CPFSLT
DECF, DECFSZ, DCFSNZ, INCF,
INCFSZ, INFSNZ
IORWF, MOVF, MOVFF, MOVWF,
NEGF, SETF, SUBFWB, SUBWF,
SUBWFB, SWAPF, TSTFSZ
XORWF, BCF, BSF, BTFSC
BTFSS, BTG, BC, BN, BNC, BNN,
BNOV, BNZ, BOV
BRA, BZ, CALL, CLRWDT, DAW,
GOTO, NOP, POP
PUSH, RCALL, RESET, RETFIE,
RETLW, RETURN
SLEEP, ADDLW, ANDLW, IORLW,
MOVLB, MOVLW, RETLW, SUBLW,
XORLW, TBLRD*, TBLRD*+,
TBLRD*-, TBLRD+*, TBLWT*,
TBLWT*+, TBLWT*-, TBLWT+*

CLRF , MOVLW,
MOVWF,
XORWF,
SUBWF,
ANDWF,
IORWF,
ADDWF,
COMPF, SWAPF,
XORLW,
ADDLW,
ANDLW,
SUBLW, IORLW,
DECF, INCF,
BSF, BNZ,
RETURN

68 instruction 20 instruction

III. Design and Implementation of the SM-HBST

In this section, the FPGA-based design and implementation
of the SM-HBST for testing the digital CUT is presented. The
SM-HBST is responsible of generating the required test patterns
to the CUT through the TPG, compacting the test response from
the target test node on the CUT through the TRC, and controlling
the test cycle of the presented self-test strategy through the
control unit (CU). The main block diagram of the SM-HBST,
shown in Fig. 3, is composed of the TPG, the TRC, and the CU.
In addition, the schematic diagram of the FPGA-based design is
illustrated in Fig. 4. The SM-HBST has four main test modes;
pseudorandom test mode (PRT mode), deterministic test mode
(DET mode), hybrid test mode between the PRT and the DET
mode (HPDT mode), and single-shot test mode (SS mode).

A. Design of the PRT mode
In the PRT mode, the TPG tests the digital CUT as a test

stimulus. It stimulates all nodes in the CUT. The TPG, based
on the PRT mode, is called pseudorandom TPG (PRTPG). The
simplified block diagram that shows the basic test operation
of a CUT in the PRT mode is shown in Fig. 5. Test patterns,
generated from the PRTPG, are applied to the CUT and the test
response is captured by the TRC every clock cycle. The TRC
compacts all bits of a test response, generated from a stimulated
node into a measured signature. The measured signatures are
stored and compared to the reference (good) signatures for
fault diagnosis. The TRC in the SM-HBST, shown in Fig. 3,
has two blocks; the SA and the edge detection compactor
(EDC). The SA is a linear feedback shift register (LFSR)
as a compactor circuit [1], [6], [10]-[11]. The SA, designed
in the SM-HBST, is the 23-bit whose primitive polynomial
equals to 1 + x5 + x23 with aliasing probability 0.000012 %
(2-23). Therefore, the probability of detecting error bits of a test
response, clocked to the 23-stage SA, equals to 99.9999 %. The
EDC will be discussed later in section C.

CLR_CUT or DCLR_CUT

CU

EDC

TPG
Control Unit

DCLK_SIG

Measured
Signature

DATA

CLR

Control Signals

SAGCLK_SIG

CU_DET

from Computer
Interface

Control and Data
Signals

to DET_TPG

Bits of test
response from a
test node of the
CUT

CLR_TPG

CLK

Test Response
Compactor

GCLK_CUT or DCLK_CUT

CLK_ED

DET_TPG

CLR_SIG

TRC

PRTPG

DCLR_SIG

Test Pattern
Generator

Test Patterns to
CUT inputs

Mode
Selection

CLK_SS

GCLK_TPG

Fig. 3. Main block diagram of the SM-HBST.

ELECTRONICS, VOL. 22, NO. 2, DECEMBER 2018 63

Fig. 4. Schematic diagram of the FPGA-based design of the SM-HBST.

Test

Analyzer

Bits of test response from a
test node of the CUT

Measured

Digital Test Pattern from the TPG

00010 0001111

1110111001010 001101101 Good response

Test Pattern
CUT

.
.
.
.

Signature
Signature

00000 0001101

Faulty Signature

1100111011010 001101101 Faulty response

GCLK_CUT

DATA

01010 1001001
01010 0001001

11011 0001001

CLR_TPG

GCLK_TPG

GCLK_SIG

CLR_CUT

00000 0001111 Good Signature

Generator

CLR_SIG

Response
Compactor

.
.
.
.

Fig. 5. Simplified block diagram of the test operation in the PRT mode.

The CU, shown in Fig. 3, is implemented with two modules
CSIG_GEN and CU_DET in the FPGA-based design, shown in
Fig. 4. Either the internal clock (CLK_INT) or the external clock
(CLK_EXT) synchronizes the main clock of the module CSIG_
GEN that controls each part of that test scheme. Both internal
and external clock are utilized to synchronize the test operation.
The selection of the clock is based on the control signal SW_CLK
that switches between the CLK_INT and the CLK_EXT, shown
in Fig. 4. The presented SM-HBST board unit has the TPG with
forty-eight outputs that stimulate all nodes in the CUT with at
most forty-eight inputs. To increase the test capability of large
CUT inputs (more than forty-eight inputs), two or more SM-
HBST board units can be used. The clock CLK_SYC, generated
from module CSIG_GEN of the first SM_HBST board unit, is
designed to synchronize the second SM_HBST board unit by
feeding the CLK_EXT.

Fig. 6 shows the timing diagram of the test operation in the
PRT mode. The required clocks and clear signals for the test
operation are properly asserted. All clocks during the test gate
are three-phase clocks, shown in Fig. 7. By applying known
input test patterns from the bus GTPG(47:0) to the CUT, an
unique signature can be generated at each node in the CUT.
The PRTPG is clocked by GCLK_TPG and the SA is clocked
by GCLK_SIG. The test patterns, generated from the PRTPG,
are asserted at the rising edge of the GCLK_TPG, and the SA is
asserted at the falling edge of the GCLK_SIG. The GCLK_CUT

clocks the practical digital CUT either at the rising edge trigger
or at the falling edge trigger. The required clear signals of each
clock signal; CLR_TPG, CLR_SIG, and CLR_CUT are designed
for proper timing operation to start the test gate as shown in Fig.
7(a). They are properly asserted at the starting of every test gate
to provide the proper initialization of sequential circuits in the
CUT. In addition, the closing of the test gate is shown in Fig.
7(b).

Fig. 6. Timing diagram of the test operation in the PRT mode.

The SA processes the output bits of a target node every clock
cycle during the test gate interval. The test gate is controlled
by the control signal TEST_GATE. After certain clock cycles,
the test gate is closed, and the final signature is generated from
the bus SIG(23:0). Three-phase clocks provide the test pattern
enough time to propagate through the integrated circuits in
the CUT either at the rising edge trigger or at the falling edge
trigger of the GCLK_CUT, before the acquisition of the test
response (received through the input signal, DATA, showed in
Fig. 3, Fig. 4, and Fig. 5). The assertion of the proper timing
ensures the stability of the signature generation for the proper
test operation. The incorrect signature will accurately indicate
an incorrect waveform of the target node as long as the error
appears in the bits of the test response. The error appears only
if the TPG generates the test patterns that detect hardware faults
and the SA generates the incorrect signature. Data compaction
is achieved by probing the target node asserted at the falling
edge of GCLK_SIG during the TEST_GATE. The input binary
sequence may be in different lengths but at the end of the test
gate only the signature is the residue of the SA. The outputs of
the SA has proper hexadecimal signature “299BD5” when the
DATA sets HIGH.

The system has master clear (MCLR). The control signal,
Enable, is set HIGH to enable the test operation. The switching
between multiple opening and the single opening of the
TEST_GATE is based on the control signal MOD_SEL. When
the MOD_SEL sets LOW, the TEST_GATE is opened once to
calculate a new signature, and the control signal ST, shown in
Fig. 4, is asserted for every new signature. The multiple opening
of TEST_GATE is used, when MOD_SEL sets HIGH. The
module CU_DET in the CU produces the programmable code

64 ELECTRONICS, VOL. 22, NO. 2, DECEMBER 2018

IC(15:0) to configure the test scheme. It is considered the initial
condition code to the target chip for proper test operation. Table
IV illustrates the control code IC(3:0) to produce the test clocks
and the phase delay between the three-phase clocks. Table V
illustrates the control code IC(6:4) for the selection of the test
operation modes. The control code IC(10:7) illustrates the
required number of clock cycles inside the TEST_GATE.

Table IV
Generated frequency and the phase delay according to IC(3:0) or N

N three-phase clocks Delay N three-phase clocks Delay

Period Frequency Period Frequency

1 240 ns 4.17 MHz 40 ns 9 1200 ns 833.3 kHz 200 ns

2 360 ns 2.78 MHz 60 ns 10 1320 ns 757.6 kHz 220 ns

3 480 ns 2.08 MHz 80 ns 11 1440 ns 694.4 kHz 240 ns

4 600 ns 1.67 MHz 100 ns 12 1560 ns 641.0 kHz 260 ns

5 720 ns 1.39 MHz 120 ns 13 1680 ns 595.2 kHz 280 ns

6 840 ns 1.19 MHz 140 ns 14 1800 ns 555.6 kHz 300 ns

7 960 ns 1.04 MHz 160 ns 15 1920 ns 520.8 kHz 320 ns

8 1080ns 0.93 MHz 180 ns

Table V
Test Modes According to IC(6:4)

IC(6:4) Test Modes

“000” Mode 0 Pseudorandom testing only

“001” Mode 1 Deterministic testing only

“010” Mode 2 Programming deterministic testing for TPG

“011” Mode 3 Hybrid the deterministic testing with pseudorandom
testing

“100” Mode 4 Single-Shot testing in microsecond range

“101” Mode 5 Single-Shot testing in millisecond range

B. Design of the DET mode
Some inputs of the CUT board need the specific binary

states; not pseudorandom binary signals. The TPG, based on
the DET mode, is the DET_TPG whose outputs are 48-bit. The
DET_TPG that tests the CUT board as a test stimulus generates
deterministic test patterns with arbitrary test length. These test
patterns are calculated from algorithmic methods that support
the detection of different fault models [2]-[3], [5], [14]-[15]. The
DET_TPG retrieves these test patterns and generates all required
control signals to automatically transfer these test patterns to the
CUT inputs. In the DET mode, the start, stop, and all control
signals of the deterministic test cycle are generated from the data
port DPort(7:0) and the control port CPort(3:0). These ports
are applied to the CU_DET module by the personal computer
(PC), shown in Fig. 4. These ports generate the required control
signals for the proper test operation in the DET mode.

The CU_DET module generates the DCLK_TPG to
synchronize and control the test pattern rate of the DET_TPG
at the rising edge. In addition, it generates the DCLK_CUT that
clocks the CUT board either at the rising edge trigger or at the
falling edge trigger before the receiving of the test response of
the DATA by the SA, clocked by the DCLK_SIG at the falling
edge. In this case, the number of clock cycles inside the test gate
depends on the required test patterns to test the CUT board in
the DET mode. In the DET mode, IC(11) is the signal that clears
the SA at the beginning of the test gate, and the IC(12) is used to
clear the memory element in the CUT board in the DET mode.
When the test gate is closed, the proper signature is generated.
After that the next three bits IC(15:13) are used to automatically
transfer the signature to the PC through the status port.

The CU_DET module has three sub-modules. They are the
decoder of the CPort(3:0), the initial condition port (ICP) for
the generation of IC(15:0), and the initial seed port (ISP) of the
PRTPG (TPG_IS(47:0)). Table VI illustrates the truth table of
the decoder of the CU_DET. Each state of CPort(3:0) generates
a specific control signal. The data port DPort(7:0) is used
to write the command in the ICP and the data in both the ISP
(TPG_IS(47:0)) and the DET_TPG (GTPG(47:0)).

Table VI
Truth Table of the Decoder of the CU_DET module.

CPort(3:0) Control Signal Function
“0000” BYTE(0) Latch the GTPG(7:0) and TPG_IS(7:0)
“0001” BYTE(1) Latch the GTPG(15:8) and TPG_IS(15:8)

(a) Starting test gate.

(b) Closing test gate.

Fig. 7. Timing waveforms of the starting and closing test gate interval.

ELECTRONICS, VOL. 22, NO. 2, DECEMBER 2018 65

CPort(3:0) Control Signal Function
“0010” BYTE(2) Latch the GTPG(23:16) and TPG_IS(23:16)
“0011” BYTE(3) Latch the GTPG(31:24) and TPG_IS(31:24)
“0100” BYTE(4) Latch the GTPG(39:32) and TPG_IS(39:32)
“0101” BYTE(5) Latch the GTPG(47:40) and TPG_IS(47:40)
“0110” BYTE_L Latch the IC(7:0)
“0111” BYTE_H Latch the IC(15:8)
“1000” Reserved Reserved
“1001” Reserved Reserved
“1010” DCLK_TPG Clock the DET_TPG
“1011” DCLK_CUT Clock the CUT
“1100” DCLK_SIG Clock the SA
“1101” DCLK_IC Clock the IC(15:0)
“1110” DCLK_IS Clock the TPG_IS(15:0)
“1111” Reserved Reserved

Each 48-bit deterministic test pattern needs six latches
to sequentially store six data bytes of DPort(7:0). From
Table VI, there are six control signals BYTE(5:0) that control
the latching data and the DCLK_TPG clocks the latched data to
simultaneously transfer to GTPG(47:0) through the DET_TPG
in the TPG module. This sequence is repeated each test pattern
generation. In the same way, the DCLK_IS clocks the latched
data to simultaneously transfer to TPG_IS(47:0). In addition, the
DCLK_SIG clocks the SA in the TRC module, and the DCLK_
CUT clocks the CUT board outside the SM-HBST. Finally,
there are two control signals BYTE_L, and BYTE_H that control
the latching data and the DCLK_IC clocks the latched data to
simultaneously transfer to IC(15:0). The programmable code
IC(15:0) controls the presented test architecture. The problem
of the glitch-free affects the control of the test cycle in the DET
mode. Different delays in the decoder of the CU_DET generate
glitches in the outputs of control signals. To eliminate these
glitches, the signal DPort(7) is used to disable the decoder during
the changing states of the CPort(3:0). This situation eliminates
glitches and provides stable test operation in the DET mode.

Some inputs of the CUT board need a fixed binary state, and
the other inputs need pseudorandom binary signals. The hybrid
between the PRT mode and the DET mode, called HPDT mode,
divides inputs of the CUT board into two sets. The first set needs a
fixed binary state as a single deterministic test pattern, generated
from the DET_TPG. The other set needs pseudorandom binary
signals, generated from the PRTPG. Therefore, test patterns
applied to board inputs are the concatenation of the PRTPG
and DET_TPG through the multiplexer selections. This mode
increases the ability of the SM-HBST to test different circuit
topology.

C. Design of the SS mode
The microcontroller oscillator uses quartz crystal for its

operation. The frequency of such oscillator is precisely defined
and very stable that makes it ideal for time measurement. If it is
necessary to measure time between two events, it is sufficient
to count pulses generated by this oscillator. In practice, pulses
generated by the quartz oscillator are applied either directly
or via a prescaler to increment the number stored in the timer

register. In the TRC module of the SM-HBST, the edge detection
compactor (EDC) measures the time interval of the stimulated
pulse, generated from at least one basic timer module of the
microcontroller. The time measurement of the stimulated pulse
is considered the measured signature of the output of the single-
shot (SS) circuit. The simplified block diagram that illustrates
the testing application of an SS circuit is shown in Fig. 8. In the
SS mode, a sequence of deterministic test patterns, generated
from DET_TPG, is utilized to trigger the SS circuits for the
proper pulse generation. The testing criterion of the EDC is used
to generate the measured signature, based on the edge detection
of the SS signal. In addition, the interaction between the EDC
of the SM-HBST and the testing of the timer module in the
microcontroller is presented in section IV (part D).

the DET_TPG
Device

Measured

Time Duration

Decoding
Circuits

Generated Pulse

CUT

Detection
Edge

Compactor

Single-Shot

CLK_ED

Pattern from
Digital Test

CLK_SS Signature

Fig. 8. Digital testing of the SS circuit in the SS mode.

The schematic diagram of the EDC and the timing
waveform of it are shown in Fig. 9 and Fig. 10, respectively.
The CU in Fig. 3, and the CSIG_GEN module in Fig. 4
generate the required test signals to control the EDC in the SS
mode by two clocks; CLK_SS, and CLK_ED. The CLK_SS
(1 MHz in μs range and 1 kHz in ms range) is used to measure
the time duration of the stimulated pulse. The CLK_SS clocks
the 23-bit binary counter (SS_Counter shown in Fig. 9). The
CLK_ED (5 MHz in μs range and 1 MHz in ms range) is used
to generate two synchronized pluses; Edge_1 and Edge_2.
They are generated either at the rising edge or at the falling
edge of the stimulated pulse (DATA) of the SS circuit. When
both edges of the pulse are asserted, the Edge_1 is generated
and the falling edge of it triggers the Edge_2, shown in
Fig. 10. The SS counter starts the counting by the CLK_SS
and the ST_STOP signal generated from Edge_1 and Edge_2.
Edge_1 is a latch pulse for the SS_LATCH cell. The assertion
of Edge_1 latches the bus SSCO(23:0) to the output bus SS_
SIG(23:0), and then to output bus of the TRC (SIG(23:0)). The
assertion of Edge_2 is to clear the SS_counter.

D. FPGA Implementation of the SM-HBST
All modules of the presented design are connected and the

timing simulation of the complete design is achieved to verify the
proper operation of the chip design before the implementation
on the FPGA chip (Xilinx - X3S200FT256-4). Other cells are
used to assist the interface between the inputs and the outputs of
the whole chip and the interface circuitry. The debouncer of the
MCLR, and the other debouncers of the push-bottom switches
are used to provide the required test mode selection and the
required clock selection. In addition, the module that displays
a signature of the presented design through the seven-segment

66 ELECTRONICS, VOL. 22, NO. 2, DECEMBER 2018

display is used. The device utilization summary and the timing
summary report, generated from the FPGA implementation, are
presented in Table VII.

Fig. 9. Schematic diagram of the EDC of the SM-HBST.

Fig. 10. Timing waveforms of the testing of the SS circuit in the SS mode.

Table VII
FPGA Utilization Summary and Timing Summery

of the Spartan-3 (xc3s200-4ft256)

Logic Utilization Used Available Utilization
Number of occupied Slices 411 1,920 21%
Number of Slice Registers 491 3,840 12%
Number of 4 input LUTs 439 3,840 11%
Number of bonded IOBs 115 173 66%
Number of GCLKs 8 8 100%
Number of DCMs 4 4 100%
Total equivalent gate count for design: 34,373
Timing Summary: Speed Grade -4
 Minimum period: 17.928ns (Maximum Frequency: 55.779MHz)
 Minimum input arrival time before clock: 11.375ns
 Maximum output required time after clock: 16.976ns
 Maximum combinational path delay: 11.600ns

IV. Testing of Internal Microcontroller Modules
The complexity of microcontrollers that have heterogeneous

components with poor accessibility makes their test process
a difficult task. In this section, the test process of the internal
microcontroller modules is presented. The flowchart of the
complete test program of the HYBST strategy for Microchip
PIC microcontrollers is illustrated in Fig. 11. The test program
asks first, if the system is going to operate either in the normal
mode or in the test mode. If the normal mode is chosen, the
system will do the predefined industrial application, and if it
operates in the test mode, the system will be prepared to operate
in the test mode. In the test mode, the microcontroller receives
an input selection from one of its ports (PORTA), used to test a
specific module. This input selection is sent from the SM-HBST.
Other microcontroller ports are set output ports to propagate the
test response to the SM-HBST.

Start

End

PORTA =
0x02

Test GPIO

Test mode or
Normal mode?

Set A/D off
Disable Interrupts

Set PORTB,C and D as Output
Set PORTA as Input

Read PORTA

Yes

PORTA =
0x04

PORTA =
0x06

Test CPU Test USART

Yes

No No PORTA =
0x08

Test Timers

Yes

No PORTA =
0x0A

Test Capture/Compare
module

Yes

No

PORTA =
0x0C

Test PWM

Yes

No
PORTA =

0x0E

Test Flash Memory

Yes

NoPORTA =
0x10

Test EEPROM

Yes

NoPORTA =
0x12

Test RAM

Yes

No

Normal Mode
Run normal application

program
No

No

Yes

Yes

Fig. 11. The flowchart of the complete test program of the HYBST strategy for Microchip PIC microcontrollers.

ELECTRONICS, VOL. 22, NO. 2, DECEMBER 2018 67

The test program is composed of several test subroutines,
stored in the flash memory of the microcontroller. Test subroutines
are based on the ISA of the microcontroller. The emulated TPG
of the HYBST provides the required test patterns for testing
each internal module of the microcontroller. Test response of
each internal module is propagated to the SM-HBST for test
response compaction through GPIO pins of the microcontroller.
Test subroutines were written in mikroC compiler and were
simulated in Proteus 7 professional.

A. GPIO test
GPIO pins of the microcontroller allow observing and contro

lling modules of the microcontroller. Some pins are multiplexed
with alternate functions. For all ports, the data direction register,
called the TRIS register, controls the directions of I/O pins
(either input or output). In this test, GPIO pins (PORTB, PORTC
and PORTD) are set output ports. Then, test subroutine sends
exhaustive test patterns to these ports. It is noted that some of
microcontroller ports are used in other tests, shown in the next
sections. Other ports like PORTA and PORTE operate in the
input mode to help in running test subroutines and swapping the
operation between the test mode and the normal mode. The GPIO
test is designed and implemented using the HYBST strategy
only. Reference signatures of the GPIO test, based on the SM-
HBST, are shown in Table VIII (Last two columns of the table).

Table IX shows the statistics of the GPIO test for the HYBST
strategy in terms of memory utilization and the total number of
clock cycles for both PIC16F877 and PIC18F452. GPIO pins
cannot be tested using the SBST strategy.

Table VIII
Reference signatures of the CPU test and GPIO test

signatures of the CPU test signatures of the GPIO test

Port PIN PIC
16F877

PIC
18F452

PIC
16F877

PIC
18F452

PORTD

0 4F461D 3C2EAD FFB597 98A6B8
1 207353 F2C053 4B4474 30B502
2 16CCD1 86F82A 15C0F5 C40F5E
3 F5C88A 9AA92E 803D50 8077CC
4 589ED2 4BDB14 4E4EAF A0DC17
5 19F564 243FD2 53F0E0 9A5D2C
6 449194 8EF7CD 00E9F9 CB508C
7 AD4496 EB5A81 3F4772 7F1705

PORTB

0 77B646 6E592F
1 B3FF0A EF6287
2 38714E 5D5B1D
3 046D41 1AD23C
4 188AE6 DF0D0E
5 352BC7 6C503A
6 FD55AC 5F26C3
7 A5F29A F341F5

PORTC

0 51F32A DC2A3F
1 132938 371FEC
2 7E08EF 442883
3 AA24AD 3EEEF0
4 725B95 9AD2DA
5 667634 746187
6 E22CDD D352F1
7 ADE6ED D4FE96

Table IX
Statistics of the GPIO Test for Both PIC16F877 and PIC18F452

GPIO test Unit
HYBST

PIC16F877 PIC18F452
RAM utilization Byte 16 4.34 % 21 1.36 %
Flash Memory utilization Word 37 0.45 % 56 0.17 %
Clock cycles Clock cycle 5,232 6,224

B. CPU test
The central processing unit (CPU) is the brain of the micro

controller. It is responsible for fetching the correct instruction
for instruction decoding and then executing it. The CPU
executes the instruction to control the microcontroller operation.
It controls the address bus of the program memory, the address
bus of the data memory, and the accesses to the stack. The CPU
is structurally divided into small sub-modules. In this paper, the
test subroutine structurally divides the CPU into the ALU, the
shift unit (SHU), and the 8*8 multiplier. The ALU performs
arithmetical and logical operations, and controls status bits,
found in the STATUS register. The result of some instructions
forces status bits to a value depending on the state of the result.

In the CPU test, the test subroutine is designed and is
then implemented to functionally test the CPU of the micro
controller for both the HYBST strategy and the SBST stra
tegy. The CPU test is based on the divide-and-conquer stra
tegy and the exhaustive testing. The CPU instructions are
selected based on the above three criteria, presented in
section II. Instruction set IM-CPU,O from Table II and Table III
can test the CPU module. Moreover, the instructions are not
randomly chosen, but they are carefully crafted in order to test
the desired sub-modules of the CPU. Faulty sub-modules are
detected by applying the proper instruction, and then the results
of this instruction must be directly sent to the SM-HBST for
signature generation and comparison. The control unit is already
tested during the CPU test.

Some selected instructions are used to test status bits after
arithmetic and logic operations. It is found from the extracted
information that microcontroller families have three basic
operations. They are word-oriented file register operations,
literal and control operations, and bit-oriented file register
operations. Some instructions in IM-CPU,O do the same function
with different arguments. Only one form of these instructions
is used. Therefore, thirteen instructions are used to test the full
capabilities of the CPU (the PIC16F877 has not a multiplier). For
example, the IM-CPU,O set has ADDWF and ADDLW instructions.
Both instructions make an addition but the first instruction
adds the working register to any other register and the second
instruction adds literal to the working register (the working
register is the accumulator in the microprocessors).

Reference signatures of the CPU test are taken by the SM-
HBST through PORTD port, shown in Table VIII (Middle two
columns of the table). Table X and Table XI compare between
the HYBST strategy and the SBST strategy in terms of memory
utilization and the total number of clock cycles for both
PIC16F877 and PIC18F452 to finish the target test. The CPU
test process is outlined in List 1.

68 ELECTRONICS, VOL. 22, NO. 2, DECEMBER 2018

From Table X and Table XI, the HYBST strategy in the CPU
test achieves a significant amount of reduction in the memory
utilization and the test application time. In the SBST strategy,
the test application code in the flash memory is responsible for
generating the test patterns as the TPG and compacting the test
response using either emulated LFSR or emulated MISR as the
TRC for signature generation. Either the emulated LFSR or the
emulated MISR is a group of instructions that increases the size
of the test application code, shown in Table X and Table XI.
Every single shift of the binary states of either the emulated
LFSR or the emulated MISR consumes large clock cycles. The
MISR simultaneously compacts the test response of the selected
module, and the LFSR individually compacts the test response
of each output. Therefore, the TRC code as the MISR is
executed 3328 times (thirteen instructions * 256), and the TRC
code as the LFSR is executed 26624 times (thirteen instructions
* 256 * 8). Therefore, the test application time in the case of the
LFSR is greater than the test application time in the case of the
MISR. In addition, the on-chip test application code collects the
test responses and stores them in the data memory after being
compacted into signatures using the TRC code. The usage of the
data memory during the CPU test will delay the test process and
hence the number of clock cycles is dramatically increased in
the case of the SBST strategy.

Table X
Statistics of the CPU Test for PIC16F877

CPU test Unit HYBST
SBST with TRC using
MISR LFSR

RAM utilization Byte 16 4.34% 40 10.86% 84 23.36%
Flash Memory utilization Word 49 0.59% 2235 27.28% 2431 29.67%
Clock cycles Clock cycle 20,500 41,645,103 76,081,267

Table XI
Statistics of the CPU Test for PIC18F452

CPU test Unit HYBST SBST with TRC using
MISR LFSR

RAM utilization Byte 21 1.36% 47 3.05% 93 6.05%
Flash Memory utilization Word 92 0.28% 3934 12.00% 4788 14.61%
Clock cycles Clock cycle 25,576 42,365,535 82,430,191

Extract information about CPU modules (ALU – SHU – Multiplier if
exist), then
for (each CPU module MCPU)

 {
 for (every operation Є OM-CPU)
 {
 Determine IM-CPU,O
 Select I Є IM-CPU,O, using controllability and observability criteria
 Apply Exhaustive test patterns for all IM-CPU,O
 Send test response to PORTD pins
 Acquire and compact test response using the SM-HBST
 }

 }
 Evaluate compacted test response using the SM-HBST.

Listing 1. CPU test process

In the HYBST strategy and during the CPU test, the
instructions in IM-CPU,O use two operands (registers). One of

these registers is the working register and the other register
is the PORTD, connected to the SM-HBST. In GPIO test, the
exhaustive test patterns are applied to the working register
only and the result on any instruction is saved in the register
of the PORTD. The result of every instruction in the CPU test
is directly sent to the PORTD, connected to the SM-HBST for
signature generation. The hardware-based TRC in the SM-HBST
consumes only single clock cycle every single shift of the binary
states, shown in Fig. 7(b) (section III). In addition, the number of
memory access is reduced by using the SM-HBST and there is
no need to access the data memory of the microcontroller during
the execution of the hardware-based TRC to store the generated
signatures. Therefore, the memory access that consumes
large clock cycles is not required. For 8*8-multiplier test, the
exhaustive test patterns are applied to the working register
only and the register of the PORTD takes the same value. The
result of the multiplication is sent to the PORTD. Therefore,
the HYBST strategy that uses the hardware-based TRC in the
SM-HBST consumes a small number of clock cycles compared
to the software-based TRC of the SBST strategy during the CPU
test.

C. USART test

The USART module is known as the serial communication
interface (SCI). The USART can be configured as a full
duplex asynchronous system that can communicate with
peripheral devices such as personal computers. In addition, it
can be configured as a half duplex synchronous system that
can communicate with peripheral devices. The test subroutine
of the USART test is designed and is then implemented to test
the functionality of the USART module. First, it sets the baud
rate of the USART module to 1200 bps. Then, the test patterns
(0x00 – 0xFF – 0x33 – 0xCC – 0x0F – 0xF0) are sent to the
transmitter (TX) of the USART module and loop it back again
through MAX232 chip outside the microcontroller to receive
it through the receiver (RX) of the USART module. These
received test patterns are propagated to the PORTD. In addition,
the signatures on each pin of the PORTD, a signature on TX pin,
and a signature on RX pin are measured using the SM-HBST
(RX pin and TX pin is multiplexed with the PORTC). Reference
signatures, generated by the SM-HBST, are shown in Table XII,
and the USART test process is outlined in List 2.

Table XII
Reference signatures of the USART

Ports PIN PIC16F877 PIC18F452
PORTD 0 8FE6ED 470BC1

1 024B37 BD5481
2 370115 70EC7A
3 BAACCF 8AB33A
4 28555F 75D341
5 A5F885 8F8C01
6 90B2A7 4234FA
7 1D1F7D B86BBA

PORTC RX 731F53 8AABC8
TX 731F53 8AABC8

ELECTRONICS, VOL. 22, NO. 2, DECEMBER 2018 69

Configure USART, then
Set baud rate to 1200 bps, Data to 0x00, and PORTD to 0
Loop
 {
 Send data through transmitter pin
 Check for received data from receiver pin
 If (received data = sent data) then
 Send received data to PORTD.
 Else
 Send received data to PORTD, set error, and exit loop
}
Change data and continue loop until test patterns are sent through
transmitter pin
Acquire and compact test response using the SM-HBST
Evaluate compacted test response using the SM-HBST

Listing 2. USART test process

Table XIII and Table XIV compare between the HYBST
strategy and the SBST strategy in terms of memory utilization
and the total number of clock cycles for both PIC16F877 and
PIC18F452 to finish the USART testing. From Table XIII and
Table XIV, the HYBST test strategy in the USART test achieves
a significant amount of reduction in the memory utilization and
the test application time.

Table XIII
Statistics of the USART Test for PIC16F877

USART test Unit HYBST SBST with TRC using
MISR LFSR

RAM utilization Byte 23 6.25% 40 10.86% 89 24.18%
Flash Memory utilization Word 213 2.60% 2292 27.97% 2528 30.85%
Clock cycles Clock cycle 70,852 176,043 242,219

Table XIV
Statistics of the USART Test for PIC18F452

USART test Unit HYBST
SBST with TRC using
MISR LFSR

RAM utilization Byte 28 1.82% 45 2.92% 96 6.25%
Flash Memory utilization Word 354 1.08% 4002 12.21% 4876 14.88%
Clock cycles Clock cycle 67,416 164,095 232,715

D. Timer test
From information extraction phase, PIC microcontroller

families have at least one basic timer module. It can be used
as timers/counters. These timers have different sizes (8 bits or
16 bits) and different prescalers. This test subroutine is designed
and implemented to functionally test the timers based on two
different prescalers. For each timer, special function registers
(SFRs) are configured for timer operation using the internal
clock cycles. The initial value and the prescaler (1:1, 1:2 and
1:4) are set. The timer is started for counting and PORTB pins
are set to HIGH state from LOW state. When the overflow of
the timer is occurred, then PORTB pins are deactivated to LOW
state.

During this test, the on-time is measured as a signature in
the SS mode of the SM-HBST. This test subroutine, based on
the HYBST strategy, cannot be implemented in the case of the
SBST strategy because the timers must be externally tested

through the GPIO pins. The timer test process is outlined in
List 3. Reference signatures, generated by the SM-HBST
in mode SS (mode 4 or mode 5), are shown in Table XV.
Table XV illustrates the measured on-time pulse in µs range
(mode 4) for both PIC16F877 (has three timers) and PIC18F452
(has four timers) and compares them with the expected pulse
duration from the calculations based on the internal clock cycles
of the corresponding microcontroller [6].

Configure Timer presale
Enable timer interrupt
Start timer
Set GPIO pin to high
Loop
{
 Watch timer interrupt to check if over flow or not
 If (timer over flow)
 Exit loop
 }
Reset GPIO pin to low
Acquire on-time pulse from a GPIO pin using the SM-HBST

Repeat this process but using different prescalers and apply it to all timers

Listing 3. Timer test process

Table XVI shows the statistics of the timer test for the
HYBST strategy in terms of memory utilization and the total
number of clock cycles for both PIC16F877 and PIC18F452.
Timer modules cannot be tested using the SBST strategy.

Table XV
Reference Signatures of the Timers and the CCP

Timer/
Prescale

PORT PIN
/ PIC PIC16F877 Expected PIC18F452 Expected

Timer test signatures
TIMER 0/ (1:2)

PO
R

T
B

0 006930 μs 006895 μs 006906 μs 006895 μs
TIMER 0/ (1:4) 1 013828 μs 013791 μs 013720 μs 013791 μs
TIMER 1/ (1:1) 2 003506 μs 003447 μs 003520 μs 003447 μs
TIMER 1/ (1:2) 3 006933 μs 006895 μs 006825 μs 006895 μs
TIMER 2/ (1:1) 4 003466 μs 003447 μs 003479 μs 003447 μs
TIMER 2/ (1:4) 5 013787 μs 013791 μs 013801 μs 013791 μs
TIMER 3/ (1:1) 6 003519 μs 003447 μs
TIMER 3/ (1:2) 7 006826 μs 006895 μs

CCP test signatures
TIMER2 PWM1 E70FD2 9F5EB5
TIMER2 PWM2 11C8AC 272632
TIMER1 COMP 006873 μs 006895 μs 003446 μs 003447 μs
TIMER1 COMP 006873 μs 006895 μs 003446 μs 003447 μs

Table XVI
Statistics of the Timer Test for PIC16F877 and PIC18F452

Timer test Unit
HYBST

PIC16F877 PIC18F452
RAM utilization Byte 16 4.34% 23 1.49%
Flash Memory utilization Word 98 1.19% 244 0.74%
Clock cycles Clock cycle 14,680 17,796

E. Capture/Compare/PWM (CCP) test
Both microcontroller families contain two CCP modules,

used together with the timers tested in timer test. The CCP
modules are identical in operation, with the exception of the
operation of the special event trigger. Different CCP modes

70 ELECTRONICS, VOL. 22, NO. 2, DECEMBER 2018

depend on timers in the microcontroller. Each CCP module can
operate in the following modes:

• Capture mode: The CCP module captures the value of
Timer1 when an external event occurs in CCPx pin.

• Compare mode: The register in the CCP module stores a
number (16-bit), compared to the value in Timer1. The
result of the comparison may generate an event that may
include a change in the CCPx pin.

• Pulse width modulation (PWM) mode: The CCP module
and Timer2 make up a PWM modulator whose output is
located in CCPx pin.

The test subroutine of the CCP test is designed and
implemented to functionally test CCP modules in Compare and
PWM modes only, based on the HYBST strategy. CCP modules
are not tested in all modes because timers were fully tested before
in the timer test. First, CCP modules are configured to operate in
the PWM mode where PWM1 and PWM2 are configured to work
at frequency 5 kHz with 50% duty cycle. After that, CCP modules
are configured to operate in the compare mode. Timer1 is started
to count, and its value is then compared with CCP modules
until it reaches these known values. Reference signatures of
CCPs, based on the SM-HBST in both modes of operations, are
taken from PORTC.CCP1 pin and PORTC.CCP2 pin, shown in
Table XV. The CCP module test process is outlined in List 4.

Table XVII shows the statistics of the CCP test for the
HYBST strategy in terms of memory utilization and the total
number of clock cycles for both PIC16F877 and PIC18F452.
The CCP module cannot be tested using the SBST strategy.

Configure CCPx registers to work in compare mode
Initialize the value of timer1 and enable interrupt
Start timer
Set PORTC.CCPX to HIGH
Loop
 { Watch timer1 until reaching compare value
 If (timer1 = compare value)

 Exit loop }
Reset PORTC.CCPX to LOW
Evaluate CCPx pin output using the SM-HBST
Repeat this process for CCPx
Configure CCPx registers to work in the PWM mode
Initialize PWMx duty cycle to 50% of 5 KHz clock
Start PWMx
 Watch PWMx output using the SM-HBST
Stop PWMx

Listing 4. CCP module test process.

Table XVII
Statistics of the CCP test for PIC16F877 and PIC18F452

CCP test Unit
HYBST

PIC16F877 PIC18F452
RAM utilization Byte 20 5.43% 25 1.62%
Flash Memory utilization Word 356 4.34% 624 1.90%
Clock cycles for PWM Clock cycle 8,828 6,776
Clock cycles for COMPARE Clock cycle 52,292 52,264

F. Memory Test
Microcontrollers have three main memory organization; the

flash memory (program memory), the EEPROM and the data
memory. Each memory block has its own bus as in Harvard
architecture [6], so that access to each block can occur during the
same clock cycle. The data memory can further be broken down
into the general-purpose RAM and Special Function Registers
(SFRs). The SFRs are used to control the peripheral modules
found in the microcontroller. The RAM are used to store data
that microcontroller needs during its normal operation. This
RAM can be divided into smaller banks, also.

1. Flash Memory Test: The Flash memory is an important
module in a microcontroller chip, because it stores the
application program and the test program. Microcontroller
modules are going to be tested after the application program and
the test program are correctly downloaded. This test is divided
into two steps. In step 1, run a C++ program, written on Visual
Studio 2010 package, on a personal computer. This program
reads the hexadecimal (Hex) file words of the application
program and the test program, generated from the mikroC
compiler. Then, the Hex file is compacted based on the MISR
with primitive polynomial x8 + x6 + x5 + x4 + 1, for the reference
signature generation [1], [6]. The reference signature will be
stored in the last location in the EEPROM. In step 2, the CPU of
the microcontroller will read the data word of the flash memory
and the data word is compacted using the same MISR. After
that, the generated measured signature will be compared with
the reference one, stored in the EEPROM. If both signatures are
the same, then the application program and the test program is
successfully downloaded and the flash memory is successfully
tested. This test subroutine is designed and is then implemented
for both HYBST strategy and SBST test strategy.

2. RAM Test: J. V. De-Goor and Z. Al-Ars introduced many
functional fault models (FFMs) for memories like static faults
and dynamic faults [35]-[36]. Based on divide-and-conquer
strategy, the RAM module is divided into smaller banks and
each bank is individually tested. In the case of the PIC16F877,
the RAM can be divided into four smaller bank and twelve
banks for the PIC18F452. Then, each bank is individually tested
using March test algorithms [37] because of their simplicity and
linearity with the memory size. The March test can be defined
as a sequence of March elements, where a March element is a
sequence of memory operations sequentially performed on all
memory cells. In a March element, the way from one cell to
the next one is specified by the address order. For some March
elements, the address order can be chosen as increasing or
decreasing. In a March element, it is possible to perform a write
0 (W0), a write one (W1), a read zero (R0) and a read one (R1).
The zero and one after read operations represent the expected
values of the read on the output. An example of a March element
is ↑ (R0; W1), where all memory cells are accessed in an
increasing address order while performing R0 then W1 on each
cell, before continuing to the next cell. By arranging a number of
March elements one after the other, a March test is constructed.

The RAM test is designed and implemented based on
March AB algorithm. March AB {↨(W0); ↑(R0;W1;R1;W1;

ELECTRONICS, VOL. 22, NO. 2, DECEMBER 2018 71

R1); ↑(R1;W0;R0;W0;R0); ↓(R0;W1;R1;W1;R1); ↓(R1;W0;
R0;W0;R0); ↨(R0)} was introduced by S. Carlo, A. Bosio, G.
Natale, and P. Prinetto [37]. Their March test targets realistic
memory static linked faults and dynamic unlinked faults in
SRAMs and has a test length with a complexity of 22n. Here
the test subroutine, based on March test AB, is constructed.
(In addition, it is possible to extend this test subroutine to any
March test [38].) The test response from the RAM is propagated
through the PORTC (GPIO pins) to the SM-HBST for signature
generation.

Table XVIII contains reference signatures of the RAM test
using March AB, generated by the SM-HBST. The data bus of
each RAM bank is propagated to PORTC. The data bus is 8-bit
with eight same signatures on each pin of PORTC. For simplicity,
only single signature will be presented for each RAM bank.

Table XVIII
RAM test Signatures Based on March AB

Module RAM
Bank

PIC
16F87X

PIC
18F4X2

RAM
Bank

PIC
18F4X2

RAM

1 0438F8 EFF5D9 7 08E472
2 B300AE 511ECC 8 B2691B
3 CFB46B A83A68 9 C3162B
4 379AAD BA8630 10 A5A126
5 A33AFC 11 DFB602
6 9EC7E8 12 93B255

Table XIX and Table XX compare between the HYBST
strategy and the SBST strategy in terms of memory utilization
and the total number of clock cycles for both PIC16F877 (368
byte divided into 4 parts) and PIC18F452 (1536 byte divided
into 12 parts) to finish RAM test using March AB. From
Table XIX and Table XX, the HYBST strategy in the RAM test
using March AB achieves the reduction in memory utilization
and the test application time except in the RAM utilization in
Table XX.

Table XIX
Statistics of the RAM Test Using March AB for PIC16F877

RAM test Unit HYBST
SBST with TRC using

MISR LFSR
RAM utilization Byte 16 4.34% 16 4.34% 16 4.34%
Flash Memory utilization Word 200 2.44% 336 4.10% 336 4.10%
Clock cycles Clock cycle 279,668 531,399 532,039

Table XX
Statistics of the RAM Test Using March AB for PIC18F452

RAM test Unit HYBST
SBST with TRC using

MISR LFSR
RAM utilization Byte 23 1.49% 21 1.36% 21 1.36%
Flash Memory utilization Word 302 0.92% 528 1.61% 528 1.61%
Clock cycles Clock cycle 1,221,368 2,071,891 2,071,891

3. EEPROM Test: The EEPROM is read and is written du
ring normal operation. This memory is not directly mapped
in the register file space. Instead, it is indirectly addressed
through the SFRs. There are four SFRs used to read and to

write this memory. These registers are EECON1, EECON2
(not a physically implemented register), EEDATA and EEADR.
User program can use the EEPROM to store the important data
during the application run and to read it again after the end of
the application. First, the test subroutine reads the data from
EEPROM locations. Then, the test subroutine stores the data
into a temporary location before testing this module.

Since the large delay (20 ms) is required between the
written data cycle of the EEPROM and the read data cycle of
the EEPROM, therefore the required number of clock cycles is
large to deal with the SM-HBST. Therefore, the EEPROM test
subroutine was implemented based on a simple marsh algorithm
with low time complexity. It is the modified algorithmic test
sequence (MATS) algorithm that detects all combination of
stuck-at faults (SAF) in RAMs and has a test length with a
complexity of 4n [39]-[40]. MATS test sequence is {↑(W0);
↑(R0,W1); ↑(R1)} where the EEPROM is internally tested and
the data results are sent for validation.

The measured signature in the HYBST strategy is calculated
inside the microcontroller like the SBST strategy. Therefore,
from Table XXI and Table XXII, there is no improvement in the
memory utilization and no reduction in the total test application
time for both PIC16F877 and PIC18F452 to finish the EEPROM
test.

Table IV XXI
Statistics of the EEPROM Test using MATS for PIC16F877

EEPROM test Unit HYBST
SBST with TRC using

MISR LFSR
RAM utilization Byte 22 5.97% 22 5.97% 22 5.97%
Flash Memory utilization Word 190 2.32% 190 2.32% 190 2.32%
Clock cycles Clock cycle 15,493,952 15,493,951 15,493,951

Table XXII
Statistics of the EEPROM Test using MATS for PIC18F452

EEPROM test Unit HYBST
SBST with TRC using

MISR LFSR
RAM utilization Byte 27 1.75% 27 1.75% 27 1.75%
Flash Memory utilization Word 316 0.96% 316 0.96% 316 0.96%
Clock cycles Clock cycle 15,445,035 15,445,035 15,445,035

G. Comparisons between the HYBST and the SBST
Test subroutines were individually investigated for testing

all microcontroller modules in the previous sections. In this
section, all test subroutines are merged together in one complete
test program. The effectiveness of the complete test program
using the HYBST strategy and the SBST strategy will be
evaluated on two Microchip® microcontrollers (PIC16F877A
and PIC18F452). Table XXIII and Table XXIV show the
comparison of the complete test program between the HYBST
strategy and the SBST strategy, based on the emulated LFSR
and the emulated MISR as the TRC. These tables present the
statistics of the complete test program such as the memory
utilization (data memory, and flash memory), the test application
time (the number of clock cycles taken to finish the complete
test), and the testability of microcontroller modules (the number
of tested modules in a microcontroller).

72 ELECTRONICS, VOL. 22, NO. 2, DECEMBER 2018

Table XXIII
Statistics of the Complete Test Program for PIC18F452

Microchip®
PIC18F452 Unit HYBST

SBST with TRC using

MISR LFSR

RAM utilization Byte 30 1.95% 47 3.06% 94 6.12%
Flash Memory
utilization Word 2326 7.09% 5592 17.06% 6682 20.4%

Clock cycles Clock
cycle 21,112,792 70,023,259 112,101,595

Tested Modules All Passed Timers, GPIO and CCP Failed

Table XXIV
Statistics of the complete test program for PIC16F877

Microchip®
PIC16F877 Unit HYBST

SBST with TRC using

MISR LFSR

RAM utilization Byte 27 7.33% 44 11.95% 93 25.27%
Flash Memory
utilization Word 1663 20.3% 3568 43.55% 3897 47.57%

Clock cycles Clock
cycle 25,600,168 78,348,171 114,734,099

Tested Modules All Passed Timers, GPIO and CCP Failed

Performance enhancement of the HYBST strategy is shown
in Table XXV. The comparisons between the HYBST strategy
and the SBST strategy based on the emulated LFSR and the
emulated MISR as the TRC present the superiority of the
presented HYBST strategy over the SBST strategy. It achieves
a significant amount of reduction in the memory utilization
and the test application time. Besides, the fault coverage of the
HYBST strategy is greater than the other SBST strategies.

Table XXV
Performance Enhancement Based on the HYBST Test Strategy

Microcontroller PIC 18F452 PIC 16F877
SBST with TRC using SBST with TRC using

LFSR MISR LFSR MISR

RAM reduction 68.08% 36.17% 70.96% 38.63%
Flash memory
reduction 65.19% 58.40% 57.32% 53.40%

Clock cycle
reduction 81.16% 69.84% 77.68% 67.32%

From Table XXV, the superiority of the HYBST strategy in
the memory utilization is achieved due to the reduction of the
RAM utilization by 70.96% and 38.63% for PIC16F877 and by
68.08% and 36.17% for PIC18F452. In addition, the HYBST
strategy reduces flash memory utilization by 57.32% and 53.40%
for PIC16F877 and by 65.19% and 58.40% for PIC18F452. The
superiority of the HYBST strategy in the total number of clock
cycles is achieved due to the reduction of the test application
time by 77.68% and 67.32% for PIC16F877 and by 81.16% and
69.84% for PIC18F452.

From Table XXIII, Table XXIV, and Table XXV, the
complete test program in the PIC18F452 utilizes larger memory
space than in the PIC16F877 because the PIC18F452 has
more features than the PIC16F877 especially in timers and
the multiplier that needs more effort to test them. Since the
PIC18F452 achieves from 10-15 MIPS, and the PIC16F877

operates in 5 MIPS [6], [31], therefore the complete test program
of the PIC18F452 consumes lower test application time because
of its higher performance rate. In addition, the HYBST strategy
can test all modules and the SBST strategy cannot test timers,
GPIO pins, and CCP modules because the SBST strategy cannot
properly test GPIO pins of the microcontroller without using the
SM-HBST strategy.

In the next section, the integrated test strategy of the
microcontroller testing on the printed circuit board (PCB) for
fault diagnosis indicates a real practical test strategy.

V. Fault Diagnosis of the Circuit Board Including
Microcontroller Chip

Fault diagnosis of the CUT board including a microcontroller
chip for correct operation is an important issue. It is required to
apply the proper test patterns to the inputs of the CUT board
and to analyze the test response for fault diagnosis. During the
fault diagnosis, the faulty source components are located so that
the CUT board is returned back to the service. The testing of
a microcontroller chip in the board level requires integrating
test strategies that test random logic integrated circuits (ICs)
based on the SM-HBST strategy and test a microcontroller chip
based on the HYBST strategy. The following integrated test
strategy consists of two main phases; the CUT preparation and
preprocessing phase and the testing and fault diagnosis phase.

A. CUT preparation and preprocessing phase
In this phase, the schematic diagram of the CUT should be

defined. To clarify the idea of this phase, a simple CUT board
is selected, shown in Fig. 12. It consists of three main parts.
The first part is random logic part that consists of one decoder
(74LS138 - U7), and two 4-Bit magnitude comparators (74LS85
- U3, U5). The second part is the microcontroller part that
consists of the microcontroller chip (PIC16F877 or PIC18F452),
and the integrated circuit (MAX232 - U8). Both the application
program used in the normal mode and the test program used in
the test mode are loaded to the microcontroller. The third part is
the design for testability (DFT) part that enables the CUT board
to operate in two operation modes; normal mode and test mode.
The DFT part has three multiplexer ICs (74LS157 - U4, U6, U9)
that partition the microcontroller part from the random logic part
in the test mode. The DFT part enables the testing of each part
in the CUT board with its own test strategy to reduce the testing
difficulty, and to assist the fault isolation. In the normal mode,
the CUT board does its normal operation according to industrial
applications.

The CUT board layout is generated from the circuit layout
tool (ORCAD layout), shown in Fig. 13. The layout netlist
file that defines a component list and a complete description
of the connectivity nets between the components on the PCB
is generated. From the layout netlist file, different related
files are generated. These files will be very useful in the next
phase to locate the faulty source components. The Node file is
constructed from the layout netlist file. It holds node number,
node name such as U04P04-74LS157 (it means IC number in

ELECTRONICS, VOL. 22, NO. 2, DECEMBER 2018 73

the schematic diagram U04, pin number in the IC 04, and IC
name 74LS157), node type (input node or output node), and the
status of the node test. The Dependency file is also constructed,
and holds output nodes such as U04P04-74LS157 and input
nodes affect this output node in the same IC {U04P01-74LS157,
U04P02-74LS157, U04P03-74LS157, U04P015-74LS157}.
After constructing dependency file, the connectivity file will be
created from the layout Netlist file. It holds the output nodes,
connected to input nodes of other ICs. It is like the output
node U04P04-74LS157, connected to the input node U05P01-
74LS85. These files are related to each other. When the output
node, U04P04-74LS157, in the node file is chosen, the related
information to this node appears in the dependency file and in
the connectivity file.

This phase ends by capturing reference signatures for
all nodes of the golden CUT board with the aid of the SM-
HBST strategy. The capturing reference signatures can be
achieved for the random logic part and DFT part according to
section III, and then the microcontroller part according to section
IV. This phase is executed only once for every new CUT board.

B. Test and fault diagnosis phase
This test phase achieves the testing of the CUT board in

two different directions. First direction is to test random logic
part and the DFT part. The SM-HBST generates required test
pattern signals, propagated through these ICs, and then it detects
the stream binary data, generated from a target node on the
CUT board by the test probe. The measured signature of that
node, based on the test strategy in section III, is generated.
The other direction is to test the microcontroller part. The SM-
HBST generates required test signals to select the test routines
of the target microcontroller module. The stream binary data,
generated from a target node on the microcontroller part, is also
captured by the SM-HBST to generate the measured signature of
that node, based on test strategy in section IV.

After the measured signatures of every node in the CUT
board are generated, they are automatically compared with
the corresponding reference signatures, captured using the
previous phase. If the measured signature of a node is equal to
a corresponding reference one, the test status flag of that node
is set true (good node), and if this signature is not equal to a
corresponding reference one, the test status flag of that node is
set false (bad node).

Fig. 12. Schematic diagram of the CUT.

 (a) The CUT layout fornt plane. (b) The CUT layout back plane. (c) The printed circuit board of the CUT.
Fig. 13. The CUT board.

74 ELECTRONICS, VOL. 22, NO. 2, DECEMBER 2018

When the fault is applied to the pin U03P06-74LS85 in the
random logic part, it propagates from the source faulty node
(pin) to the multiplexer U9 pin 2 (U09P02). In the test mode,
this fault cannot propagate to the microcontroller part (input
PORTE), shown in Fig. 14. The node U09P02 is considered
the output of the random logic part in the test mode. The SM-
HBST generates required test patterns in the test mode 0, and
the measured signatures of every node in the random logic
part are captured. All output nodes that have false test status
are stored in a temporary file as bad nodes. If this file has no
bad nodes, then this CUT board is fault-free, and if this file
has at least one bad node, then this CUT board is faulty. The
bad nodes of the CUT board shown in Fig. 14 are shown in
Table XXVI with the shadow rows. They are {U03P06, U05P05,
U05P06, U05P07, U07P07, U07P08, U07P09, U07P10,
U07P11, U07P12, U07P13, U07P14, U07P15}.

The dependency file and connectivity file, generated from
the previous phase, are utilized to track each bad node in the
temporary file to get the source faulty node (nodes). For
example, the bad node U07P15-74LS138 in the temporary file
has the dependency set, DU07P15 {U07P01, U07P02, U07P03,
U07P04, U07P05, U07P06}. If the node U07P06-74LS138
that belongs to DU07P15 is connected to the node U05P06-
74LS85 in the temporary file, skip the node U07P15-74LS138
and another bad node in the temporary file is tracked. This
search processes until the source faulty node U03P06-74LS85
is determined. This node has the dependency set, DU03P06
{U03P01, U03P02, U03P03, U03P04, U03P09, U03P10,
U03P11, U03P12, U03P13, U03P14, U03P15}. All nodes in the
DU03P06 have no connection with any bad node. Therefore,
the node U03P06-74LS85 is selected as the source faulty node.
If the measured signature of the source faulty node is varying
from test cycle to another test cycle (flashing), and the measured
signature of any node in the temporary file is flashing, a short

circuit (bridging fault) among the nodes in the temporary file
may be occurred.

Table XXVI
Reference and measured signatures of tested nodes

of the random logic part

No. Node Name Reference (Good)
signature Measured signature Status

226 U03P05-74LS85 B0B300 0 - 0 B0B300 0 - 0 True
227 U03P06-74LS85 25FA0A 0 - 0 299BD5 0 - 0 False
228 U03P07-74LS85 BCD2DF 0 - 0 BCD2DF 0 - 0 True
241 U04P04-74LS157 82775E 0 - 0 82775E 0 - 0 True
244 U04P07-74LS157 413BAF 0 - 0 413BAF 0 - 0 True
246 U04P09-74LS157 A09DD7 0 - 0 A09DD7 0 - 0 True
249 U04P12-74LS157 D04EEB 0 - 0 D04EEB 0 - 0 True
251 U05P05-74LS85 8044B1 0 - 0 0B3009 0 - 0 False
252 U05P06-74LS85 4D5644 0 - 0 EF8624 0 - 0 False
253 U05P07-74LS85 E48920 0 - 0 CD2DF8 0 - 0 False
273 U06P04-74LS157 682775 0 - 0 682775 0 - 0 True
276 U06P07-74LS157 B413BA 0 - 0 B413BA 0 - 0 True
278 U06P09-74LS157 DA09DD 0 - 0 DA09DD 0 - 0 True
281 U06P12-74LS157 ED04EE 0 - 0 ED04EE 0 - 0 True
292 U07P07-74LS138 680659 0 - 0 3E6B17 0 - 0 False
294 U07P09-74LS138 5147C1 0 - 0 69A611 0 - 0 False
295 U07P10-74LS138 D1F135 0 - 0 5385D7 0 - 0 False
296 U07P11-74LS138 1F0722 0 - 0 CB4EF9 0 - 0 False
297 U07P12-74LS138 A1990C 0 - 0 6A5924 0 - 0 False
298 U07P13-74LS138 8A29C0 0 - 0 9B24BD 0 - 0 False
299 U07P14-74LS138 A29B21 0 - 0 D29304 0 - 0 False
300 U07P15-74LS138 33CA26 0 - 0 036E91 0 - 0 False
321 U09P04-74LS157 299BD5 0 - 0 299BD5 0 - 0 True
324 U09P07-74LS157 000000 0 - 0 000000 0 - 0 True
326 U09P09-74LS157 299BD5 0 - 0 299BD5 0 - 0 True
329 U09P12-74LS157 299BD5 0 - 0 299BD5 0 - 0 True

Fig. 14. Schematic diagram of the faulty CUT propagation.

ELECTRONICS, VOL. 22, NO. 2, DECEMBER 2018 75

VI. Experimental results

This section presents the complete application of this hybrid
test strategy, applied to the CUT board in Fig. 14. In the normal
mode, the main input signals (NA0 to NA10), the master clear
(NMCLR), and the main clock oscillator (NOSC) are propagated
through the random logic part and the microcontroller part. The
presented hybrid test strategy does not depend on the embedded
application of the CUT board. It is applicable for any CUT
board including a microcontroller chip whatever its industrial
applications are.

In previous section, the fault was applied to the pin U03P06-
74LS85 in the random logic part. The reference (good) signatures
and the corresponding measured signatures of the CUT board
were captured and then stored in the database according to test
mode 0. In this section, the other fault is applied to the input pin
J03P26-RX-PIC18F452 in the microcontroller part.

To properly test the CUT board, it is required to go through
various modes and to connect the SM-HBST with the CUT
board. First, it is required to know some control signals for the
operation modes of the CUT board. The control input signal,
NEN, is connected to all multiplexers in the DFT part. It allows
the switch between the normal mode and the test mode. These
multiplexers can switch between main inputs of the CUT board
in the normal mode and the required test signals, generated
from the SM-HBST in the test mode. Multiplexers (U4 and
U6) switch the output port PORTB (pin 33 to pin 40) of the
microcontroller and the test pattern inputs (NTPG0 to NTPG7),
generated from the SM-HBST (GTPG(7:0)). The signal input,
NSW, enables the microcontroller operation in the normal mode.
Multiplexer U9 switches between the output signal generated
from the output of decoder U7 and the input signal NTDR0 that
enables the microcontroller part in the test mode. In addition,
multiplexer U9 switches between the master clear (NMCLR)
of the CUT, and the test clear (NCUT_CLR), generated from
the SM-HBST (CUT_CLR). It also switches between the clock
oscillator (NOSC) of the CUT board, and the test clock (NCUT_
CLK), generated from the SM-HBST (GCUT_CLK).

Signal NEN, NSW, and signal NTDR0 are connected to the port
PORTE (pin 8 to pin 10) of the microcontroller as an input port.
These signals, shown in Table XXVII, partition the CUT into two
main parts (the random logic part and the microcontroller part)
in the test mode. The inputs of the random logic part (NTPG0
to NTPG7, and NA0 to NA10) are connected to test signals,
generated from the SM-HBST (GTPG(18:0)). The SM-HBST
generates the required test patterns and the measured signatures
of target nodes according to test mode 0, explained in section
III. In the microcontroller part, the microcontroller receives an
input selection (NDr0 to NDR4) from port PORTA (pin 3 to pin
7) as an input port. This input selection is stimulated from the
SM-HBST as the deterministic test patterns (GTPG(42:47))
according to test mode 3 shown in Table V. These deterministic
test patterns are used to select the proper microcontroller module
for testing. Other microcontroller ports are set to be output ports
(PORTB, PORTC, and PORTD) to propagate the test response
to the SM-HBST for signature generation.

Table XXVII
Control signals for modes of the CUT operation

Control signals
Operation

NEN NSW NTDR0

0 0 X Disable the microcontroller operation in the normal
mode.

0 1 X Enable the microcontroller operation in the normal
mode.

1 X 1 Enable switching of the multiplexers in test mode
and enable the testing of the microcontroller part.

1 X 0 Enable switching of the multiplexers in test mode
and disable the testing of the microcontroller part.

The applied fault to the pin J03P26-RX-PIC18F452 in the
microcontroller part is examined. The fault is the open-circuit
in the output track on the CUT board between pin J03P26-RX-
PIC18F452 and pin U08P11-MAX232. It affects the USART
Receive part of the serial port connection. This leads to a number of
bad nodes in the serial port of the microcontroller part. The USART
test routine, presented in section IV, sends test patterns to the
USART transmitter pin J03P25-TX-PIC18F452 and loops it back
again through MAX232 chip to receive it from USART receiver
pin J03P26-RX-PIC18F452 (a short circuit through RS232).

Based on the CUT board shown in Fig. 14, Table XXVI shows
some tested nodes that include the reference and the measured
signatures of the random logic part, and Table XXVIII shows some
tested nodes that include the reference and the measured signatures
of the microcontroller part. Every tested node in Table XXVI has
a single reference signature, a single measured signature and a
single test status. However, in Table XXVIII, some external tested
nodes of the microcontroller have multiple reference signatures,
multiple measured signatures, and different test status according to
the testing of the selected module of the microcontroller.

Table XXVIII
Reference and measured signatures of tested nodes of the

microcontroller part
No. Node Name Reference Signature Measured Signature Status
73 J03P19-RD0-PIC18F452 98A6B8 PORTS 98A6B8 PORTS True
74 J03P20-RD1-PIC18F452 30B502 PORTS 30B502 PORTS True
75 J03P21-RD2-PIC18F452 C40F5E PORTS C40F5E PORTS True
76 J03P22-RD3-PIC18F452 8077CC PORTS 8077CC PORTS True
81 J03P27-RD4-PIC18F452 A0DC17 PORTS A0DC17 PORTS True
82 J03P28-RD5-PIC18F452 9AD2DA PORTS 9AD2DA PORTS True
83 J03P29-RD6-PIC18F452 CB508C PORTS CB508C PORTS True
84 J03P30-RD7-PIC18F452 7F1705 PORTS 7F1705 PORTS True
95 J03P19-RD0-PIC18F452 3C2EAD CPU 3C2EAD CPU True
96 J03P20-RD1-PIC18F452 F2C053 CPU F2C053 CPU True
97 J03P21-RD2-PIC18F452 86F82A CPU 86F82A CPU True
98 J03P22-RD3-PIC18F452 9AA92E CPU 9AA92E CPU True
99 J03P27-RD4-PIC18F452 4BDB14 CPU 4BDB14 CPU True
100 J03P28-RD5-PIC18F452 243FD2 CPU 243FD2 CPU True
101 J03P29-RD6-PIC18F452 8EF7CD CPU 8EF7CD CPU True
102 J03P30-RD7-PIC18F452 EB5A81 CPU EB5A81 CPU True
103 J03P19-RD0-PIC18F452 470BC1 USART 00F4BF USART False
104 J03P20-RD1-PIC18F452 BD5481 USART 00F4BF USART False
105 J03P21-RD2-PIC18F452 70EC7A USART 00F4BF USART False
106 J03P22-RD3-PIC18F452 8AB33A USART 00F4BF USART False
107 J03P27-RD4-PIC18F452 75D341 USART 00F4BF USART False
108 J03P28-RD5-PIC18F452 8F8C01 USART 00F4BF USART False
109 J03P29-RD6-PIC18F452 4234FA USART 00F4BF USART False
110 J03P30-RD7-PIC18F452 B86BBA USART 00F4BF USART False
111 J03P25-TX-PIC18F452 8AABC8 USART 8AABC8 USART True
112 J03P26-RX-PIC18F452 8AABC8 USART 299BD5 USART False

76 ELECTRONICS, VOL. 22, NO. 2, DECEMBER 2018

In Table XXVIII, nodes 73 to 76 and nodes 81 to 84,
generated from PORTD with PORTS status, test the GPIO
module. Nodes 95 to 102, generated from PORTD with CPU
status, test the CPU module, and nodes 103 to 110, generated
from the PORTD with USART status, test the USART module.
Shaded rows in Table XXVI and Table XXVIII show bad nodes,
resulted from the target fault in the microcontroller part besides
the applied fault in the random logic part.

Since the USART transmitter generates proper test patterns
from node J03P25-TX-PIC18F452 according to the USART
test, therefore the measured signature (8AABC8) is similar
to the reference signature (8AABC8). Due to the open-circuit
between pin J03P25-TX-PIC18F452 and pin U08P11-MAX232,
the measured signature of pin U08P11-MAX232 (299BD5)
is different from the reference signature (8AABC8). These
patterns return back again through MAX232 chip from node
U08P12-MAX232 and the microcontroller receives them from
USART receiver pin J03P26-RX-PIC18F452. Therefore, the
measured signature of pin J03P26-RX-PIC18F452 (299BD5)
will be different from the reference signature (8AABC8). The
test status of node J03P25-TX-PIC18F452 is a good node, but
the test status of node J03P26-RX-PIC18F452 is a bad node.
In addition, nodes 103 to 110, generated from PORTD, are bad
nodes in the USART test. However, the nodes generated from
PORTD in the GPIO test and the CPU test, are good nodes.
Therefore, the source faulty node of the microcontroller part
is node J03P26-RX-PIC18F452 of the USART module in the
microcontroller.

Discussion: In this paper, three main test strategies are
discussed. The first one is the HBST strategy. All testing system
will be outside the CUT board on the external ATE. It costs large
hardware overhead and large test application time to stimulate
the target fault in the CUT board, besides small DFT circuitry
is used to increase the controllability and observability of the
CUT board. Increasing the controllability and observability of
the CUT board assists the external ATE to properly apply the
TPG and to acquire the test response. The CUT board including
a microcontroller chip is a heterogeneous system with poor
accessibility, so its embedded modules need large application
time to properly apply test patterns. Therefore, the SBST
strategy is considered the second test strategy to resolve the test
cost of the HBST. The SBST strategy is mainly used to test large
microprocessors.

In the SBST strategy, the testing system including the TPG,
TRC, test controller, and testing evaluation will be emulated
using the software code inside the memory of the microprocessor
system. The cost of the testing system is based on the hardware
utilization, test application time, and the fault coverage. This
microprocessor system has large memory, and the usage of the
testing system inside this large memory does not utilize much
space in it. Therefore, the SBST is an efficient test strategy for
large microprocessors. However, when the SBST strategy is
applied to the microcontroller with limited memory space, the
cost of the hardware utilization is increased. No authors proposed
solution for this issue. The authors in this paper propose a new
hybrid test strategy to solve this issue, called the HYBST.

The cost of the testing system based on the HYBST strategy
is composed of three parts. The first part is the SM-HBST design
based on the FPGA implementation whereas the total gate
equivalent of the presented design on the FPGA is 34,373 gate
equivalent (equals 137,492 transistors) where the gate equivalent
unit is 2-input NAND gate that equals four transistors. The
second part is the used ICs in the DFT on the CUT board, and
the third part is the hardware utilization in the microcontroller.
The HYBST strategy is used to test the CUT board including
the microcontroller chip. It is required to make a comparison
between the number of transistors used in the testing system and
the CUT. This discussion can be concluded by what the expected
number of transistors in the microcontroller is.

From Table I and for the PIC18F452, the data memory
(SRAM) used is 1536 byte (1536 x 8 = 12288 bits). Every bit
of the SRAM cell needs six transistors. This leads to 73,728
transistors in the 12288 bits of the data memory. The excepted
number of transistors in the periphery circuitry is around
2,224 transistors according the memory design steps in [41].
Therefore, the total required transistors in the data RAM of the
PIC18F452 microcontroller is around 76,000 transistors. The
Flash memory that has 16 kword (word = 14 bits) is around
267,376 transistors [41]. The used EEPROM memory has 256
byte. It is around 2,648 transistors [41]. Therefore, the total
transistors in these three modules, only in the microcontroller
chip, are 346,024 transistors. From this estimation of the
expected number of transistors in the data memory (SRAM), the
flash memory, and the EEPROM memory, it exceeds the total
transistors in the FPGA implementation. If all microcontroller
modules are considered, the expected number of transistors in
the microcontroller will be greater than the CUT board.

The HYBST strategy is proposed to solve the testing cost
of the HBST strategy and the SBST strategy in the hardware
overhead, test application time and the fault coverage. If the test
cost of the HYBST strategy is compared to the test cost of the
SBST strategy for testing the microcontroller with small internal
memory, the memory utilization and test application time are
reduced besides increasing in the fault coverage. Adding FPGA
circuit board increases the hardware overhead in the case of the
HYBST strategy. However, the hardware overhead in the case
of the SBST strategy is the memory utilization only. If the test
cost of the HYBST is compared to the test cost of the HBST
strategy for testing the microcontroller with poor accessibility,
the hardware overhead is nearly the same but the test application
time is reduced besides increasing in the fault coverage.

The presented test strategy in this paper has some
limitations. The maximum frequency of the three-phase clocks
(GCLK_TPG, GCLK_CUT, and GCLK_SIG) from Table
IV is 4.17 MHz. Whereas, the maximum frequency of most
microcontrollers is greater than 4 MHz, therefore, the proposed
test strategy is not suitable for at-speed testing. In addition, and
due to the small numbers of input modules in the microcontroller,
the exhaustive testing is used to detect all combinational faults,
detected by single-pattern test generators without fault simulator
[1], [13]. Therefore, the proposed test strategy is not suitable
for the detection of the delay fault, detected by two-pattern test

ELECTRONICS, VOL. 22, NO. 2, DECEMBER 2018 77

generators without fault simulator [12]. It is required to expand
the following proposal to the two-pattern test generators,
presented in [12]. This extension will increase the required
hardware overhead in the memory utilization and will increase
the required number of the clock cycles.

Finally, in the EEPROM test, the large delay (20 ms)
between the written data cycle and the read data cycle increases
the required number of clock cycles to deal with the SM-HBST,
shown in Table XX and Table XXI. Therefore, the EEPROM test
subroutine was implemented based on a simple marsh algorithm
with low time complexity and low fault coverage. From Table
XX and Table XXI, there is no improvement in the memory
utilization and no reduction in the total test application time for
both PIC16F87X and PIC18F4X2.

VII. Conclusion

The HBST strategy is limited to test complex digital circuits
such as microcontrollers that have heterogeneous components
with poor accessibility. In addition, the SBST strategy is
efficient in the case of complex embedded processors. However,
for microcontrollers with small internal memories, the SBST is
limited in the memory utilization, and cannot test all its internal
modules and its GPIO pins without the external ATE.

In this paper, the integrated test strategy solution of the
CUT board including a microcontroller chip with small internal
memories for fault diagnosis was presented. It targets both
conventional random logic ICs and a microcontroller chip on
the CUT board. Conventional random logic ICs is tested based
on the SM-HBST strategy. Every pin (node) in the random logic
ICs is stimulated by the TPG of the SM-HBST, and the test
response from a tested pin (node) is compacted for signature
generation. Measured signatures are generated according to
different test modes and are automatically compared to get the
source faulty pins (nodes).

In addition, the new hybrid-based self-test strategy, HYBST
that tests the microcontroller circuits with small internal
memories was presented. It combines both the SM-HBST
strategy and the SBST strategy. Based on divide-and-conquer
strategy, the microcontroller is divided into a number of main
modules. The ISA of the microcontroller family is used to
generate test subroutines as a part of the BIST scheme, which
is the emulated TPG and part of the emulated test controller.
The SM-HBST represents the other part of the BIST scheme
as the test controller and the test response compaction. Each
microcontroller module is exhaustively tested and all test
patterns detect all combinational faults without fault simulator.
The comparisons between the SBST strategy and the HYBST
strategy show that the HYBST strategy is more suitable for
testing of microcontroller chips with small internal memories.
The HYBST strategy is superior in:

1) RAM utilization; where it reduces RAM utilization.
2) Flash memory utilization; where it reduces flash memory

utilization.
3) Test application time; where it reduces total number of

clock cycles.

4) Testing all internal microcontroller modules, and testing
of GPIO pins using the SM-HBST.

Experimental results showed that the presented test
solution offers a suitable test strategy for complete digital
electronic boards, composed of digital random logic ICs and
microcontroller chips with small internal memories. It indicates
a real practical strategy with the aid of the SM-HBST, and
reduces testing difficulty to achieve high fault coverage.

References

[1]	 M. H. El-Mahlawy, “Pseudo-Exhaustive Built-In Self-Test for Boundary
Scan”, Ph.D. dissertation, Kent University, U.K., 2000. Accessed on
December 19th, 2018, available at: https://www.researchgate.net/profile/
Mohamed_El-Mahlawy/publication/35962900_Pseudo-exhaustive_built-
in_self-test_for_boundary_scan/links/58931820a6fdcc45530af29c/
Pseudo-exhaustive-built-in-self-test-for-boundary-scan.pdf

[2]	 N. K. Jha and S. Gupta, Testing of Digital Systems, Cambridge University
Press, 2003.

[3]	 A. Miczo, Digital Logic Testing and Simulation, John Wiley & Sons, 2003.
[4]	 M. El Said Gohniemy, S. Fadel Bahgat, Mohamed H. El-Mahlawy, and E.

E. M. Zouelfoukkar, “A Novel Microcomputer Based Digital Automatic
Testing Equipment using Signature Analysis,” IEEE International
conference on Industrial Applications in Power Systems, Computer
Science and Telecommunications, pp. 140-144, Bari, Italy, May 13-16,
1996.

[5]	 M. Abramovici, M. A. Breuer, A. D. Friedman, Digital systems testing and
testable design, Wiley-IEEE Press, New York, 1994.

[6]	 S. I. Morsy, “Hybrid Self-Test Solution in Embedded System on Chip”,
M.Sc. thesis, Military Technical College, Cairo, Egypt, 2012.

[7]	 M. H. El-Mahlawy, Ehab A. El-Sehely, Al-Emam S. Ragab, and
Sherif Anas, “Design and Implementation of a New Built-In Self-Test
Boundary Scan Architecture.” IEEE 15th International conference on
Microelectronics, pp. 27-31, Dec. 9-11, 2003.

[8]	 D.K. Sharma, Meerut, R.K. Sharma, B.K. Kaushik, and Pankaj Kumar,
“Boundary scan based testing algorithm to detect interconnect faults in
printed circuit boards,” Circuit World, vol. 37, no, 3, pp. 27–34, 2011.

[9]	 M. H. El-Mahlawy, “Signature Multi-Mode Hardware-Based Self-
Test Architecture for Digital Integrated Circuits,” IEEE International
Conference on Electronics, Circuits, & Systems, pp. 437-441, Dec. 6-9,
2015.

[10]	 M. H. El-Mahlawy, and Ahamed Seddik, “Design and Implementation
of New Automatic Testing System For Digital Circuits Based on The
Signature Analysis,” 12th International Conference on Aerospace Sciences
& Aviation Technology, Military Technical College, Egypt, May 29-31,
2007.

[11]	 M. H. El-Mahlawy, Ahmed Abd El-Wahab, and Al-Emam S. Ragab,
“FPGA Implementation of the Portable Automatic Testing System
for Digital Circuits,” 6th International Conference of the Electrical
Engineering, Military Technical College, Egypt, May 27-29, 2008.

[12]	 M. H. El-Mahlawy, Emad H. Khalil, Fawzy Ibrahim, and Mohamed. H.
Abd El-Azeem, “Two-Test Pattern Capabilities of the LFSR/SR Generator
in Pseudo-Exhaustive Testing based on Coding Theory Principles,”
European Journal of Scientific Research, vol. 140, no. 2, pp. 161-177, July
2016.

[13]	 Mohamed H. El-Mahlawy, and Winston Waller, “New Test Pattern
Generators for the BIST Pseudo-Exhaustive Testing based on Coding
Theory Principles,” Communications on Applied Electronics, vol. 4, no. 8,
pp. 29-44, April 2016.

[14]	 P. K. Lala, Digital circuit testing and testability, Academic Press, 1997.
[15]	 A. Krstic, and Kwang-Ting (Tim) Cheng, Delay Fault Testing for VLSI

Circuits, Kluwer Academic Publishers, 1998.
[16]	 T. W. Williams, W. Daehn, M. Gruetzner, and C. W. Starke, “Bounds

and analysis of aliasing errors in linear feedback shift register,” IEEE
transactions on computer-aided design, vol. 7, no. 1, pp 75-83, Jan. 1988.

[17]	 M. H. El-Mahlawy, “Signature-Based Self-Test Approach for Single-
Shot Circuits on the Circuit Board Level,” 4th International Japan-Egypt
Conference on Electronics, Communications and Computers (JEC-ECC

78 ELECTRONICS, VOL. 22, NO. 2, DECEMBER 2018

2016), pp. 38-42, May 31 - June 2, 2016.
[18]	 M. Psarakis, Dimitris Gizopoulos, Ernesto Sanchez and Matteo S. Reorda,

“Microprocessor Software-Based Self-Testing,” IEEE Design & Test of
Computers, vol. 27, no. 3, pp. 4-19, May/June, 2010.

[19]	 J. Shen and J. A. Abraham, “Native Mode Functional Test Generation for
Processors with Applications to Self-Test and Design Validation,” IEEE
International Test Conference (ITC), pp. 990-999, Oct. 18-23, 1998.

[20]	 Hunger and A. Gaertner., “Functional Charaterization of Microprocessors,”
IEEE International Test Conference (ITC), pp. 794-803, 1984.

[21]	 J. V. De-Goor, and O. Jansen, “Self-Test for the Intel 8085,” Microprocessing
and Microprogramming, vol. 29, no. 3, pp. 165-175, Oct. 1990.

[22]	 D. Brahme and J. A. Abraham, “Functional Testing of Microprocessors,”
IEEE Transactions on Computers, vol. C-33, no. 6, pp. 475–485, June
1984.

[23]	 S. M. Thatte and J. A. Abraham, “Test Generation for Microprocessors,”
IEEE Transactions on Computers, vol. C-29, no. 6, pp. 429-441, June
1980.

[24]	 R. Velazco, C. Bellon, and H. Ziade, “Analysis of Experimental Results
on Functional Testing and Diagnosis of Complex Circuits,” IEEE
International Test Conference (ITC), pp. 64-72, Sep. 1988.

[25]	 L. Chen and S. Dey, “Software-Based Self-Testing Methodology for
Processor Cores,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 20, no. 3, pp. 369–380, March 2001.

[26]	 N. Kranitis, G. Xenoulis, A. Paschalis, D. Gizopoulos, and Y. Zorian,
“Application and Analysis of RT-level Software-Based Self-Testing for
Embedded Processor Cores,” IEEE International Test Conference (ITC),
vol. 1, pp. 431-440, Sept. 30-Oct. 2, 2003.

[27]	 N. Kranitis, A. Merentitis, G. Theodorou, D. Gizopoulos, and A. Paschalis,
“Hybrid-SBST Methodology for Efficient Testing of Processor Cores,”
IEEE Design & Test of Computers, vol. 25, no. 1, pp. 64-75, Jan.-Feb.
2008.

[28]	 L. Terng, W. C. E. Stroud, and N. A. Touba, System-on-Chip Test
Architectures - Nanometer Design for Testability, Elsevier, 2008.

[29]	 N. Kranitis, G. Xenoulis, D. Gizopoulos, A. Paschalis, and Y. Zorian,
“ Low-Cost Software-Based Self-Testing of RISC Processor Cores,”
Proceedings of the Design, Automation and Test in Europe Conference and
Exhibition (DATE’03), Munich, Germany, March 3-7, 2003.

[30]	 D. V. Kodavade, and S.D. Apte, “An Intelligent Framework for
Fault Diagnosis in 89c51RD2 Microcontroller Based System,” IEEE
International Workshop on Intelligent Data Acquisition and Advanced

Computing Systems: Technology and Applications, pp. 283- 286, Italy,
Sep. 21-23, 2009.

[31]	 M. Predko, Programming and Customizing PICmicro Microcontrollers, 3rd
edition, Toronto, Canada, McGraw-Hill Companies Inc., 2008.

[32]	 M. H. El-Mahlawy, Sherif Anis, Mahmoud E. A. Gadallah, and Emad
A. El-Samahy, “FPGA-Based Implementation of the Digital Testing of
Analogue Circuits,” European Journal of Scientific Research, vol. 138, no.
4, pp. 256-286, April 2016.

[33]	 M. S. Saleh, Mohamed H. El-Mahlawy and Hossam E. Abou-Bakr Hassan,
“Digital Signature Based Test of Analogue Circuits Using Amplitude
Modulated Multi-Tone Signals” IEEE 28th International conference on
Microelectronics, pp. 117-120, Dec. 17-20, 2016.

[34]	 A. Mousa, and M. H. El-Mahlawy, “Test Pattern Generator Optimization
for Digital Testing of Analogue Circuits” IEEE 8th International Conference
on Intelligent Computing and Information Systems (ICICIS 2017), pp.
118-126, Dec. 5-7, 2017.

[35]	 J. V. De-Goor and Z. Al-Ars, “Functional Memory Faults: A Formal
Notation and a Taxonomy,” 18th IEEE VLSI Test Symposium, pp. 281-289,
30 Apr-04 May, 2000.

[36]	 S. Hamdioui1, A. J. van de Goor, and M. Rodgers, “March SS: A Test for
All Static Simple RAM Faults,” IEEE International Workshop on Memory
Technology Design and Testing, pp. 95-100, 2002.

[37]	 S. D. Carlo, A. Bosio, G. D. Natale and P. Prinetto, “March AB, a State-of-
the-Art March Test for Realistic Static Linked Faults and Dynamic Faults
in SRAMs,” IET Computer & Digital Techniques, vol. 1, no. 3, pp. 237-
245, May 2007.

[38]	 M. S. Ragab, Mohamed H. El-Mahlawy and Emad A. El-Samahy, “Efficient
Microcontroller System to Test an SRAM Chip Using Signature Analysis,”
13th International Computer Engineering Conference (ICENCO), Dec. 27-
28, 2017.

[39]	 I. El-Kabbey, Testing of Electronic Boards, M.Sc. thesis, Military Technical
College, Cairo, Egypt, 2008.

[40]	 M. H. El-Mahlawy, Mahmoud S. Hamed, Mohamed H. Abd-El-Zeem, and
Issa Yossef, “FPGA Implementation of the BIST IP For SRAM Chips”, 6th
International Conference of the Electrical Engineering, Military Technical
College, Egypt, May 27-29, 2008.

[41]	 J. M. Rabaey, Digital Integrated Circuits — A Design Perspective, 2nd
edition, Prentice Hall, 2003.

ELECTRONICS, VOL. 22, NO. 2, DECEMBER 2018 79

