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Abstract—The paper presents the influence of signal 

stationarity on digital stochastic measurement method 
implementation. The implementation method is based on 
stochastic voltage generators, analog adders, low resolution A/D 
converter, and multipliers and accumulators implemented by  
Field-Programmable Gate Array (FPGA). The characteristic of 
first implementations of digital stochastic measurement was the 
measurement of stationary signal harmonics over the constant 
measurement period. Later, digital stochastic measurement was 
extended and used also when it was necessary to measure time-
series of non-stationary signal over the variable measurement 
time. The result of measurement is the set of harmonics, which is, 
in the case of non-stationary signals, the input for calculating 
digital values of signal in time domain. A theoretical approach to 
determine measurement uncertainty is presented and the 
accuracy trends with varying signal-to-noise ratio (SNR) are 
analyzed. Noisy brain potentials (spontaneous and non-
spontaneous) are selected as an example of real non-stationary 
signal and its digital stochastic measurement is tested by 
simulations and experiments. Tests were performed without 
noise and with adding noise with SNR values of 10dB, 0dB and -
10dB. The results of simulations and experiments are compared 
versus theory calculations, and comparasion confirms the theory. 
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measurements, measurement uncertainty, brain potentials. 
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NOMENCLATURE 
 
s – noisy signal measured after conditioning  
se – amplified input signal 
n – noise in signal at the input of digital block  
sa – auxiliary signal (dithered base function) 
Sa – the root mean square (RMS) value of the auxiliary signal  
di – dithering signal  
p(di) – probability density function of di dithering signal  
Δi – quantum of the uniform quantizer
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p(n) – probability density function of noise n  
T – measurement subinterval 
f0 - fundamental frequency 
fadc – sampling frequency of analog-to-digital (A/D) converter 
in digital stochastic measurement block 
R – input range  
N – number of samples within measurement subinterval  
Nh  – number of harmonics measured by digital stochastic 
measurement block 
Ψe – result of A/D conversion of dithered signal s  
Ψa – result of A/D conversion of dithered base function  
Ψacosk – result of A/D conversion of dithered cosine function 
with period ω = 2πkf0 
Ψasink – result of A/D conversion of dithered sine function with 
period ω = 2πkf0 
Ψ – digital multiplier output 
Ψcosk – digital multiplier output for measuring cosine 
component of kth harmonic 
Ψsink – digital multiplier output for measuring sine component 
of kth harmonic 
ak – cosine Fourier coefficient of kth harmonic i.e. 
trigonometric polynomial cosine coefficient of order k 
bk – sine Fourier coefficient of kth harmonic i.e. trigonometric 
polynomial sine coefficient of order k  

( )u Ψ  – standard measurement uncertainty 
u  – relative measurement uncertainty  
σψ2 – variance of digital multiplier output 
σd

2 – deterministic variance  
σn

2 – noise variance  
σr

2 – random variance (noise induced)  
σe

2 – variance due to quantization error and dither 

I. INTRODUCTION 
LL signals can be divided into either stationary or non-
stationary categories. Non-stationary signals are not 

constant in their statistical parameters over time (i.e. its 
amplitude distribution and standard deviation are not the same 
over time). Stationary signals are constant in their statistical 
parameters over time. Stationary signals further can be divided 
into deterministic and random signals. Random signals are 
unpredictable in their frequency content and their amplitude 
level, but they still have relatively uniform statistical 
characteristics over time [1-2]. 

Advanced measurement instrumentation is based on 
digitizing hardware components. Measured signals are usually 
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conditioned and time-continuous conditioned signals are 
sampled and converted into discrete digital variables. In the 
A/D conversion process, accuracy and speed are opposing 
requirements, and accurate measurements of low-level, noisy 
and distorted signals have been a challenging problem in the 
theory and practice of measurement science and technology. 

A possibility for reliable operation of instruments with 
inherent random error has been researched since 1956 [3]. An 
inherent property of such an approach is a very simple 
hardware, which can operate very fast. It has been shown that 
adding a random uniform dither to an A/D converter input 
decouples measurement error from the input signal [4]. This 
dither also suppresses the measurement error due to both 
coarse A/D conversion and the external additive noise in the 
input signal. 

Following this generic approach, several specific methods 
has been developed for measuring average DC inputs, AC 
inputs and/or distorted AC inputs.  Several prototype and 
small-series commercial instruments has been realized and 
their measurement uncertainty can be extremely low [5-6]. 
These methods were named digital stochastic measurement 
methods and these instruments were named digital stochastic 
instruments.  

The latest prototype instrument is a digital stochastic 
instrument for measurement of harmonics of mains voltage 
and current signals, reported in [7]. This instrument performs 
harmonic analyses for the DC component and up to 49 
harmonics (both cosine and sine components) in each of seven 
different input channels. Its operation is based on stochastic 
A/D conversion and accumulation, with a hardware structure 
designed for harmonic measurements. The method and the 
predicted uncertainty for fifty harmonics are validated in [7] 
by simulation and experiments using sampling frequency of 
250 kHz per channel.  

In paper [8] digital stochastic measurement method is 
investigated for various types of stationary signal. The results 
demonstrated the ability of this method to be applied for 
measurements of harmonics of any stationary signal. After 
that, the question was if it was possible to extend the method 
for being used in measuring non-stationary signals? The 
research described in [9], lead to positive answer, so the 
method can be applied in measurement of biomedical signals, 
audio signals, video signals etc. 

This paper describes the influence of signal stationarity on 
digital stochastic measurement implementation, and it is based 
on researching theoretical models of digital stochastic 
measurement of stationary and non-stationary signals and their 
consequences in the form of mathematical formulas, and on 
researching simulated measurement and real measurement of 

brain potential as a non-stationary signal example. 

II. ANALYSYS OF METHOD 

A. Digital Stochastic Measurement and Signal Stationarity 
Measurement system based on digital stochastic 

measurement can be divided into three blocks: conditioning 
block, digital stochastic measurement block and block for data 
processing, recording and presenting (Fig. 1). 

The signal at the input of digital stochastic measurement 
block is the conditioned signal. The role of this conditioning 
can be amplification, linearization, level transition, filtering, 
galvanic isolation, various techniques for rejecting noise etc. 
In this paper the focus of analysis is the implementation of 
digital stochastic measurement, neglecting the non-linearity 
issues of the components consisting conditioning block. 
Hence, it is proposed that conditioned signal s is the sum of 
linearly amplified input signal se (which will be called just 
“amplified input signal” in further text) and the white noise n 
with uniform or Gaussian amplitude distribution: 

nss e +=   (1) 
Noise n is assumed to be the sum of all the noises which 

were not rejected before the digital stochastic measurement 
system. The sources of the noise can be the phenomenons 
inside the conditioning block, but also inside the conditioning 
block input interface, and inside the interface between 
conditioning block and digital stochastic measurement block. 
In this paper, we do not consider the nature of various noise 
sources and the phenomenons behind them, but focus on the 
general model of noise. 

If short-time Fourier transform would be applied to signal se 
by window function of width equal to measurement 
subinterval T, resulting in Fourier coefficients ai and bi, then se 
can be presented as a trigonometric polynomial of the form: 
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In (2) ω0 = 2π/T and M is the order of trigonometric 
polynomial [7]. 

Concept of digital stochastic measurement compared with 
typical digital measurement is shown at Fig. 2. The outputs of 
digital measurement are digital values in time domain. Each 
digital value is actually digitized value of appropriate analog 
sample from the input and that is well known classical 
approach of digital measurement – sample by sample. 

Instead of such approach, the outputs of digital stochastic 
measurement are Fourier coefficients ai and bi. Each Fourier 
coefficients is the function of all analog samples from the 
input over the measurement subinterval. Hence, this method is 
not based on “sample by sample” approach, but it is an 

 
Fig. 1.  Measurement system based on digital stochastic measurement. 
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interval-based method. 
At first sight it can be concluded that digital stochastic 

measurement is convenient only for measuring harmonics of 
stationary signals. But, it can be also used for measuring non-
stationary signals. The result of measurement is the set of 
harmonics, which can be the input for calculating digital 
values of signal in time domain. This calculation can be 
simple the calculation of trigonometrial polynomial (2) at each 
time instant over the measurement subinterval T, or it can be 
Inverse Fast Fourier Transform (IFFT) over the measurement 
subinterval T which is faster method. Hence, the final results 
are a) the set of harmonics of the signal over the measurement 
subinterval T and b) time-series of the signal over the 
measurement subinterval T (Fig. 3). 

This method has not to be limited to measurement 
subinterval T. If we want to measure the signal over the longer 
measurement interval [0, Tm], where Tm = m·T, than it is 
possible to divide original measurement interval to 
measurement subintervals [0, T], [T, 2T], ... ,[(m-1)T, mT]. 
Measurement and calculation can be executed for the first 
subinterval, and subsequently, subinterval by subinterval, 
signal values in time-domain can be reconstructed over the 
whole measurement interval [0, Tm]. 

B. Measurement of One Fourier Coefficient 
The instrument presented in [7, 8] is designed to measure 

harmonics of mains voltages and currents, but its concept can 
be applied to measurement of harmonics of any signal that can 
be presented as (2). Therefore its concept is the base for 
conceptual block diagram of digital stochastic measurement of 
one Fourier coefficient of the amplified input signal. (Fig. 4) 

Auxiliary signal sa is a dithered base (cosine or sine) 
function. That is, tkRsa 0cos ω=  for measuring kth cosine 
Fourier coefficient, or tkRsa 0sin ω=  for measuring kth sine 

Fourier coefficient. 
Similarly to [7] the conceptual block diagram can be 

implemented as in Fig. 5 so sa is not to be a measured signal, 
but a dithered sine or cosine function generated in advance 
and stored in the memory. 

d1 and d2 are generated dithering signals and they satisfy the 
following conditions that limit their amplitude and define their 
probability density function:  

2
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1  , for i = 1, 2  (4) 

Sampled values of conditioned signal s and auxiliary signal 
sa at every time instant within the measurement subinterval (T) 
are ψe and ψa, respectively. The measured value ψ (multiplier 
output) differs from the input signals’ product by the 
measurement error e, which includes effect of quantization 
within A/D converter and the introduced dither:  

ess aae +⋅=Ψ⋅Ψ=Ψ  (5) 
As the measured conditioned signal consists of the 

amplified input signal and the noise, then:  
esnss aae +⋅+⋅=Ψ  (6) 

The first term of the multiplier output is the signal that is to 
be measured and the second term is caused by noise. The three 
terms in (6) are statistically independent, and average Ψ  is 
the sum of their average values.  

The average value of the third term in (6) is zero, as shown 
in [10] and does not affect the average value of the expected 
output Ψ over the measurement subinterval. A finite input 
range of ±R of digital stochastic measurement block defines 
the boundary of the average noise integration. Therefore the 
remaining two terms in the average value are [5]:  
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If we assume that the noise has a Gaussian unbiased nature, 
its average value is zero so that the second term in (7) 
becomes zero, and then: 

∫ ⋅=Ψ
T

ae dtss
T 0

1 . (8) 

In digital measurements, for N samples of the conditioned 
signal over the subinterval [0, T], the average value is [7]:  

∑
=

Ψ=Ψ
N

k
kN 1

1  (9) 

Fig. 2.  Typical digital measurement versus digital stochastic measurement. 

 
Fig. 3.  Concept of measuring signal in time-domain by digital stochastic measurement over one measurement subinterval. 
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Summing of samples during the measurement subinterval is 
done by the accumulator and this sum is the output of the 
accumulator (Fig. 5). This output can be processed by 
microprocessor which divide the accumulator output by the 
number of samples N, and also calculates each sine (or cosine) 
component of the kth harmonic of the output as in [7] 
(subscripts sink and cosk indicates that kth sine and kth cosine 
Fourier coefficient is measured) :  

R
a k

k
cos2Ψ

= , 
R

b k
k

sin2Ψ
=  (10) 

C. Measurement of Predefined Set of Harmonics 
The concept of measuring one Fourier coefficient of the 

amplified input signal can be extended as in Fig. 6, which 
presents more complex conceptual block-diagram for 
measuring predefined set of harmonics of conditioned signal 
at the input of digital stochastic measurement block (DSMB). 
Beside DC component, predefined set can include all the 
harmonics which are interested for the signal analysis. 
Memory gives dithered base functions for each sine and 

cosine component, and each sine and cosine component 
requires one digital multiplier and digital accumulator. 
Therefore, if the system should measure DC component and 
Nh harmonics this structure requires 2Nh+1 multipliers and 
2Nh+1 accumulators. 

At first sight, block diagram from Fig. 6 seems to require 
complex hardware structure but its hardware implementation 
can be relatively simple by using FPGA (it is described in 
more details in section dedicated to experiments). 

D. Measurement Uncertainty 
In [7] output and relative measurement uncertainty were 

analyzed, and calculations of variance of multiplier output 
lead to determining variance of the average accumulator 
output and the relative measurement uncertainty. In digital 
stochastic measurement block the variance of the multiplier 
output is also consisted of deterministic variance, random 
variance and error (stochastic-related) variance. These parts 
are uncorrelated, hence the total variance of Ψ is [7]:  

2222
erd σσσσ ++=Ψ  (11) 

Deterministic variance σd
2, according to [7], is defined as:  
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However the deterministic variance σd
2 is the property of 

the signal and is not to be included to the measurement 
uncertainty [7]. Random variance and error (stochastic-
related) variance, σr

2 and σe
2, satisfy the central limit theorem 

[11] and variances of their average values depend on the 
number of samples N within the measurement subinterval T:  
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Standard measurement uncertainty of average value Ψ is 
defined by standard deviation: 

22)( eru σσ +=Ψ  (14) 
The relative measurement uncertainty u is defined by the 

standard deviation and the average value of the accumulator 
output:  

Ψ
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Similarly to [7] the standard measurement uncertainty and 
the relative measurement uncertainty are limited by:   
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Limit of the standard measurement uncertainty (16) is 
determined by the root mean square (RMS) vaue of the 
auxiliary signal (Sa), noise (σn), the resolution in A/D 
converter (Δ1), and by the number of samples within the 
measurement subinterval (N). If R is the amplitude of the 
auxiliary signal, then: 

2/RSa =  (17) 

Fig. 4.  Conceptual block diagram of digital stochastic measurement of one
Fourier coefficient of amplified input signal. The accumulator output is used
for calculation of the coefficient. 

Fig. 5.  Improved conceptual block diagram of digital stochastic
measurement of one Fourier coefficient of amplified EEG signal. Instead of
using two A/D converters, digital samples of the dithered base function are
stored in memory. 
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Fig. 6.  Conceptual block diagram of digital stochastic measurement of 
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consisted of one multiplier and one accumulator. Each output should be
divided by N for calculating appropriate  , which is necessary for further
calculation of Fourier coefficients. 
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According to (10), (16) and (17) standard measurement 
uncertainty of any Fourier coefficient measured by this 
method is limited by: 
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The quantum Δ1 is defined by the A/D converter resolution, 
and the number of samples N can be a compromise between 
the necessary measurement speed and the required accuracy 
[7]. Therefore the system can have a very good accuracy even 
when the measurement noise is significant, due to the 
increased number of samples N. 

If the A/D converter would be an ideal one, then Δ1=0 and 
right side of (18) is transformed into Nn /2 σ⋅ , which is 
square root of Cramér–Rao lower bound (CRLB) [12]. 

III. MEASUREMENT EXAMPLE 
As an example of non-stationary signal for testing the 

developed method, noisy brain potential is selected. These 
potentials are recordings of the small electrical potentials 
(generally less than 300 µV) produced by the brain [13-14]. 
They can be divided into two categories: spontaneous brain 
potentials, commonly named as EEG 
(electroencephalography) signals, and non-spontaneous brain 
potentials ERP (Event Related Potential) signals The 
frequencies of spontaneous brain produced potentials range 
from 0.5 to 100 Hz, and their characteristics are highly 
dependent on the degree of activity of the cerebral cortex [15]. 
From a hardware standpoint brain potentials are the most 
difficult electrogram measurement to acquire [14].  

The typical measurement system uses Ag/AgCl electrodes 
contained within a net or hat placed on the scalp of the patient; 
net or hat then connects to the hardware block using a cable 
several feet in length, subjecting the microvolt level brain 
potential to ambient noise that is many times greater than the 
signal itself. To amplify such low level voltage, this hardware 
block incorporates amplifying circuits but also Driven Right 
Leg (DRL) technique [16] and high-order analog filters with 
high gain (5000-20000 times) and sharp roll-off, to ensure that 
the only the desired signal is detected[17-18]. There are also 
some other techniques used for rejecting the noise, but they 
will be not be described here because it is out of the scope of 
this paper. 

If implemented correctly, this conditioning of brain 
potential is generally satisfying. However, if the measurement 
system is exposed to high-level ambient noise (e.g. when 
brain potential measurements are combined with magnetic 
resonance imaging (MRI) where imaging artifacts appear and 
signal-to-noise ratio (SNR) can be extremely low), then this 
conditioning techniques are not satisfying (Fig. 7). In these 
cases it is necessary to apply some digital data processing for 

extracting brain potential [19-22]. 

IV. SIMULATION 
The aim of the simulation is to faithfully simulate 

previously described measurement system, in the case of 
measuring EEG signal. Hence, the simulation was 
implemented according to model from Fig. 3, and digital 
stochastic measurement block was implemented according to 
conceptual block-diagram from Fig. 6. 

A. Input Signal and Conditioned Signal 
Brain potential is chosen as an example of real non-

stationary signal. Input signal is extracted from 2 seconds of 
real measurement session of the potential (Fig. 8). These 
values are amplified and superimposed with selected reference 
voltage (level transition and amplifying are usual tasks of 
conditioning brain potential), so the conditioned signal is 
actually the input of digital stochastic measurement block. 

Real measurement was performed by the measurement 
system presented at Fig. 8. The amplifier is a three-stage 
amplifying and filtering circuit, implemented on one PCB 
(Printed Circuit Board). At the input, there is a electrostatic 
discharge protection circuit and passive low-pass filter for 
rejecting high frequencies (>1kHz).  

First amplifying stage is a preamplifier based on 
instrumentation amplifier INA114P for obtaining high input 
impedance and high CMRR (Common Mode Rejection 
Ratio). Its amplification gain is 12. From this stage, inverted 
common mode voltage is driven to the DRL output of the 
amplifier and further to DRL cable and location of subject. 
This technique is often used  when it is necessary to increase 
CMRR, and in this amplifier CMRR is 102dB. 

Second amplifying stage has a central role for increasing 
the amplification gain (its gain is 40). Also, before input and 

Fig. 7.  The illustration from [22], showing the imaging artifact/noise in brain 
potential records during EEG/fMRI simultaneous recording (graph A). In this
case, standard noise rejection techniques are not satisfying. 

Fig. 8.  System applied for real mesurements. Amplifier is a three stage 
conditioning circuit. Digital module is consisted of microcontroller, digital
optocouplers providing galvanic isolation and MAX232 providing serial
interface to PC. 
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after output of this stage, there are high-pass filters with 
corner frequency of 0.15 Hz, thus providing rejection of offset 
voltage from amplifier input.  

Third stage has role of final amplification (amplification is 
16) and also of antialiasing filtering. The supply of the 
amplifier is unipolar (5 V), and there is also virtual ground 
buffered from 2 V voltage source. This voltage source is 
implemented on another PCB (the one with microcontroller) 
and leaded to the amplifier PCB. 

Microcontroller module’s main role is digitalization of the 
amplified voltage. This module is based on 8-bit 
microcontroller PIC18F4550 which has built-in A/D 
(analog-to-digital) converter with 10-bit resolution. 
Considering this resolution, the amplifier’s amplification gain 
and A/D conversion reference voltage, the effective input 
resolution of the system is 0.5 μV. Chosen sampling 
frequency of A/D conversion is 256 Hz. Digital outputs of 
microcontroller (RC6/TX and RC7/RX ) are used for digital 
communication with PC based on UART (Universal 
asynchronous receiver/transmitter) protocol. Before 
connecting these outputs to MAX232 (digital chip for serial 
communication with PC), there are digital optocouplers 
implemented for achieving necessary galvanic isolation of the 
system.  

Microcontroller is also connected with the input button, 
which is intended to be pressed by subject during specific 
cognitive tasks regarding recognition of stimuli. 

In real measurement (which was a typical digital 
measurement), measurement records were stored 256 samples 
per second (S/s). For obtaining smooth simulation input and 
for adjusting simulation with experiment needs (described in 
the section dedicated to experiments) these 256 S/s records 
were transformed into 3,840 S/s data. This was achieved by 1) 
calculating Fourier coefficients by Discrete Fourier Transform 
(DFT) for original (256 S/s) records and 2) calculating 

3,840 S/s data by using IDFT with previously calculated 
Fourier coefficients. Each sample of conditioned signal is 
stored as 64-bit floating point value in simulation lookup-
table. 

B. Simulation Properties and Results 
The DSMB was configured according to data presented in 

Table I. 4 sets of simulations was run – one without adding 
noise to the input signal, and other with adding white noise to 
the input signal. Noise has uniform Probability Density 
Function (PDF) and signal-to-noise ratio (SNR) was 10dB, 
0dB and -10dB (Fig. 10). It is assumed there is no anti-
aliasing filter before DSMB, which would limit the noise 
bandwidth. Therefore, comparing to classical design of 
conditioning block, it is worse situation (at first sight) 
regarding level of noise entering the digital block, but it is 
better situation regarding the size and optimization issues of 
conditioning block,  because the number of conditioning block 
components are less. 

For each SNR value, amplitude of harmonics determined by 
measured Fourier coefficients was compared versus amplitude 
determined by DFT of input signal, and absolute values of 
error was calculated (Table II and Fig. 11). The average error 
is compared versus theory maximum (19) in order to simplify 
comparison. 

Also, the measured Fourier coefficients were used for 
calculating time-series (Fig. 12 shows the comparison when 
no noise is added). Peak-to-peak (pp) value of the resulting 
time-series is compared against the pp value of the input 
signal (Table III). 

V. EXPERIMENT 
The aim of experiments was to test the theory maximum for 

measurement uncertainty and to compare experimental results 
against the simulation results. 

TABLE I 
UNITS FOR MAGNETIC PROPERTIES 

 Simulations set 0 Simulations set 1 Simulations set 2 Simulations set 3 

Number of simulations 250 250 250 250 

SNR level No noise added 10dB 0dB -10dB 

A/D converter  
(Fig. 6) 

Resolution: m1=6 bits 
Input range: ±R and R=2.5V 
Sampling frequency: fadc = 15625 Hz 

Measurement subinterval [0,T] and T = 20ms 

Fundamental frequency f0 = 1/T = 50Hz 

Number of samples per 
measurement subinterval N = 312 

Digital dithered base functions 

Stored in memory in 64-bit floating point resolution but passed to the multiplier in 8-bit resolution, 
thus faithfully simulating an A/D converter with properties: 
Resolution: m2 = 8 bits 
Range: ±R and R=2.5V 
Sampling frequency: fadc = 15625 Hz 

Number of measured Fourier 
coefficients DC component + 15 sine coefficients + 15 cosine coefficients 

 



ELECTRONICS, VOL. 17, NO. 1, JUNE 2013 51

A. Input Signal 
The plan of experiments required 4 sets of experiments 

(actually 4·250=1000 experiments) as the simulations were 
consisted of 4 sets of simulations. For obtaining correct 
results, comparable with theory and simulation, each 
experiment had to measure the same signal. Of course, this 
repeatability of brain potential could not be achieved with 
humane subject and “live” measurement for each experiment.  

Therefore, the source of signal in experimental 
measurements was not the humane subject, but an artificial 
source of conditioned signal was made. The same data for 
conditioned brain potential at the input of DSMB, used in 

simulations, were also used for the artificial source to generate 
the signal. 

This source was made by development board with a 
programmable system-on-chip (PSoC) CY8C27843 (Fig. 13), 
using an embedded 8-bit digital-to-analog (D/A) converter, 
16-bit counter and lookup table. Digital values, calculated 
from brain potential measurement results before experiment, 
were stored in lookup table (actually 4 sets of digital values 
depending on SNR level), and sample rate was configured to 
be 3,840 Hz which provides relatively smooth analog signal at 
the output. The configured range of D/A converter is from 0 V 
to 2.6 V. 

B. Implementation of DSMB 
At first sight, block diagram from Fig. 6 seems to require 

complex hardware structure but its hardware implementation 
can be relatively simple. Block diagram of the hardware 
implementation is given at Fig. 14, and the photos of hardware 
at Fig. 15. This hardware implementation was originally 
developed for measuring line voltage and current harmonics. 

The multipliers and accumulators are implemented by 
FPGA structure (chip Cypress CY39100) which finally 
calculates Fourier coefficients. The microprocessor (Atmel 
AT89s8252) interfaces the block with PC, i.e. interfaces 
FPGA chip with PC. Pseudostochastic dither signal is 
generated by FPGA chip and analog adder is required for 
performing addition of dither. The memory is flash EEPROM 

Fig. 9.  2 seconds of  recording brain potential. This signal was used for both
simulation and experiment input. 
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Fig. 10.  The examples of the noise added to the input signal of simulations,
for various SNR levels. The noise is generated (in both simulation and
experiment) at rate of 3840 samples per second. 

TABLE II 
SIMULATION AVERAGE ERROR PER HARMONIC COMPARED AGAINST 

THEORY MAXIMUM FOR MEASUREMENT UNCERTAINTY (19) 

SNR (dB) no noise 10 0 -10 
Simulation 
error (V) 2,08E-04 6,29E-03 2,72E-02 7,57E-02 
Theory 
uncertainty (V) 1,41E-03 1,05E-02 3,00E-02 9,16E-02 

TABLE III 
RELATIVE ERRORS FOR PEAK-TO-PEAK VALUE AT VARIOUS SNR LEVELS 

SNR (dB) no noise 10 0 -10 
Peak-to-peak 
relative error 
(%) 

0.26 2.67 46.19 268.69 

Fig. 11.   Average error per harmonic compared against theory maximum for
measurement uncertainty. 
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Fig. 12.  Comparison of input signal and measured signal in simulations set 
0. Measured signal is reconstructed by measured Fourier coefficients. 
Measurement subinterval is [0, 20ms] and noise is not added to the input
signal. 
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memory M29F040 with capacity of 512 Kb. 
A/D converter’s properties are the same as in simulations 

(resolution: m1=6 bits, input range: ± 2.5 V, sampling rate: 
fadc=15,625 Hz). Regarding A/D converter, an important thing 
is that this A/D converter can generally have lower resolution 
and faster conversion time than the one in typical digital 
measurement, which can be useful for parallelization of 
measurements necessary for multichannel recordings. 

FPGA chip is programmed with a very-high-speed 
integrated circuits hardware description language (VHDL) 
program. The VHDL program is consisted of 4 processes (P1, 
P2, P3 and P4) which execute simultaneously. Process P1 
receives 6-bit digital values from A/D converter. Process P2 is 
the main process, and all the mathematical calculations are 
implemented by this process. Process P3 has the task to send 
the results of process P2 to the microprocessor. Process P4 
waits for request from the microprocessor, and when the 
request comes in P4 activates the process P3. 

PC software application receives the data from 
microprocessor, records and presents the measurement results. 

C. Results 
4 sets of experiments were done in the same way as 

simulations – one without adding noise to the input signal, and 
other with adding white noise (Fig. 10) to the input signal. 
Noise has uniform PDF and signal-to-noise ratio (SNR) was 
10 dB, 0 dB and -10 dB. 

For each SNR value, amplitude of harmonics determined by 
measured Fourier coefficients was compared versus amplitude 
determined by DFT of input signal data, and absolute values 
of error was calculated (Table IV and Fig. 16). 

Experiment results showed well adjustment with the limits 
calculated by formula (19) for three SNR values (10 dB, 0 dB 
and -10 dB). Resolution of the D/A converter used for 
generating input signal, and the ambient noise interfered with 
the interface between input signal generator and DSMB are 
recognized as factors  responsible for the fact that 
experimental errors are higher than simulation errors. 

VI. DISCUSSION 
Hardware resources used in implementation of the digital 

stochastic measurement block (Fig. 14 and Fig. 15) are pretty 
modest comparing to the technology state of the art. In future 
research, it would be interesting to investigate, what would be 
the results of measurement if the sampling frequency of the 
A/D converter is drastically increased (e.g. 1 MHz) and if the 
number of measured harmonics is increased, because actual 
A/D and FPGA chips allow such implementation and 
theoretically developed formula for measurement uncertainty 
limit indicates the possibility of significant improvement of 
the measuring system accuracy and noise rejection. 

It would also be interesting to extend measurement 
subinterval (e.g. to 2, 4 or 8 seconds, because FFT of brain 
potential is usually calculated for a short section of time series 
- from 1 to 8 seconds [13]). This extension would increase the 
number of samples involved in measurement subinterval (i.e. 
increase the accuracy), but it would also increase delay time 
for presenting reconstructed time-series. This delay time 
would be disadvantage if the application of measurement 
would include necessity for real-time control/reaction, but 
otherwise this would not be problematic (like in 
measurements of ERP brain potential, when processing of 
measurement data is performed after the appropriate 
measurement interval [23]). 

TABLE IV 
AVERAGE ERROR PER HARMONIC COMPARED VERSUS THEORY MAXIMUM 

FOR MEASUREMENT UNCERTAINTY (19) 

SNR (dB) no noise 10 0 -10 
Experiment 
error (V) 2,51E-04 7,73E-03 2,77E-02 7,95E-02 
Simulation 
error (V) 2,08E-04 6,29E-03 2,72E-02 7,57E-02 
Theory 
uncertainty (V) 1,41E-03 1,05E-02 3,00E-02 9,16E-02 

 
Fig 15. Prototype hardware implementation of  block diagram from Fig 13. 
  

Fig 14.  Hardware block diagram of digital stochastic measurement block
interfaced to PC. 

 
Fig. 13.  PSoC CY8C27843 (its mounting on the development board is
pointed by arrow) is used as the generator of conditioned signal. 
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VII. CONCLUSION 
Accurate measurement of weak and noisy signals presents a 

challenge in digital measurements. The previous research on 
digital stochastic measurement shown to be relatively robust 
to noise as it gives accurate results even when the noise is 
greater than the measured stationary signal.  

The research described in this paper evaluated digital 
stochastic measurement method implementation for 
non-stationary signals and compared it to the method 
implementation for stationary signals. Developed theory 
resulted in formula for theory limit of measurement 
uncertainty, and this theory is tested with applied simulations 
and experiments. 

Brain potential is chosen as an example of real 
non-stationary signal which is to be measured. The noise is 
added in three sets of simulations and experiments for 
inspecting the noise rejection of the method.  

The experimental test signal generator and prototype 
instrument has been used in experiments. The implemented 
digital stochastic measurement block includes a flash A/D 
converter, a memory for dithered base functions, and one 
signal multiplier and a digital accumulator for each sine and 
cosine components of the measured harmonics realized by 
FPGA structure. 

The simulations and experiments have shown well 
agreement with the developed formula for measurement 
uncertainty limit. This formula shows the possibility of 
controlling measurement uncertainty even if it is necessary to 
work with the constant measurement subinterval. This limit is 
dependent on number of samples over the measurement 
interval, which is determined by sampling rate of A/D 
converter inside digital stochastic measurement block, 
allowing designer to choose A/D converter with lower 
resolutions and faster sampling rate for achieving more 
accurate measurement and measurement more robust to noise. 
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Fig 16. Average error per harmonic by experiment compared against
simulation results and theory maximum for measurement uncertainty. 


