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Abstract—The purpose of this paper is to give a summary 
analysis of human snoring and its episodes. In particular, we 
consider an acute snoring. In order to extract some frequency 
information of snoring signal, we apply the  Fast Fourier Transform  
(FFT),  Short Time Fourier Transform (STFT)  algorithms, 
Discrete Wavelet Technique, and Power Spectral Density (PSD). 
Once irregular snoring characterized, we use a Voice Activity 
Detection (VAD) for snoring episode detection. Furthermore, 
we give comparative study of three types of thresholds that can 
control the VAD approach, a fixed threshold, a soft threshold, and 
a Gaussian threshold. Next, we use a Perceptual Evaluation of 
Speech Quality (PESQ) method to evaluate the efficiency of the 
VAD. We find that VAD based on Gaussian threshold is better.

Index Terms—Sleep Snoring; Frequency Analysis; Time 
Analysis; Thresholds; Snore quality measures.
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I. Introduction

Snoring is an inspiratory noise caused by vibration of the 
soft supper-airway tissues, mainly soft palate and posterior 

faucial pillars [1]. Mostly, snoring can provoke obstructive sleep 
apnea with the possibilities of higher risks of  cardiovascular 
disease such as heart attacks, strokes, sleep disorders, etc. [2]. 
With the development of the signal processing tools, many 
fields of study have been opened and thus non-stationary and 
complicated signals such as irregular snoring can be analyzed. 
In addition, one of the most famous processing techniques is 
the use of wavelet because it can express signals with different 
frequency components [3]. 

Also, it offers statistical analysis tools such as histograms. 
The wavelet-based histograms provide us the ability to naturally 
extend to multidimensional case, a good optimization [4] and to 
improve the accuracy substantially over random sampling [5].

Several studies have been done on detection and analysis 
of sleep snoring (acoustical characterization) based on the 

classification methods using some experimental databases 
through the choice of selected features [6]—[8]. Furthermore, 
other authors treated the sleep snoring by the application 
of personalized software. Statistical parameters such as the 
number of the snoring episodes , duration , etc. were calculated 
in [9]-[10]. 

However, all these works require a complete characterization 
with integration of aspects of time and frequency at the same 
time. In the present work we establish a global model based 
on time and frequency analysis with integration of the VAD 
(Voice Activity Detection). In addition, we show the effect of 
changing the VAD threshold on the efficiency of detection of 
snoring episodes.

The remainder of the paper is organized as follows: In 
section 2, we present the different processing frequency 
techniques used to analyze the sleep snoring, Section 3 is 
devoted to describe the theoretical and practical approach for 
time analysis of sleeps snoring. Finally, we give a summary 
conclusion in section 4. 

II. Theoretical Approach for Frequency  Analysis

The signal recorded in [11] is considered the strongest 
snoring signal characterized also by its high irregularity. So 
we can consider it as an obstructive sleep apnea (OSA) signal, 
which contains an apnea part (see Fig. 1 [8]). 

Fig. 1.  Detection of snoring episodes for the OSA patient having both regular 
and post-apneic snoring sounds (rectangular pulse in red represents sound 
segments). [8].

Fig.1 shows four breathing cycles separated by four snoring 
periods. And we observe that when the breathings become much 
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attenuated during a long time it becomes an episode of apnea. 
After the apnea episode the snoring becomes quite intense and 
very irregular what is called post- apneic episodes.  

                                                      
A. Processing techniques
A.1. Fast Fourier Transform
The Fast Fourier Transform (FFT) was derived from the 

Discrete Fourier Transform (DFT), which is given by [12]: 
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where K = 0,…, N-1,  ωN  is the primitive root of 
unity
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, and N is the size of the input x. 

A.2. Short Time Fourier Transform (STFT)
Short Time Fourier Transform (STFT) gives spectrograms 

that are created either by approximation as a filter Bank or from 
Fourier transform calculation. The continuous –time STFT  for 
a given time signal x(t) is written as:
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where w is the windowing function and f is the frequency. In 
contrast with the Fourier transform techniques which give the 
frequency part, the STFT allows to operate in frequency and 
time.

A.3. Wavelet Transform
The Wavelet Transform is a particular technique that 

describes signals in both time and frequency domains. Its 
physical form is a small window (mother wavelet) which is 
used to scan a macro signal [3]. The wavelet equation as a 
function of mother wavelet is given by:
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where a, b are, respectively, the dilation and translation 
parameters, and )(tϕ is called the single mother wavelet.

In literature, there exits two large groups of wavelets: 
continuous and discrete. The Continuous Wavelet Transform 
(CWT) for a given function f (t) is defined as [3]:
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
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a
btϕ   denotes the complex conjugate of the  

wavelet function 
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



 -

a
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Next, the Discrete Wavelet Transform (DWT) is a sampling 
wavelet using a bank of filters. It is given by [13]:
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where n=1, 2,…N  and N is the total number of samples, l 
describes the shifting and s is the scale. 

Examples of the discrete mother wavelets are presented in 
Fig. 2.
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Fig. 2.  Discrete mother wavelets examples.
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A.4. Spectral analysis
The power spectral density (PSD) estimation has many 

applications such as the elimination of the wide-band noise 
mixed to the useful signal. PSD allows also, seeing the real 
distribution of the signal power depending on its frequency. 
In other word, the power spectral density represents the power 
content of a signal in an imperceptible frequency band contrary 
to the power spectrum that shows the frequencies which 
contain  the signal’s power. In order to estimate the power 
spectral density, we use the Welch’s method that is described 
as follows [14]-[15]: 

First, the original data is split up into overlapped data 
segments. Second, a window signal is applied to each segment. 

Noticing that the windowing operation is what makes the 
Welch method a “modified” periodogram.

B. Practical aspects of snoring signal frequency analysis
Our experiments were performed on data given by [11], 

which consists of mp3 sounds. The data were recorded in a high 
quality format with a sampling frequency of 44100 Hz.

B.1. FFT technique
The application of FFT algorithm to a snoring signal is 

given in the following figure.
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Fig. 3.  FFT of original snoring.

As we can see, Fig.3 displays only the positive half of the 
frequency spectrum and discards the redundant negative half. 
Therefore, the spectral component extends to half the sampling 
frequency (around 22 kHz).

We can deduce from Fig. 3 that the main part of the snoring 
signal reaches 14 kHz and the FFT signal has two highest picks 
at 0.06 kHz and 0.88 kHz. 

B.2. STFT technique

In this part we compute the STFT for the snoring signal and 

the apnea part, which are presented, respectively, in Fig.4 (a) 
and Fig. 4 (b). 
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Fig. 4.  STFT of original snoring: (a) Complete signal, (b) Apnea-part of 
snoring signal.

It’s clear from Fig.4(b) that the STFT of the apnea-part has 
greatly lower magnitude then the STFT of the complete signal 
(Fig 4.a). This result confirms the fact that the apnea part follows 
a quite audible snore. And the presence of apnea is related to the 
existence of a strongly snore (see Fig. 1).

B.3. Discrete Wavelet Transform technique
Here, we analyze the snoring signal using the Discrete Wa

velet Transform with four level Haar wavelet. This level presents 
the advantage of having minimal coefficients of decomposition 
(A4, D1, D2, D3, D4). 

In practice, we find that over 4 levels, the signals will have a 
different shape compared to the original signal. So, we compute 
4 levels of decomposition and the obtained results are shown 
in Fig. 5.
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(a) Loaded and de-noised signals (red & purple colors respectively)

(b) Original details coefficients

Fig. 5.  Wavelet decomposition of the snoring signal and its de-noised operation.

The outputs “A” and “D” are the reconstruction wavelet 
coefficients [16]:

•	The approximation output A: is the low frequency content 
of the input signal component.

•	The multidimensional output D: gives the details or the 
high frequency components of the input signal at various 
levels. 

From Fig.5 (a), we noticed that the wavelet de-noising of 
the signal gives a nuanced result with attenuation of amplitude 
and a slight decimation of the fluctuations.

In order to derive statistical information from the wavelet 
analysis, a histogram is used. The representation of this 
histogram is given in Fig. 6.

Fig. 6.  Histogram representation of the snoring signal.

From Fig. 6, we observe that the distribution of the positive 
and negative values is not the same (considering the non-
stationary character of the signal). Also, the major concentration 
of the values (almost 85 %) is around zero.

Finally, we noticed that the shape of the histogram reflects 
the Gaussian nature of the signal distribution which will be 
exploited in section III.

B.4. Power Spectral Density technique and Spectral 
Envelope  
The computation of the Power Spectral Density (PSD) is 

realized using the Welch’s method. Therefore, the PSD of the 
snore signal is shown in Fig. 7.

The Fig. 7 shows that the smooth character of the complete 
snoring signal is better than the apnea part, and the most 
energy of the signal (complete or partial) is concentrated 
in the frequency interval [0 14] (kHz). We can also see the 
existence of some peaks such as at 1.25 kHz and at 3.2 kHz. 
These peaks are important because they help to locate formants 
of an acoustic signal. These formants are used, as parameters, 
in many applications such as acoustic synthesis and speech 
recognition. In addition, we can see the existence of an abrupt 
decrease in energy around the frequency 14 kHz (exactly 13.8 
kHz). This is due to the non-regular nature of the snoring 
signal.

Next, to confirm the results of the power spectral density 
technique, we apply the spectral envelope method that 
represents the spectral magnitude versus the frequency. And 
gives an envelope to the spectrum by linking the peaks. In Fig. 
8, we show the spectral envelope of the snoring signal.
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Fig. 7.  Welch power spectral density estimation of: (a) Complete signal, (b) 
Apnea-part of snoring signal 
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Fig. 8.  The spectral envelope of: (a) Complete signal, (b) Apnea-part of snoring signal 

The results shown in Fig.8 are similar to those of Fig. 7, 
and we have the same collapse of power around the frequency 
14 kHz.

III. Theoretical Approach of Time Analysis

The  International Telecommunication Union  (ITU) had 
imposed and coordinates some standards for telecommuni-
cations to better exploit the frequency band of speech. Among 
these standards, the silence elimination in speech keeps only the 
voice. This latter guarantees the effectiveness of transmission, 
because only speech activity is detected and treated. 

The most used technique for silence elimination is VAD 
(Voice Activity Detection), it consists of detecting the presence 
or absence of human speech. 

In our case, we consider the snoring signal as the voice 
and the long delay between two episodes of snore as an apnea 
sequence.  

Various VAD algorithms have been developed. These 
algorithms used an energy threshold to separate the presence 
or absence of voice. In this work, we propose to introduce the 
VAD technique in our system to detect apnea episodes in the 
snoring signal. This is shown in the following figure (Fig. 9).

Fig. 9.   Flow chart of the proposed system

We have applied three (03) different thresholds. First, we 
consider a fixed threshold with an experimentally value of 0.05. 
Then, we use an adaptive threshold which varies according 
to each frame of the snoring signal. For this latter threshold, 
we have selected two (02) techniques, a soft threshold and a 
Gaussian threshold. 

The soft threshold was given by D.L. Donoho in [17] as:
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wmean is a parameter depending on the frames number, the energy 
of each frame and the zero crossing number. k is a constant 
which can be determined empirically. σw

 2 is the variance. 
Finally, the Gaussian threshold is expressed as follows:
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where FWHM is the Full Width at Half Maximum, which 
expressed the difference between the two extreme values of 
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the Gaussian distribution. Since we have shown the Gaussian 
nature of our snore signal (see Fig. 6), we apply this last 
threshold to each frame of the signal. Thresholds mean is then 
taken (Fig. 10).

Fig. 10.  Shape of a Full width at half maximum 
 

As an example, Fig.11 presents the Gaussian distribution 
corresponding to the 10th frame.
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Fig. 11.  FWHM of the 10th frame. 

The application of the VAD technique based on the different 
thresholds, cited before, gives the following results:
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Fig. 12.  Detection of snoring episodes by applying the VAD with: (a) fixed 
threshold, (b) soft threshold, and (c) Gaussian threshold.

We remark from Fig.12 that the duration of the snoring 
episode depends on the VAD, and more precisely on the 
threshold level. Notice also that the decision of considering a 
silence as a sleep apnea episode depends on its duration, its 
repetition per hour, and a subject examination by a doctor.

A. Performance evaluation measure of the proposed system:
Measuring the quality of a sound signal is an important and a 

very difficult task. There are objective and subjective measures. 
These latter are based on the tests of direct listening (qualified 
normative auditors who hear). These measures are expensive 
and difficult to apply on a snoring signal. Therefore, they have 
been replaced by objective methods [18].

Several objective speech quality measures were evaluated 
such as: segmental Signal to Noise Ratio (segSNR), distortion 
(signal distortion, background distortion), PESQ (Perceptual 
Evaluation of Speech Quality) and others [19].

Perceptual Evaluation of Speech Quality, is a standardized 
objective method of measuring speech quality. A detailed 
description of PESQ can be found in ITU-T Recommendation 
P.862 (02/01) (standards for telecommunications and Infor
mation Communication Technology of the International Tele
communication Union ‘ITU’) [20]. The original and degraded 
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signals are aligned in time to correct for delays, and then 
processed through an auditory transform to obtain the loudness 
spectra. The absolute difference between the degraded and 
original loudness spectra is used as a measure of audible error in 
the next stage of PESQ computation. The objective evaluation 
allows transformation of the reference and degraded signal 
to an internal representation resembling a psychophysical 
representation of audio signals in the human auditory system 
[21].

The final PESQ score is computed as a linear combination of 
the average symmetrical disturbance value dsym and the average 
asymmetrical disturbance value dasym as follows [22]:

asymsym dadaaPESQ .. 210 ++=     	              (8)
 
where a0 = 4.5, a1 = −0.1 and a2= −0.0309 .

We have chosen PESQ in order to show that the quality of 
a signal containing the information (speech, snoring, etc.) still 
remains acceptable after truncation following the use of the 
VAD. By applying the PESQ_MOS (wideband measurements) 
to our system with two sampling frequencies: 44100Hz (original 
recording frequency) and 16000 Hz (standard frequency for 
PESQ), we get the results shown in Table 1. Notice that the 
PESQ calculation was done using the software given in [19].

Table I
Performance Evaluation measure by PESQ

Sampling frequency 
(Hz)

PESQ (fixed 
threshold)

PESQ (soft 
threshold)

PESQ 
(Gaussian 
threshold)

44100 2.9706 4.0261 4.5000

16000 2.5648 3.9832 4.4095

According to Table I, the best PESQ score is given for the 
Gaussian threshold, this confirms the superiority of adaptive 
threshold compared to the fixed threshold.

IV. Conclusion

 In this work, we analyzed an irregular sleep snoring signal 
using several methods in time and frequency. The results in 
frequency domain were obtained by applying the Fast Fourier 
Transform (FFT), the Short Time Fourier Transform (STFT), 
the Discrete Wavelet Transform (DWT), and Power Spectral 
Density (PSD). Which show the existence of some peaks that 
can be used to locate formants of the snoring signal and its 
frequency band. These results were also confirmed by using the 
spectral envelope method. Concerning the time domain, Three 
variants of VAD technique were used to detect the snoring/
apnea episodes. Where, the VAD uses respectively, a fixed 
threshold, an adaptive soft threshold, and a Gaussian threshold.  
In order to choose the best threshold, a performance study of 
the method was done through the use of two (02) criterias. 
Firstly by subjective criteria via a simple listening of the sound 
signal issued from the VAD. Secondly by calculating the PESQ 
(Perceptual Evaluation of Speech Quality) score which is an 

objective quality measure. Both methods have confirmed that 
the Gaussian threshold is the best. 
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