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Comparison of Methods for On-Line Harmonic 
Estimation  

Jovan M. Knežević and Vladimir A. Katić 

 
Abstract—The aim of this paper is to present a comparison of 

some popular methods for online harmonic estimation. The well-
known methods Descrete Fourier Ttransform (DFT), Enhanced 
Phase Locked Loop (EPLL), Adaptive Notch Filter (ANF) and 
method based on Extended Kalman Filter (EKF) are simulated 
and compared. The methods are compared in critical phases, 
such as the fast change of harmonic amplitudes and the change of 
the system frequency. 
 

Index Terms—Power Electronics/Harmonic estimation 
/Simulation 
 

I. INTRODUCTION 

ncre

HE number of sensitive devices that require high power 
quality, i.e. high quality of power supply is constantly 

i asing [1]. On the other hand the use of applications of 
nonlinear loads, mostly consisting of power electronics 
devices, is growing even at faster pace. Such loads and devices 
are distorting supply waveforms and therefore poluting power 
system grid. The development of tools for accurate harmonic 
estimation enables a proper operation of the devices for 
mitigation of power quality imperfections.  

The Fourier Transform (FT) and its descrete form the 
Discrete FT (DFT) have been the most common tool used by 
researchers and practitioners over last several decades [2]. The 
DFT decomposes signals into fundamental and higher order 
harmonics. Many problems of the DFT such as spectral 
leakage, picket fence effects and sensitivity to the variations of 
the system frequency are limiting its accuracy. To preserve 
time information in the signal the windowed DFT known also 
as Short Time Fourier Transform has been developed [2]. 

In redcent years, in order to overcome above mention 
problems, the researchers have been developing methods that 
can adoptively track changes in the system. The methods 
based on the Enhanced Phase Locked Loop have been 
presented [3]-[5]. They use one EPLL block to adoptively 
track an amplitude and the phase of the particular harmonic.  
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The method of [3]-[5] makes a fundamental assumption that 

the existing frequency components in the signal are in the 
form of harmonics [2]. The Adaptive Notch Filter (ANF) 
presented in [6], on the other hand, relaxes that assumption 
and presents a major improvement of the methods presented in 
[7] and [8] which enables direct detection and extraction of 
arbitrary frequency components. Such methods are very 
accurate in a non-stationary environment but they have slower 
dynamic responce than the DFT [6]. 

To achieve a higher resolution and better estimation 
accuracy and still to preserve adaptive feature, the Kalman 
Filter (KF) have been suggested [10]. The KF is a 
mathematical model that uses noisy and inaccurate 
measurement data and provides an efficient computational 
(recursive) means to estimate the past, present or future values 
in a way that minimizes the mean of the squared error. In 
order to achieve higher accuracy an accurate model is 
required. For nonlinear model, the extended KF is used [9].  

In this paper several methods for online harmonic estimation 
are simulated and compared. The most common tool - 
theDFT, methods based on gradient descent method EPLL and 
ANF and ECKF are tested in the typical environment with fast 
dynamical changes of system parameters.  

II. METHODS 

A. Discrete Fourier Transform 
The FT is one of the most frequently used techniques of 

signal analysis [1], [2]. The FT of the continuous signal 
 is defined in (1). Considering the periodical nature of the 

electrical current and voltage as well as the use of the digital 
signal processing, the DFT is used as a conventional tool.  
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][nx  is the sampled value of the continuous signal  at 

time instant  
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The recursive algorithm of the DFT can be easily represented 
by equations (4) and (5) assuming that the DFT is 
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implemented as the windowed DFT with the square window 
of the width equal to the period of the fundamental harmonic.  
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where N is the number of samples per period of the 
fundamental component of the signal, i is the order of the 
harmonic and and are the real and imaginary coefficients 
of the DFT. Fig. 1 presents MATLAB-Simulink model of the 
DFT. It shows how many calculations are necessary to obtain 

 and  coefficients of the DFT. 
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Fig. 1.  MATLAB-Simulink model of the DFT. 
 

It is obvious that it is very easy to calculate these Fourier 
coefficients, but if it is necessary to have the amplitude and the 
phase of a certain harmonic, such calculations require 
additional computational effort of the digital processor as 
given in (6) and (7).  
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After the amplitude and the phase are obtained, reconstruction 
of the particular harmonic is given as: 

)sin()( 1 iii tiAth δω +=  
(8)

 
Some sources of errors in the DFT can be recognized as 
aliasing, spectral leakage, picket fence, etc. [2]. These errors 
are particularly enhanced in cases of fast varying signals of 
transients. In those cases the signal frequency is changing even 
with the pace faster then one period of the fundamental 
harmonic (20ms in 50Hz systems) [2]. 

B. The Enhanced Phase Locked Loop 
Continuous signal can be represented as: 
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where i is the order of the harmonic so that 1ω represents the 
fundamental frequency component (the first harmonic) and 
higher harmonic components are defined by i>1. 
Usually 1ωω ii = , but this is not necessarily true in all cases. 
The task of the EPLL is to extract individual harmonic 
components of the signal . The least squares error between 
the input of the EPLL  and the estimated signal  is 

minimized by the method of gradient descent [5]. The cost 
function is defined as: 
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If it is assumed that is the vector of parameters NR∈Θ

)(),( ttA ii φ  the gradient descent method can be written as: 
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The gradient descent method provides a method of adjusting 
the parameter Θ  so that the cost function J converges to its 
minimum point. The EPLL is developed as an adaptive notch 
filter and is described by the following differential equations: 
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Detailed derivations and stability analysis can be found in [5]. 
Fig. 2 shows a very simple implementation of the 
computational unit in the MATLAB/Simulink of the EPLL. 
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Fig. 2.  MATLAB-Simulink model of the EPLL. 
 
A proper setting of the parameters i1μ , i2μ  and i3μ  ensures 
the convergence of the solution to differential equations. The 
parameter i1μ  controls the amplitude and the others control 
the phase and frequency tracking properties. Larger i1μ  
guarantees a faster step response of the amplitude, but also 
introduces a higher steady state error. It is a trade-off between 
accuracy and speed. In order to reduce ripple in the response 
of the EPLL, it is possible to introduce filters for the 
amplitude and frequency, but this further decreases the time 
response. 

C. Adaptive Notch Filter 
An ANF has been recently proposed in [6]-[8]. The dynamic 

behaviour of the ANF is defined by following set of diferential 
equations: 
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where x(t) is the input signal, θk is the estimated frequency of 
the kth component, and γk and ζk are both real and positive 
numbers which determine the behaviour of the kth subfilter of 
the ANF in terms of accuracy and convergence speed. 

It can be found that for the input signal x(t) the dynamical 
system (19)-(21) has a unique quasy orbit given by: 
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This means that the kth constituting component of the input 

signal as well as its frequency are directly provided by the kth 
set of the differential equations (19)-(21), and hence, a full 
decomposition is achieved if a sufficient number of filters are 
employed.  

Detailed derivations and stability analysis can be found in 
[6]. Fig. 3 shows a very simple implementation of the subfilter 
unit of the ANF in the MATLAB/Simulink and its full 
decomposition of the parallel structure in fig.4.. 
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Fig. 3.  MATLAB-Simulink model of one Subfilter of the ABF. 
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Fig. 4.  Full Decomposition of the parallel structure of the ANF. 

 
Similar to the DFT, the amplitude and phase shift of 

particular harmonic can be calculated as: 
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D. The Extended Complex Kalman Filter 
An observed signal at time k can be described in a power 

system  as a sum of N of xi sinusoids (9) with white noise vi: 
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The observation noise vi is a Gaussian white noise with zero 

mean and variance σ2
v. The covariance of measured errors is 

[ ]T
kkk vvER *= . For the sake of simplicity, let us consider 

only single complex sinusoid x with the angular frequency ω1 
and the amplitude a1. Complex type state variables are defined 
as [10]: 
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The state – space model is written as: 
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The recursive process of the ECKF is then: 
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values, respectively.  
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State Filter 
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and the Kalman filter gain is calculated as: 
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The parameters of the frequency fk, and amplitude ak at time k 
can be obtained as: 
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More details about the ECKF can be found in [9] and [10]. 

III. SIMULATION 
All of the mentioned methods have been simulated in the 

MATLAB/Simulink environment. In this paper these methods 
have been tested in the case of fast changes of  system 
paramaters, amplitude and the frequency. In order to do this, 
two test signals have been defined: 

)sin()()( 111 ttAtx ω=  
(41)

 

502
1002.1
1001

)(

1

1

⋅⋅=
⎩
⎨
⎧

>
≤

=

πω
mst
mst

tA

 

(42)

 
 

0 0.05 0.1 0.15 0.2 0.25 0.3
-2

-1

0

1

2

time [s]

x 1

 
Fig. 5.  Test signal x1. 
 
and the second. 
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Fig. 6.  Test signal x2. 
 

A. Change of the amplitude 
In fig.7 to fig.10 analysis of the signal x1 is shown. A 

sudden step of the signal amplitude is analysed. As it is well 
known the DFT and ECKF have a faster step response while 
the EPLL and ANF are significantly slower. 
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Fig. 7.  Amplitude of the signal x1 using DFT. 
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Fig. 8.  Amplitude of the signal x1 using EPLL. 
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Fig. 9.  Amplitude of the signal x1 using ANF. 
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Fig. 10.  Amplitude of the signal x1 using ECKF. 
 

B. Change of the frequency 
In fig.11 to fig.14 analysis of the signal x2 is shown. In the 

signal x2 a sudden change of the frequency can be seen. A 
known problem of the DFT can be seen in fig.11. The DFT 
doesn't work properly in the case of variable frequency. The 
EPLL and ANF nedeed some time to converge to the new 
value of the signal frequency while the ECKF is obviously 
faster. 
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Fig. 11.  Amplitude of the signal x2 using DFT. 
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Fig. 12.  Amplitude of the signal x2 using EPLL. 
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Fig. 13.  Amplitude of the signal x2 using ANF. 
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Fig. 14.  Amplitude of the signal x2 using ECKF. 

 

C. Example 
In fig.15 the test signal x3 is shown. It has a main harmonic 

as well as the 5th and 7th harmonic and white noise n(t). 
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Fig. 15.  Test signal x3. 

 
The analysis of the signal x3 is shown in fig.16 to fig.19. In 

the case of several harmonics and constant system frequency 
the DFT is very accurate with the delay of 20ms. The ECKF is 

even faster if the parameters of the noise are known. Methods 
based on the gradient descent method need more time to 
converge to the steady state values. 
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Fig. 16.  DFT analysis of the signal x3. 
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Fig. 17.  EPLL analysis of the signal x3. 
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Fig. 18.  ANF analysis of the signal x3. 
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Fig. 19.  ECKF analysis of the signal x3. 

 

IV. CONCLUSION 
In this paper several methods for harmonic analysis are 

compared. The DFT, methods based on the gradient descent 
method the EPLL and ANF and ECKF are simulated in the 
typical environment with fast dynamical changes of system 
parameters. The DFT and ECKF are fast and accurate. In the 
case of the variable system frequency the DFT can produce 
significant errors. In the case of slow changes the EPLL and 
ANF can adoptively and accurately track the parameters of the 
system. The EPLL and ANF are simple and easy to implement 
while the ECKF is very complex and requires powerful 
processor. 
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