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Abstract—With the popularization of very high resolution po-
larimetric synthetic aperture radar image dataset, it is essential 
to re-investigate the classification scheme for 2-D land cases. The 
Touzi scattering vector model, a unique and roll-invariant decom-
position solution, is employed to extract the scattering properties 
of different land covers. The parameters of Touzi decomposition 
act as input dataset for initial classification. A novel classifying 
algorithm is put forward by means of integrating the Touzi de-
composition with conventional Wishart statistical models. Quan-
titative experiments are then conducted using uninhabited aerial 
vehicle synthetic aperture radar sample data for evaluating the 
performance of this new proposed approach. It can be concluded 
from the experimental results that the new proposed method is su-
perior to the classical method in terms of producer accuracy, user 
accuracy, and overall accuracy.

Index Terms—Polarimetric synthetic aperture radar, scatter-
ing vector model, Touzi decomposition, unsupervised classifica-
tion, very high resolution 
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I. Introduction

LAND classification applications based on the polarimetric
synthetic aperture radar (PolSAR) remain hotspots in the 

community of radar remote sensing over the past few decades. 
Classification methods play a prominent role in these applica-
tions. In general, these methods can be categorized into three 
groups: algorithms based on statistical models, algorithms based 
on physical scattering mechanisms, and the ones that combine 

both of them. The third group, on the whole, excels at this task 
owing to the combination of statistical and physical scattering 
characteristics [1]. For one thing, the manner in which physi-
cal scattering properties are extracted is of great importance to 
the classification of polarimetric synthetic aperture radar im-
ages. There were various academic explorations to deal with 
this problem in recent years. Kusano et al. in 2015 proposed a 
generalized scattering model based on the particle cloud model 
adding the ellipticity angle. Their experimental results showed 
that the decomposition parameters were considerably dissimilar 
from those of eigenvalue-based methods [2]. Besic et al. in 2015 
put forward an alternative approach for polarimetric incoherent 
target decomposition (ICTD) that was dedicated to the analysis 
of very high resolution (VHR) polarimetric synthetic aperture 
radar images. They argued that this ICTD decomposition strate-
gy was capable of retrieving the edge diffraction of an elementa
ry trihedral by recognizing dipole as the second component-[3]. 
Bhattacharya et al. in 2015 suggested an adaptive general 
four-component scattering power decomposition method that 
was an extension of the best-known Yamaguchi four-compo-
nent decomposition [4]-[5]. Touzi et al. came up with a solution 
that was inspired from the Cloude-Pottier ICTD in 2016-[6]-[7]. 
They employed Kennaugh-Huynen scattering matrix con-diag-
onalization and derived a new scattering vector model (SVM). 
The symmetric scattering type (SST) was brought in by them 
for an unambiguous description of symmetric target scattering. 
Due to the limited space, it is unachievable to review all the 
related methods here. For another, researchers seek to apply 
these newly-developed polarimetric property extractors and 
statistical methods to land classification. Trisasongko presented 
an evaluation on strategies for rubber plantation mapping em-
ploying PolSAR data coupled with random forest and support 
vector machine in 2017. He showed that classification accuracy 
could be further augmented by integrating texture features [8]. 
Sonobe et al. conducted a classifying experiment using Sen-
tinel-1A C-SAR images and the Sentinel-2A image acquired 
during the 2016 growing season. They demonstrated an over-
all classification accuracy of 96.8% by means of kernel-based 
extreme learning machine [9]. Middinti et al. argued that the 
integration of polarimetric information with textures could sup-
ply complimentary information in forest type discrimination 
and produce high accuracy map [10]. Ohki et al. accomplished a 
large-area land classification over entire Japan using PALSAR-2 
data. They implemented an algorithm based on support vector 
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machine. Their experiments involved full polarimetry (FP), 
compact polarimetry (CP), and dual polarimetry (DP) data. The 
maximum accuracy of 73.4% was attained with 15 full polari-
metric features [11]. Buono et al. developed two unsupervised 
classification algorithms on the basis of Wishart models by in-
tegrating Freeman-Durden and Cloude-Pottier decomposition 
methods. They conducted a quantitative comparison between 
two classifying schemes using a fully polarimetric C-band data-
set acquired by Radarsat-2 over the test site, the Yellow River 
Delta of China [12]. Khosravi et al. put forward two improved 
decision tree ensembles that were named balanced filter-based 
forest (BFF) and cost-sensitive filter-based forest (CFF). These 
tree ensembles were reported to be able to deal with imbalanced 
data problems. The performances of such two tree ensembles 
were evaluated using three airborne L-band PolSAR datasets ac-
quired by AIRSAR, EMISAR, and UAVSAR [13]. Li and Zhang 
came up with a unified Huynen dichotomy by extending Huynen 
decomposition. This new algorithm provided a unified selection 
mechanism. Additionally, they presented a classification method 
based on scattering degree of preference. They evaluated this 
new classifier on the classic San Francisco Bay sample data pro-
vided by AIRSAR [14].

Still, it is worthwhile to start an exploration of classification 
techniques based on the state-of-the-art polarimetric extractors 
in the context of very high resolution PolSAR images. Studies 
on the data of the very high resolution synthetic aperture radar 
systems, such as F-SAR [15] and Uninhabited Aerial Vehicle 
Synthetic Aperture Radar (UAVSAR) [16], are booming recent-
ly. The imagery data with very high resolution generally has 
large dimension and is in single, dual, and full polarization con-
figurations. The spatial resolution of these systems is often deci-
meter level and the dimension is on the order of ten to twenty 
thousand by ten to twenty thousand pixels [17]. The size of the 
resolution cell with reference to these very high resolution data 
is close to the radar wavelength. One fundamental presumption, 
for the fully developed speckle, is that the resolution cell is much 
larger than the radar wavelength. This presumption will become 
ineffective, because the diameter of the resolution cell is only 
about six to ten times larger than radar wavelength [17]. Hence, 
it is necessary to re-validate those classical statistical models for 
PolSAR data. Meanwhile, it is also essential to re-design and 
re-evaluate the algorithms for land classification using very high 
resolution PolSAR images.

In this paper, the Touzi scattering vector model is combined 
with statistical properties of SAR data. An unsupervised land 
classification scheme is implemented and applied to very high 
resolution PolSAR images. The experiment accomplished for 
land classification is one of the exploratory works on PolSAR 
images with decimeter-level resolution. The rest of this paper is 
organized as follows. An analysis for incoherent decomposition 
models for PolSAR will be put forth in Section II in the first 
place. Afterwards, we will describe the new proposed classifica-
tion scheme based on Touzi incoherent decomposition model in 
Section III. A quantitative experiment using very high resolution 
PolSAR data will be conducted in Section IV. A brief summary 
will be drawn in the last section.

II. Analysis of Decomposition Models for PolSAR

A. Data for describing scattering medium
Most man-made and natural scatterers fall into two catego-

ries: deterministic scatterers and distributed scatterers. The for-
mer may be associated with a dominant and stable scattering 
phenomenon. Coherent target decompositions could be applied 
to the scattering matrix of imaging data and employed to charac-
terize such sort of deterministic scattering targets, for extracting 
physical scattering properties. The latter corresponds to a me-
dium that varies over time and is not stable or fixed. The radar 
scattering response of distributed scatterers consists of diverse 
scattering mechanisms. It is therefore only possible to extract 
the average physical scattering mechanism of these targets. 
Moreover, they will be affected by speckle to different degrees. 
These fluctuating targets can be described by the second order 
moment statistics of imaging data, such as coherency matrix or 
covariance matrix. The expression of scatter matrix S and coher-
ency matrix T3 are presented in equation (1) and (2) respectively. 
In the mono-static backscattering case, the scattering matrix is 
defined in terms of complex scattering coefficients of the ob-
served medium. Its form can be cast in a local Cartesian basis for 
convenience. If the roles of the transmitting and receiving anten-
nas are interchangeable, the reciprocity theorem goes into effect 
and then SXY is equal to SYX. The coherency matrix T3 can be 
generated from the outer product of the target vector that is de-
noted by k . The superscript T* stands for conjugate transpose, 
while the operator <…> stands for temporal or spatial ensemble 
averaging in equation (2) [18].
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B. Decomposition Models for extracting polarimetric 
          scattering properties

The purpose of target decomposition is to extract underneath 
scattering mechanisms as the sum of diverse pure scattering 
processes. Coherent target decomposition aims to express the 
measured scattering matrix S as a combination of a string of ca-
nonical scattering mechanisms. It is only suitable for determin-
istic targets. Incoherent target decomposition seeks to obtain the 
average scattering mechanism in each resolution cell and can 
merely be applied to distributed targets that are expressed in 
terms of coherency matrix or covariance matrix. Due to the lim-
ited space, it is impossible to review all the decomposition meth-
ods here. We will, in this paper, concentrate on Touzi scattering 
vector model which springs from Cloude-Pottier incoherent 
target decomposition. Cloude-Pottier incoherent target decom-
position presented, to a certain extent, ambiguities of scattering 
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type parameter for some scatterers [7]. An example, listed in [7], 
showed that a helix scatterer and dihedral scatterer had identi-
cal Cloude-Pottier α scattering type parameter (α=π/2). For this 
reason, these two distinct scatterers can not be distinguished by 
such a parameter. Touzi scattering vector model was put forth 
with the goal of solving such ambiguities [7].

Firstly, Touzi scattering vector model is derived by adopting 
a projection of the Kennaugh-Huynen scattering matrix con-di-
agonalization into the Pauli basis. This projection allows elim-
inating the aforementioned ambiguities. The Touzi scattering 
vector model is composed of one complex entity called sym-
metric scattering type (SST). This complex variable consists of 
symmetric scattering type magnitude sα  and phase sαφ  which
are defined in polar coordinates. The former one ranges from 
0 to π/2 and the latter one ranges from -π/2 to π/2. These two 
parameters are defined as a function of the scattering matrix 
con-eigenvalues μ1 and μ2 in equation (3) [7]. Besides, the scat-
tering vector model for symmetric and asymmetric targets is de-
noted as equation (4). m is the maximum amplitude return. ϕ is 
the orientation of the maximum polarization with respect to the 
horizontal polarization. mτ  and ψ  correspond to the helicity 
and the absolute phase respectively.
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Secondly, it is required to extend the scattering vector model 
mentioned above on account of the fact that it can only be effec-
tive for deterministic targets. This extension can be implement-
ed by means of the following three steps.

(1) Figure out the coherency matrix T3 through a simple spa-
tial averaging within a square window.

(2) Perform a diagonalization of coherency matrix T3. The 
corresponding three eigenvectors ui (i=1, 2, 3) and eigenvalues 
λi (i=1, 2, 3) will be obtained.

(3) Carry out the parametrization of three eigenvectors ui 
(i=1, 2, 3) according to the scattering vector model in equation 
(4). Each eigenvector can be characterized in terms of scattering 
vector model basis-invariant parameters as equation (4). A pro-
cess for extracting the average scattering mechanisms can be put 
into effect in the similar manner that Cloude-Pottier has utilized 
ino[19]. The average scattering parameters can be obtained by 
applying an arithmetic mean to these eigenvectors and eigenval-
ues afterwards.

Lastly, the above extended scattering vector model is quali-
fied to extract the physical scattering properties for both deter-
ministic targets and distributed targets. It is notable that only 
symmetric scattering type magnitude sα  and phase sαφ  are
adequate to meet the demand for classifying a 2-D land. As a re-
sult, other parameters will be omitted in the following sections.

III. Classification algorithm based on Touzi Scattering
Model

A. Statistical model for very high resolution PolSAR data
As far as very high resolution data is concerned, the size of 

the resolution cell is close to the radar wavelength. Many con-
ventional statistical models are based on a fundamental assump-
tion that the resolution cell is much larger than the radar wave-
length. The diameter of the resolution cell of very high resolution 
PolSAR data is generally about six to ten times larger than radar 
wavelength. Such assumption may, therefore, become invalid 
with reference to most very high resolution PolSAR datasets, 
such as F-SAR and UAVSAR. The amplitudes of four fully po-
larimetric channels were investigated and their histograms were 
computed and shown in [20]. A tight fit of the Rayleigh distribu-
tions to these histograms can easily be observed. Furthermore, 
it can be concluded that Wishart distribution will still be cor-
rect for those very high resolution datasets [20]. For this reason, 
the statistical models based on Wishart probability distributions 
continue to be effective for classification scheme using very high 
resolution PolSAR datasets.

The distributions of n-look coherency matrix Z, defined in 
eqination (5), will be utilized here to extract physical scattering 
mechanisms using Touzi incoherent decomposition. For conve-
nience, let A=nZ, then the matrix A follows a complex Wishart 
distribution. The matrix A is defined in eqination (6).
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The conventional Wishart distance, defined in equation (7), 

characterizes the distance between a pixel and a class. Such dis-
tance is essential to calculate the statistical distance for pixels. 
Let Tm denote the coherency matrix of a certain class   center. It 
can be approximated by the averaging of all the training sam-
ples. Each pixel is labeled with a class code if its Wishart dis-
tance to this class is the minimum among all classes. In addition, 
it is requisite to bring up the distance between classes to split or 
merge classes. The so-called distance between class with label i 
and the one with label j is presented in equation (8).

1( , ) ln( ) ( )m m md Z T Tr T Zω -= + (7)

1 11
{ln( ) ln( ) ( )}

2ij i j i j j iD T T Tr T T T T- -= + + + (8)
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B. Classification algorithm
In light of the analysis in Section II, Touzi incoherent target 

decomposition model is competent to extract physical scattering 
mechanisms unambiguously. For example, the symmetric scat-
tering type phase sαφ  has been proven to be effective for Con-
vair-580 airborne dataset which has a resolution of 0.64 meter 
in azimuth and 5.6 meter in range direction [21]. This parameter 
could easily be used to produce a set of coarse classifying re-
sults. And an unsupervised classification scheme based on these 
coarse results is supposed to be convincing if it can be incorpo-
rated with conventional statistical assumptions. The core param-
eters of Touzi incoherent decomposition are the magnitude and 
phase of symmetric scattering type. These two parameters can 
collectively be used for describing symmetric and asymmetric 
targets. Moreover, they are not dependent on polarization basis 
of radar antennas because they are derived from eigenvalues that 
are polarimetric basis invariant. At last, they play a role simi-
lar to Cloude-Pottier incoherent decomposition in the process 
of producing initial input data for classification. It is remark-
able that there are three other decomposition parameters in the 
original version of Touzi decomposition. They are nevertheless 
redundant in 2-D land classification applications and so that the 
new proposed algorithm will omit them for a lower computa-
tional complexity.

There are totally four types of land covers to be discerned, 
including vegetation, bare soil, urban area, and water body. The 
detailed steps of the proposed algorithm can be found in the fol-
lowing.

(1) Apply the Touzi incoherent target decomposition steps 
itemized in Section II. It has been investigated in [6] that 
the configurations of window size may introduce biases 
of decomposition parameters. These biases will intro-
duce an amplified error in the final classification results. 
Due to the significant upgrading of spatial resolution of 
VHR PolSAR images, the requirement of 60-look pro-
cessing window that corresponds to a 9*9 window size 
configuration, proposed in [6] and [7], should be loos-
ened to gather nearly unbiased incoherent decomposition 
parameters. Alternatively, a 7*7 window size configu-
ration will be deployed in this algorithm. The range of 
scattering type phase sαφ  will be equally divided into
eight sub sections, including [-π/2, -3π/8], [-3π/8, -2π/8], 
[-2π/8, -π/8], [-π/8, 0], [0, π/8], [π/8, 2π/8], [2π/8, 3π/8], 
and [3π/8, π/2]. There will be eight initial top-level land 
classes correspondingly. Each pixel will be assigned a la-
bel according to their value of symmetric scattering type 
phase sαφ .

(2) All the pixels in each top-level class will be sorted ac-
cording to their symmetric scattering type magnitude sα
. The subsection with the highest 20% scattering type 
magnitude sα  for each top-level class and the subsec-
tion with the lowest 20% scattering type magnitude for 
its adjacent top-level class will be conflated to form a 
new second-level class. This step will generate fifteen 
second-level classes. Such tactic allows mitigating the 
negative effect of outliers in each top-level class.

(3) Adopt clustering for those second-level classes. Such 
clustering takes advantage of the conventional statis-
tical models. The distance between classes in equation 
(8) will be employed in this step. The distance from one 
class to other classes will be calculated one after anoth-
er. The classes with the lowest distance are merged into 
one class, i.e. the third-level class, and there will be four 
third-level classes ultimately. Each class center is gener-
ated by an averaging of all the members within this class.

(4) Traverse all the pixels in third-level classes. Re-calcu-
late the Wishart distance between each pixel and each 
third-level class in light of equation (7). Then a re-assign-
ment is performed for each pixel based on such a new 
distance. An iterative updating for class center is often 
needed for better classification accuracy.

(5) The new class center will be obtained by an average of 
all the pixels within this class in terms of scattering type 
phase. The mapping from third-level class to the actual 
land cover type is determined by equation (9). There will 
be four land cover types, including vegetation, bare soil, 
urban area, and water body. The last step is to allocate 
colors for each third-level class with the purpose of a bet-
ter visualization.
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The dataflow and flowchart of the new proposed algorithm 
are illustrated in Fig. 1 and Fig. 2, respectively.

Fig. 1. The generating of top-level, second-level, and third-level classes and 
the dataflow.
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Fig. 2. The flowchart of classification scheme based on Touzi decomposition

IV. Experiment and Analysis

A. Test site and experimental data
The test site Rosario is the largest city in the province of 

Santa Fe, in central Argentina. It is located 300 km northwest of 
Buenos Aires, on the western shore of the Paraná River. It con-
tains a lot of flat areas and represents a typical rural and urban 
landscape with heterogeneous land covers.

The very high resolution PolSAR experimental data to be 
evaluated is provided by the UAVSAR system. UAVSAR is a 
L-Band imaging radar instrument that uses microwaves in the 
1.2 GHz range to detect and measure objects [16]. The detailed 
configurations of this original sample data are in table I. This 
sample data, courtesy of NASA/JPL-Caltech, is in single look 
complex (SLC) format and has slant range geometry. A sub-re-
gion with 2600 pixels in azimuth direction and 5772 pixels in 
range direction is cropped as an experimental area for the sake 
of low computational complexity. The Pauli coded pseudo-color 
image of this experimental area is presented in Fig. 4 (a). The 
production of ground truth map is accomplished under a com-
mercial contract with Guangzhou Jiantong Surveying Mapping 

and Geo-information Technology Corporation, one Chinese 
A-class license survey company. This map for the land covers 
is obtained by annotations on the basis of the contemporaneous 
Google Earth imageries. It is essential to generate the plots of 
Cloude Pottier and Touzi Scattering Vector Model (TSVM) de-
composition parameters respectively. These plots are listed in 
Fig. 3. Such plots are advantageous to make a visual comparison 
of the performance of two polarimetric decomposition methods. 
It can be easily seen from these plots that symmetric scattering 
type phase and magnitude attain better results for discerning di-
verse land covers.

Table I
The original experimental data and system configuration Parameters

Data ID:
rosari_16002

_15033_004_150402
_L090_CX_03

Acquisition 
Time:

April 2nd, 
2015

Wavelength: 23.8403cm Dimension of 
Azimuth: 93117

Dimension of 
Range: 9900

Size of cell in 
Azimuth and 

Range:

(0.6m, 
1.66m)

(a)

(b)

(c)
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(d)

Fig. 3. The decomposition results of Cloude-Pottier target decomposition and 
TSVM decomposition: (a) Cloude-Pottier target decomposition - Alpha; (b) 
Cloude-Pottier target decomposition - Entropy; (c) TSVM decomposition - 

sα ; (d) TSVM decomposition - sαφ

(a)

(b)

(c)

Fig. 4. (a) Pauli coded pseudo-color image of experimental area cropped from 
Rosario. UAVSAR data courtesy NASA/JPL-Caltech.
(b) Classification results using Cloude-Pottier Model; (c) Classification results 
using the new proposed method.

B. Evaluation Metrics
There are various evaluation metrics used in land cover clas-

sification. Due to the limited space, only three popular metrics, 
including user accuracy (UA), producer accuracy (PA), and over-
all accuracy (OA), will be involved in this study. Let M denote the 
total number of classes (M=4 in this study). Let Cij denote the to-
tal number of pixels that actually belong to class i but are predict-
ed to be class j. Then the user accuracy, producer accuracy, and 
overall accuracy are defined as equation (10), equation (11), and  
equation (12). The UA indicates the ratio of the pixels in a land 
cover that are correctly predicted to the pixels that are actually 
predicted to be such sort of cover. The PA signifies the propor-
tion of pixels that are correctly predicted within a certain land 
cover to the total number of pixels of such land cover in ground 
truth data. OA suggests what proportion is correctly classified 
over all the classes.
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C. Results and Analysis
A set of experiments will be conducted using the very high 

resolution sample data in Section IV. (A). The confusion matrix 
of two methods, Cloude-Pottier method and the new method 
based on TSVM, are presented in Table II and Table III, re-
spectively. The corresponding predicting results are listed in 
Fig. 4 (b) and (c). The quantitative comparison in terms of UA 
and PA are illustrated in Fig. 5 and Fig. 6. It can be observed 
that the new method based on TSVM performs better than the 
one based on Cloude-Pottier decomposition model in general. 
The UA and PA of the new method for the urban area are sig-
nificantly higher than the results obtained by the method based 
on Cloude-Pottier decomposition. These differences of perfor-
mances are mainly caused by the ambiguity of Cloude-Pottier 
α scattering type parameter. The extent of improvement with 
respect to the classifying accuracy of bare soil is not so prom-
inent compared with of other land covers. The relatively low 
accuracy for discerning bare soil is chiefly caused by the per-
formance deficiency of TSVM in terms of bare soil. As to the 
overall accuracy, the method based on Cloude-Pottier decom-
position only achieves 67.63%. In contrast, the new method 
proposed in this study reaches 80.99%. It is also worthwhile to 
make a comparison of other recent unsupervised or semi-un-
supervised land classification algorithms for PolSAR imag-
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eries. Actually, the quantitative results in different studies are 
acquired on diverse test data. Nevertheless, it will be helpful 
to introduce a quantitative comparison of their predicting ac-
curacy taking into account the main parameters of the test data 
used by them. The Enhanced decision tree method proposed 
in [13] and a unified Huynen method proposed in [14] are in-
volved in this comparison. The OA obtained by the classifi-
ers based on Cloude-Pottier decomposition, new TSVM, En-
hanced decision tree, and Unified Huynen decomposition on 
different test data are illustrated in Fig. 7. It can be observed 
that Enhanced decision tree and Unified Huynen method attain 
higher accuracy than the Cloude-Pottier method and our new 
proposed method. This is caused by the characteristics of test 
data. For one thing, the spatial resolution of test data Rosario 
is 2600×5772, but the test data Winnipeg and San Francisco 
are only 260×480 and 900×1024 respectively. For another, the 
test data Rosario covers a very large area with a lot of hetero-
geneous land objects. However, the test data Winnipeg and San 
Francisco cover a relatively small area with a large number of 
homogeneous land objects. The performance differences of the 
new proposed method are less than 7%, even though the current 
overall accuracy is obtained on a test data which corresponds to 
a much larger area. Furthermore, it will be meaningful to apply 
our new classifier to the classic PolSAR data, such as AIRSAR 
San Francisco image. The ground-truth annotations provided 
by Liu et al. are used to assess the performance of new TSVM 
classifier [22]. The original ground-truth data, however, have 
six classes, including unlabeled background, mountain, water 
body, urban, vegetation, and bare soil. To measure the accuracy 
in a fair setting, the background pixels are excluded from eval-
uation procedure. In addition, the class mountain and vegeta-
tion are merged into one class, i.e. vegetation. It is noteworthy 
that the metrics in [14] are not based on semantic classes but 
on the consistency of entropy/alpha classification plane. As a 
result, it is not suggested here to make a comparison of the 
performances of the two classifiers evaluated on the AIRSAR 
San Francisco data. The confusion matrix of TSVM classifier 
evaluated on the AIRSAR San Francisco data is presented in 
Table IV and the corresponding classification result is demon-
strated in Fig. 8. It is well known that speckle effect becomes 
much more dominant with regard to SAR images with normal 
resolution. It can be seen that the speckle of San Francisco data 
decreases performance significantly. It should be noted that the 
total amount of pixels is only 802302 excluding background 
pixels.

Table II
Confusion matrix for land classification based on Unsupervised 

Cloude-Pottier Decomposition Method
VE BS UR WB total PA

VE 4511718 799145 377212 101963 5800038 77.92%
BS 564560 1311376 81932 287657 2245525 58.40%
UR 1484585 947728 1949323 83717 4465353 43.65%
WB 12123 104462 12549 2377150 2506284 94.85%
total 6582986 3162711 2421016 2850487 15007200
UA 68.69% 41.46% 80.52% 83.39% 67.63%

Table III
Confusion matrix for land classification based on New  

Proposed Method

VE BS UR WB total PA
VE 4689992 754475 297754 47817 5790038 81.00%
BS 465617 1452614 76015 251279 2245525 64.69%
UR 694080 113791 3582009 75473 4465353 80.22%
WB 8658 56284 11024 2430318 2506284 96.97%
total 5858347 3086220 3257746 2804887 15007200
UA 80.06% 61.11% 90.30% 86.65% 80.99%

Table IV
Confusion matrix for land classification based on TSVM Method 

evaluated on San Francisco data

VE BS UR WB total PA
VE 80688 15838 18695 1019 116240 69.42%
BS 860 11195 709 937 13701 81.71%
UR 101911 26947 213909 28 342795 62.40%
WB 95378 73093 10799 150296 329566 45.60%
total 278837 127073 244112 152280 802302

UA 28.94% 8.81% 87.63% 98.70% 56.85%

Fig. 5. UA of two classification methods over four land covers

Fig. 6. PA of two classification methods over four land covers
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Fig. 7. OA of four classification methods

Fig. 8. Classification results evaluated on AIRSAR San Francisco data using the 
new proposed method. AIRSAR data courtesy NASA

V. Conclusion

The Touzi incoherent decomposition model allows a roll-in-
variant and unique target characterization. Hence, the Touzi scat-
tering vector model is employed to extract coarse land classifica-
tion maps in this study. A new unsupervised classifying scheme 
that incorporates the conventional Wishart statistical models is 
proposed based on the coarse land classification maps. Quantita-
tive evaluation results validate the effectiveness of the new pro-
posed method. Such sort of classifying method becomes even 
more important when it is impossible to acquire a large number 
of training samples with human annotations. In addition, it will 
be valuable to conduct a further revision to the TSVM model to 
improve the ability of discerning bare soil and conduct experi-
ments on other airborne very high resolution PolSAR images.
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