
ELECTRONICS, VOL. 17, NO. 1, JUNE 2013 40

  
Abstract—A method for rational approximation of linear 

fractional order systems (LFOS) is presented in the present 
paper. The method is computationally efficient, flexible and 
effective, as is illustrated by numerous examples. The proposed 
approach can also be used as an intermediate stage in designing 
indirect discrete rational approximations.  
 

Index Terms—Discretization, fractional order systems, 
rational approximations. 
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I. INTRODUCTION 
ESIGNING classical and/or fractional order control laws 
involving integral and differential actions [1, 2] often 

requires formulation of a discrete model of the process by 
using methods of invariable response to a pulse or Heaviside 
excitation and a series of other approximate methods [3-20]. 
Since a process can, in general, is represented by a transfer 
function Gp(s) which is not a rational function [21, 22], the 
problem of rational approximation and discretization in 
general becomes complex. In addition, the fundamental 
system properties, such are steady-state gain and settling time, 
as well as basic properties in the frequency domain, must be 
preserved. In the process of discretization of LFOS, where, in 
general, fractional order integral and differential actions 
belong, one can make use of the well-known mapping of 
s-domain to z-domain in the complex plane 

 sTz e= , (1) 

where T is the sampling time. Transform (1) maps left 
half-plane of the s-plane to interior of the unity circle in the 
z-plane. This means that stability of the discrete system has 
been preserved if all poles of the discrete system are located 
within the unity circle. One of the basic goals of discretization
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is acquiring the ability for practical realization of the 
corresponding control laws or of some other requirements in 
order that the digital model is fully equivalent to the 
continuous system over a wide frequency range. 

The method proposed within the present paper relies on the 
interpolation of the frequency characteristic of the system on a 
predefined set of target frequencies. The approach has 
originally been proposed in [25]. The present manuscript 
extends the development of [25] by suggesting the possibility 
of using least-squares approximation on a wider frequency 
range.  

For the purpose of illustration of practical importance of 
LFOS, consider a process described by classical diffusion 
equation (also referred to as the heat equation), which is 
ubiquitous in science and engineering since it simultaneously 
describes a number of transfer phenomena, including heat-
transfer and a number of other diffusion-like processes. These 
diffusion-like processes include diffusion of mass (mechanical 
diffusion), diffusion of momentum (viscosity), diffusion of 
electrical potential (in long lines, when inductivity is 
negligible), and many others. One-dimensional diffusion 
equation is a partial differential equation of the form 

 
2

2z t
ρ ρτ ∂ ∂

=
∂ ∂

, 0τ >  (2) 

describing the process of transport (diffusion) of a quantity ρ 
along the z axis in time t. For simplicity, let us address only 
the diffusion within a semi-infinite medium, where both space 
and time variable take arbitrary positive values. Let us assume 
also that the process can be controlled by acting on the cross- 
section z = 0, and that the process output is taken (measured) 
at the cross-section z = L. The dynamics of the process is 
influenced by the diffusion time constant τ = τ(z, t), which is, 
in general, a function of both space and time. However, in a 
variety of practically interesting cases this coefficient can be 
approximated by a constant factor. 

Without loss of generality, assume that (2) describes a heat 
conduction process schematically shown in Fig. 1. Let us 
obtain its transfer function. In this particular case, ρ = ρ(z, t), 
is the temperature of the cross section defined by space 
coordinate z evaluated at time instant t. Let ),(~~ szρρ =  
denote the Laplace transform of ρ, where the Laplace 
transform is taken with respect to the time variable t and the 
space variable z is considered as a parameter, 
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0

( , ) ( , ) stz s z t e dtρ ρ
∞ −= ∫ . (3) 

By applying the Laplace transform to equation (2), one 
obtains general solution 

 / /
1 2( , ) ( ) ( )z s z ss z C s e C s eτ τρ −= + . (4) 

Since any heat conduction process is stable, the Laplace 
transform of the temperature in any cross-section must be 
bounded, i.e. 

 lim ( , ) .
z

s z constρ
→∞

=  (5) 

has to be satisfied, thus C2=0 and equation (4) takes the form 

 /
1( , ) ( ) z ss z C s e τρ −= . (6) 

 

τ

1 ( ,0)sρ ρ= 2 ( , )s Lρ ρ=

z
L0  

Fig. 1.  A sketch of the process of heat conduction by diffusion. 

Integration “constant” C1 as well as the conduction function 
is determined from the known (or given) boundary conditions. 
In view of this, the most frequent cases in practice are: 
Case 1. Heat conduction without any convective exchange of 
heat with the environment and fixed temperature at the “left” 
boundary. In this particular case, the temperature of the cross-
section 0z =  could be controlled directly, and considered as 
the input of the process, while the dependent temperature of 
the cross-section z L=  could be considered as the output. The 
left boundary condition for this case is 1( ,0) ( )s C sρ = , and 
the transfer function takes the form 

 
/2

1

( , )( )
( ,0)

T sL s
a

s LG s e e
s

τρ
ρ

−−= = = , 2 /T L τ= . (7) 

Case 2. Heat conduction without any convective exchange of 
heat with the environment and fixed thermal flux at the “left” 
boundary. The process is influenced by gradient of quantity ρ 
at z = 0 (this is the boundary surface of the medium of Fig. 1), 
the input quantity of the process being thermal flux through 
the boundary surface (again without any convective exchange 
with the environment) 

 
0

( , )

z

d s z
dz

ψ ρλ
=

= −  (8) 

and the process (output) quantity is ρ2= ρ(s, L), and the 
transfer function is 

 
2( ) T s

b
KG s e
s

ρ
ψ

−= = , 2 /T L τ= , /K τ λ= . (9) 

Case 3. Heat conduction without any convective exchange of 
heat with the environment. The last characteristic case is when 
the convection is no longer neglected. Now, the process is 
influenced by a linear combination of the thermal flux and 
temperature at the “left” boundary 

 
0

( , ) ( , )
z

d s zu s z
dz

ρλ η ρ
=

= − + , (10) 

with output 2 ( , )s Lρ ρ= , and the transfer function is 

2

1

( )
1

T s
c u

KG s e
T s

ρ −= =
+ ,

1K
η

= ,
2

1 2T λ
η τ

= ,
2LT

τ
= . (11) 

In the examples above, the semi-derivative operator has 
appeared in a number of contexts. It should be mentioned that 
other forms of fractional order transfer functions emerge 
during investigations of different transfer phenomena. In the 
analysis of axial diffusion, i.e. diffusion from the axis of the 
cylinder towards its lateral surface or vice versa, one meets 
transfer functions originating from the Laplace transforms of 
Bessel functions, which have the form 

 ( )
1

KG s
sT

=
+  (12) 

From this example, transfer functions given by equations 
(7), (9), (11), and (12) belong to the fractional order systems 
having transfer functions which belong to the class of 
irrational functions [23,24]. 

Since these transfer functions describe adequately physical 
processes, a logical question arises whether it is possible to 
formulate fractional order control laws and what would be 
their contribution to process control. Among many modern 
control strategies utilizing fractional order calculus, 
Podlubny’s Fractional order PID [1,2] regulator is emphasized 
here. Classical PID is arguably the most utilized control 
strategy in use today. By replacing classical integral and 
differential actions by their respective fractional order 
analogues, the flexibility and applicability of the PID 
regulator can be greatly increased. Transfer function of the 
fractional order PID is of the form 

 i dPI D ( )s k k s k sλ μ λ μ−= + + , , [0,1]λ μ ∈ . (13) 

The reader should notice that the implementation of 
Fractional order PID requires direct implementation of 
fractional order integrator and differentiator. Similar is also 
true for other  
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Fig. 2.  A sketch of the process of heat conduction by diffusion. 
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types of fractional order regulators, as it can be seen from 
[25-27]. Such regulators are typically implemented as high 
order FIR or IIR filters [28], Realization of fractional order 
control laws involving an adequate discretization is possible 
thanks to the fast modern computers. It is known that in the 
regulator design two approaches are possible, direct design in 
the discrete domain and the other approach is design in the 
continuous domain first and then transition to the discrete 
domain. Obviously, discretization is required by both 
approaches. However, the discretization procedure is not 
straightforward when fractional order systems are in question, 
a problem which has been causing a considerable interest over 
the past years. 

The paper is organized as follows. In the following Section 
II the proposed method for rational approximation of FOS has 
been outlined. Numerical examples are presented in Section 
III. Concluding remarks are presented in Section IV. 

II. RATIONAL APPROXIMATIONS OF TRANSFER FUNCTIONS OF 
LFOS 

Let us consider rational transfer function 

 
1

1 1 0
1

1 1 0

( )
( )

n
n

n n
n n

b s b s bB s
A s a s a s a s a

−
−

−
−

+ + +
=

+ + + +  (14) 

which should be used to approximate transfer function G(s) of 
a linear fractional order system. For (G(0)≠0, b0=1) or 
(G(0)=0, a0=1) there are 2n real coefficients which should be 
determined from 2n equations obtained from the  condition of 
overlapping the frequency characteristics in the corresponding 
discrete frequency points 0 2 n-1[ , , , ]ω ω ω ω∈ , i.e. 

 (i ) (i ) / (i ) 0k k kG B Aω ω ω− = , 0, 1k n= − , i 1= − , (15) 

or for G(0)≠0, b0=1 one obtains 

 ( )Re (i ) (i ) (i ) 0k k kG A Bω ω ω− = , 0, 1k n= − , (16) 

 ( )Im (i ) (i ) (i ) 0k k kG A Bω ω ω− = , 0, 1k n= − . (17) 

Note that G(iωk) is a constant complex number for any 
fixed ωk. For fixed ωk both numerator and denominator 
polynomials are linear combinations of the unknown process 
parameters. Thus, the set of equations (16), (17) represents a 
linear system of equations having 2n unknown coefficients. 
By solving this system of 2n linear equations, one obtains 2n 
coefficients of rational approximation (14). 

It is convenient to represent this system of equations in the 
matrix form. This form is particularly suitable for the 
numerical evaluation of the unknown coefficients. Consider 
equations (16) and (17). Assuming the case G(0)=0, a0=1 
(other cases can be dealt in the similar fashion), for any 

0, 1k n= −  one obtains 

 ( ) 1
1 1 0(i ) ( ) ... 1 ( ) ... 0n n

k n k k n kG a i a i b i bω ω ω ω −
−+ + + − + + = , 

or, introducing  

 , ,Re{( ) }, Im{( ) },n n
n k k n k kR i I iω ω= =   

 , ,Re{ ( ) ( ) }, Im{ ( ) ( ) },n n
n k k k n k k kGR G i i GI G i iω ω ω ω= =   

one obtains  

 , 1 1, 1 1, 0 0, 0,... ...n n k k n n k k ka GR a GR b R b R GR− −+ + − − − = −  (18) 

 , 1 1, 1 1, 0 0, 0,... ...n n k k n n k k ka GI a GI b I b I GI− −+ + − − − = −  (19) 

The obtained equations are conveniently rewritten in the 
following matrix form, which is easily solved using some of 
the modern computer algebra packages, in particular, 
introducing  

... ...,0 1,0 1,0 0,0

... ..., 1 1, 1 1, 1 0, 1

... ...,0 1,0 1,0 0,0

... ..., 1 1, 1 1, 1 0,0

GR GR R Rn n

GR GR R Rn n n n n n
GI GI I In n

GI GI I In n n n n

− −−

− −− − − − −=
− −−

− −− − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M , 

0,0

0, 1

0,0

0, 1

GR

GR n
GI

GI n

−=

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

b , 

one easily obtains the desired system of linear equations in 
matrix form 

 =Mx b , (20) 

where x is the vector of unknown parameters, 

1

1

1

0

an

a

bn

b

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

x . 

It is important to mention that the selected set of points 
0 2 n-1[ , , , ]ω ω ω ω∈ can produce a singular matrix of the set of 

equations (16), (17). In such a case, another, more appropriate 
set of points should be used. It is also significant to note that it 
is also possible to use more than n incident points in the 
selected set. The exact solution cannot be found in such a 
case. However, the best approximation, in the least-squares 
sense, can be found by means of pseudo-inversion.  

III. NUMERICAL EXAMPLES 
Let us select several LFOS transfer functions and compare 

their Bode characteristics and responses to Heaviside 
excitation with those of the corresponding rational 
approximations determined on the basis of the set of linear 
equations (16) and (17). The exact characteristics are shown 
in blue line, while the approximations are plotted in red. For 
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each of the examples considered below, a set of target 
frequency values used in (16) and (17) has been specified 
also. 
Example 1. Consider  fractional order system described by 
transfer function )1/(1)( 2/3

1 += ssG , and  consider its 
rational approximation obtained by interpolating frequency 
response in target points ]100,10,5,1,5.0,1.0,01.0[∈ω .  
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Fig 3.  Frequency and time responses G1(s) (red) and B1(s)/A1(s) (blue). 

Example 2. Consider the fractional oscillator characterized by 
a strong resonant peak at unit angular frequency, 

)12/(1)(2 +−= sssG , with ]100,10,5,1,5.0,1.0,01.0[∈ω . 
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Fig 4.  Frequency and time responses G2(s) (red) and B2(s)/A2(s) (blue). 

Example 3. Consider a process with )exp()(3 ssG −= . 
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Fig 5.  Frequency and time responses G3(s) (red) I B3(s)/A3(s) (blue). 

Processes with such a transfer function are common in 
analysis of distributed parameter systems, particularly those 
involving heat and mass transfer; see for example [22, 23]. 
Similar phenomena are, in a generalized form, also studied in 
[21]. 
Example 4. Fractional logarithmic filter with transfer function  

sssG /)ln()(4 =  appears in the study of adaptive fractional 
systems, as can be seen from [24]. The incident frequencies in 
this particular case where ]50,5,1,5.0,1.0,01.0,001.0[∈ω . 
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Fig 6.  Frequency and time responses G3(s) (red) i B3(s)/A3(s) (blue). 

Example 5. The following example demonstrates a case when 
the process output is equal to the fractional semi-integral of a 
IIR filtered input. The actual IIR filter is, in fact, a differential 

compensator. 
5.0

5 11.0
1)( ⎟

⎠
⎞

⎜
⎝
⎛

+
+

=
s

ssG , ]100,10,5,3,1,1.0,01.0[∈ω . 
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Fig 7.  Frequency and time responses G5(s) (red) i B5(s)/A5(s) (blue). 

Example 6. 2.12.1
6 )11.0/()/11()( +++= ssssG , 

]100,30,5,2,1,8.0,5.0[∈ω . 

10
-2

10
-1

10
0

10
1

10
2

10
3

-20

0

20

40

60

10
-2

10
-1

10
0

10
1

10
2

10
3

-100

-50

0

50

100

0 0.5 1 1.5 2
0

2

4

6

8

10

12

14

Time  

Fig 8.  Frequency and time responses G6(s) (red) i B6(s)/A6(s) (blue). 

As the previous figures show, the rational approximations 
give adequate approximations for a wide range of LFOS. It 
should especially be mentioned that the corresponding 
frequency points are selected on the basis of the knowledge of 
Bode characteristics of LFOS transfer functions. In all 
previous examples the selected order n = 7 obviously can be 
lower, but under condition that the frequency characteristics in 
the selected frequency range are not violated. Also, for the 
selected set of frequencies in all these examples, the matrices 
of the sets of equations (16), (17) have been regular. 

Obviously, since a rational transfer function is in question, 
applications of all techniques of discretization are possible, 
consequently adequate discrete models of LSF transfer 
functions within certain frequency range are available. 

All of the time-domain responses presented above are 
obtained by means of direct integration in the complex 
domain. The interested reader is referred to [14]. 

IV. CONCLUSIONS 
Owing to simplicity of application of the method of rational 

approximation of transfer functions of linear fractional order 
systems, this paper is dedicated to an analysis of the 
application of this approach for the purpose of discretization 
of linear fractional order systems. It should be emphasized 
that, since a rational transfer function of a continuous system 
is in question, application of all techniques of its discretization 
are possible, i.e. for discretization of linear fractional systems. 
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The most outstanding feature of the proposed method is its 
computational efficiency. The method is, in fact, very simple 
both conceptually and computationally. The obtained results 
are, as it can be seen from the previous examples quite 
satisfactory. The main drawback of the proposed method is 
that it is not possible to guarantee stability a priori, in other 
words no constraints on the coefficients are enforced. Indeed, 
the form of these constraints would be so complex, that their 
introduction would impair the established efficiency of the 
solution presented in the current paper.  

A possible solution to this problem is to use the obtained 
coefficients as the initial guess for the more elaborate, non-
convex optimization procedure. Such an approach would lose 
the desired computational efficiency, but would be able to 
give stronger stability guarantees. 
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