
ELECTRONICS, VOL. 16, NO. 1, JUNE 2012 81

Network Simulator Tools and GPU Parallel
Systems

Leonid Djinevski, Sonja Filiposka, and Dimitar Trajanov

Abstract—In this paper we discuss the possibilities for parallel

implementations of network simulators. Specifically we
investigate the options for porting parts of the simulator on GPU
in order to utilize its resources and obtain faster simulations. We
discuss few issues which are unsuitable for the GPU architecture,
and we propose a possible work around for each of them. We
introduce a design of parallel module that interconnects with a
network simulator, while maintaining transparency in aspect of
the simulation modeler.

Index Terms—Network Simulator Tools, HPC, GPGPU,
CUDA, OpenCL.

I. INTRODUCTION
ETWORK simulators are tools used by researchers in
order to test new scenarios and protocols in a controlled

and reproducible environment, allowing the user to represent
various topologies, simulate network traffic using different
protocols, visualize the network and measure the
performances. Although network simulators are very useful,
most of the widely used network simulators do not scale [1].
Simulation of medium to large networks results in a long
simulation time which is not practical for investigating
protocols.

With the development of parallel systems, significant
processing power is becoming available. The single
instruction, multiple data (SIMD) models of parallel systems,
more particular the Graphics Processing Units (GPUs) have
provided a massive acceleration. Additionally, the low cost of
these units have brought a huge performance in the insides of
regular personal computers (PCs). The first attempts for
utilizing the GPU hardware for general purpose computing
proved to be a very complicated process [2]. However, with
development of the Compute Unified Device Architecture
(CUDA) programming model in 2007 [3], and also with the
publishing of the standard Open Computing Language
(OpenCL) late 2008 [4], general purpose computing on

Manuscript received 1 May 2012. Accepted for publication 30 May 2012.

Some results of this paper were presented at the 4th Small Systems Simulation
Symposium, Niš, Serbia, February 12-14, 2012.

Leonid Djinevski, Sonja Filiposka and Dimitar Trajanov are with the
E-TNC Research Group, Faculty of Computer Science and Engineering, Ss.
Cyril and Methodius University, Rugjer Boshkovikj 16, 1000 Skopje,
Macedonia, E-mail: {leonid.djinevski, sonja.filiposka,
dimitar.trajanov}@finki.ukim.mk.

graphics hardware has significantly improved. Therefore,
many general purpose applications have been ported for the
GPU architecture.

Network simulators have traditionally been developed for
execution on sequential computers. Developing a parallel
implementation for a network simulator is not straight
forward. There are many architectural issues that have to be
taken in to account and they might prevent the complete
utilizing of the GPU resources.

In this paper we review few of the most widely used
network simulators. We also discuss the possibilities for
parallel implementations of network simulators. Specifically
we investigate the options for porting parts of the simulator on
GPU in order to utilize its resources and obtain faster
simulations. Additionally, we identify modules which carry
the biggest workload as well as possible, issues that make the
network simulators unsuitable for the GPU architecture, and
we propose resolutions to work around these issues.

This rest of this paper is organized as follows: We review
implementations of network simulator tools in Section 2,
followed by a short overview of the GPU computing in
Section 3. In Section 4 we identify which modules of the
network simulator contain intensive workloads. Also in this
Section we propose a framework which will utilize the GPU
resources. In Section 5 we analyze performance, and we
conclude and propose future work in Section 6.

II. RELATED WORK
There are two types of approaches for developing a parallel

network simulator. One can create the parallel simulator from
scratch, where all the simulation software is custom designed
for a particular parallel simulation engine. For this approach a
significant amount of time and effort are necessary to create a
useable system. This is so, because new models must be
developed, and therefore validated for accuracy.

An example of this approach is the Global Mobile
Information System Simulator (GloMoSim), which is a
scalable simulation library designed at UCLA Computing
Laboratory to support studies of large-scale network models,
using parallel and/or distributed execution on a diverse set of
parallel computers [5]. GloMoSim beside sequential adopts
parallel simulation model using libraries and layered API. The
libraries are developed using PARSEC [6], which is a parallel
C based programming language which uses message based

N

DOI: 10.7251/ELS1216081D

ELECTRONICS, VOL. 16, NO. 1, JUNE 2012 82

approach.
Another example is the Scalable Simulation Framework

(SSFNet) which claims that is a standard for parallel discrete
event network simulation [6, 7]. SSFNET’s commercial Java
implementation is becoming popular in the research
community, but SSFNet for C++ (DaSSF) does not seem to
receive nearly as much attention, probably due to the lack of
network protocol models. It is a high performance network
simulator designed to transparently utilize parallel processor
resources, and therefore scales to a very large collection of
simulated entities and problem sizes.

The second approach for developing parallel/distributed
simulation involves interconnecting with existing simulators.
These federated simulations may include multiple copies of
the same simulator (modeling different portions of the
network), or entirely different simulators. Few parallel
implementations of this approach are presented in the
following.

The NS-2 Simulator [8] is widely used in the networking
research community and has found large acceptance as a tool
to experiment new ideas, protocols and distributed algorithms.
It is a discrete event driven sequential network simulator,
developed at UC Berkeley by numbers of different researchers
and institutions. NS-2 is suitable for simulating and analyzing
either wired or wireless network sand is used mostly for small
scale simulations. NS-2 is written in C++ and OTcl. The users
define the network topology structure, the nodes, protocols
and transmitting times in an OTcl script. The open source
model of NS-2 encourages many researchers from institutions
and universities to participate and contribute to improve and
extend the project. NS-2 plays an important role especially in
the research community of mobile ad hoc networks, being a
sort of reference simulator [9]. Adding new network objects,
protocols and agents requires creation of new classes in C++
and then linking them with the corresponding OTcl objects.

A parallel simulation extension for the traditionally widely
used NS-2 simulator has been created at the Georgia Institute
of Technology (PADS Research Group), but it is not in wide
use. The Parallel/Distributed NS (PDNS) [10] was designed to
solve the NS-2 problems with large scale networks by running
the simulator on a network of workstations connected either
via a Myrinet network, or a standard Ethernet network using
the TCP/IP protocol stack. In that way the overall execution
time of the simulation should be at least as fast at the original
single workstation simulation, allowing simulating large scale
networks.

Georgia Tech Network Simulator (GTNetS) is a network
simulation environment which uses C++ as a programming
language [11]. GTNetS is designed for studying the behavior
of moderate to large scale networks. The simulation
environment is structured as an actual network with distinct
separation of protocol stack layers.

OMNeT++ is a network simulation library and framework,
primary used for simulation of communication networks, but
because of its flexible architecture can be used to simulate
complex IT systems too. OMNeT++ offers an Eclipse based

IDE and the programming language used is C++ [12, 13].
In this paper we introduce a different approach for

parallelizing network simulators that is based on federation
simulations. In order to fully utilize the available hardware we
investigate the possibility to port the computing intensive
network simulator modules to the GPU and thus obtain faster
simulation time.

III. GPGPU, CUDA, AND OPENCL
In this section we summarize some key fact of the GPU

architecture so we can provide and discuss information about
parallel module implementation of a network simulator. The
origin of General-Purpose computing on Graphics Processing
Units (GPGPU) comes from graphics applications, so in
similar fashion, CUDA or OpenCL applications can be
accelerated by data-parallel computation [14] of millions of
threads. A thread in this context means an instance of a kernel,
which is a program that is running on the GPU. This way, the
GPU device can be visualized as a SIMD parallel machine.
Therefore, understanding of the graphics pipeline to execute
programs is not needed. In a nutshell, CUDA or OpenCL
provide convenient memory hierarchy, allowing maximizing
the performance, by optimizing the data access. The memory
hierarchy of a GPU device is presented in Fig 1.

The GPU device has off-chip memory, so called global
memory. Since this memory is separated from the GPU, a
single fetching of data takes at least 500 cycles. This is the
slowest memory on the device, and therefore the most
expensive performance wise.

The next level in the memory hierarchy is the local
memory, which is shared by a number of threads organized in
work groups. This memory is very small 16 – 48KB, and it
can be accessed almost as fast as register memory denoted in
Fig. 1 as private memory which is exclusive to a single thread.
Therefore, a program will compute correctly if there is no data
dependence between threads in different work groups.

Fig. 1. GPU device memory hierarchy.

ELECTRONICS, VOL. 16, NO. 1, JUNE 2012 83

Exception is that within the same work group thread can have
dependence because they can exchange data using the local
memory.

IV. NETWORK SIMULATOR MODULES
Network simulator algorithms are usually not so straight

forward for mapping on the GPU, therefore we need to
identify the workload of each module. The modules with the
biggest workload are candidates for parallelization. Since, the
GPU is a SIMD, in order to utilize the architecture, we look
for segments of the algorithm code which are repeated
regularly. Usually, these code segments are for loops or loops
for which control flow can be predicted.

Once we identify which modules to parallelize, few issues
have to be taken in to account. If the code segment works with
small amount of data, the GPU device parallelism cannot be
expressed. Another major issue is the control flow divergence.
If the code segment contains much branching, the parallel
code gets serialized, thus minimal or no performance increase
is achieved. Nevertheless, in order to tweak the algorithm, few
methods can be used to decrease the divergence. However, the
worst divergence situation is presented in Listing I.

LISTING I.

UNAVOIDABLE DIVERGENCE
if (condition 1)
 do this block of operations
else if (condition 2)
 do that block of operations
else if (condition 3)
 do some block of operations
else
 do any block of operations

In this case the divergence can cause up to 75% efficiency

reduction, because the block of operation requires hundreds of
instructions, thus making the algorithm unsuitable for SIMD
parallel execution.

A. Program Transformations
In order to exploit more parallelism from the resources at

hand, the program has to be transformed. The structure of the
computations and their schedule need to be changes, so the
program transformations will result with equivalent program
which will have better performance.

Since data access is the most expensive part of the program
execution, sometimes the program can be transformed so the
data is not loaded from memory and calculated on the GPU
device. In addition, another important factor is to have enough
data to process in order to utilize the parallel resources.
Therefore, it is prudent to introduce more calculation even if
there are not needed at the moment, since in the following
moments a requested calculation could already been obtained.

V. PERFORMANCE ANALYSIS
In order to obtain relevant results, we propose using a GPU

device from the high-end segment. An example of a high-end

GPU device is the Nvidia Tesla C2070 GPU, which is the flag
holder device for Nvidia at the moment of writing this paper.

Regarding parallelism, the Amdahl Law is plotted in Fig. 2,
where the x-axis is the number of processors p, and the y-axis
is the achieved speedup.

There are three segments that can be noticed on the plot.
The segment I represents a relation between the speedup and
the number of processors, where by increasing the number of
processors. In the second segment, a saturation is achieved, so
the speedup stays constant with the increasing the number of
processors. The segment III, indicates that increasing of the
number of processors, can lead to decreasing of the speedup,
which is a consequence of much more communication
between the processors and much less computing achieved.

Since for a given GPU device, the number of cores is
constant, the plotted curve will depend of the amount of data
that is being computed as it is presented in Fig. 3.

The curve 1 is the same curve as plotted in Fig 2. Curves 2
and 3 present the speedup for larger data quantities. Hence,
we can conclude that for larger data quantities, the curve
achieves saturation much slower.

Therefore, the network simulator parallel module, should
scale well over different sizes of networks, in such a way that
the simulation scenarios of interest are in the linear segment I,
and possibly, if unavoidable in the saturation segment II.

The parallel module should achieve maximal speedup of at

Fig. 2. Parallel speedup.

Fig. 3. Parallel speedups for different data amounts.

ELECTRONICS, VOL. 16, NO. 1, JUNE 2012 84

least x25 on a high-end TESLA C2070 GPU for the overall
execution of the network simulator. This is a reasonable
performance increase that is consistent with many real-life
applications ported to the GPU platform, thus providing
another example of achieved acceleration by utilizing the
computational power of modern programmable GPU devices.

VI. CONCLUSION
Specific modules of the network simulators demand high

computational resources. Therefore, we propose a parallel
module for the network simulator in order to utilize the
computational performance of GPU devices. Usually the
network simulator algorithms run in single precision, so the
GPU devices are suitable, although the fact that the GPUs
support double precision which is still significantly slower.

In our future work, we intend to develop an implementation
of a parallel module for one of the few most widely used
network simulators. Also, we would like to evaluate how the
GPU implementation of the network simulator extension can
perform in specific case network topologies. In addition, we
would like to search for the best suitable data structures that
can provide further optimization. Beside the stand alone
machine setup, we would like to test our parallel module on a
multi-GPU setup. Additionally we would like to combine MPI
and OpenCL, in order to investigate how parallel module will
perform on a cluster of computers, where each computer has a
multi-GPU setup.

REFERENCES
[1] Weingartner, E., vom Lehn, H., Wehrle, K., "A Performance

Comparison of Recent Network Simulators" in Conf. Rec. 2009. ICC
'09. IEEE Int. Conf. Communications, pp. 1-5.

[2] Harris, M.J., “General Purpose Computation on GPUs”, retrieved June
2011 from http://www.gpgpu.org/.

[3] NVIDIA CUDA, retrieved February 2010 from
http://developer.nvidia.com/object/cuda.html/.

[4] The OpenCL Specification, Version 1.0, document Revision 43, 2009,
retrieved February 2010 from http://www.khronos.org/opencl/.

[5] Zeng, X., Bagrodia, R., Gerla, M., “GloMoSim: A Library forParallel
Simulation of Large-Scale Wireless Networks”, in Proc.12th Workshop
on Parallel and Distributed Simulation, Banff, Alta.Canada, 1998, p.
154-161.

[6] Parallel Simulation Environment for Complex Systems (PARSEC),
retrieved June 2010 from http://pcl.cs.ucla.edu/projects/parsec/.

[7] Cowie, J.H., Nicol D.M., and Ogielski A.T., “Modeling the
GlobalInternet”, Computing in Science and Engineering, 1999.

[8] NS-2 Simulator, retrieved June 2010 from:
http://nsnam.isi.edu/nsnam/index.php.

[9] Di Caro, G. A., “Analysis of simulation environments for mobile adhoc
networks”, Technical Report No. IDSIA-24-03, IDSIA /
USISUPSI,BISON project, Switzerland, 2003.

[10] Riley, G., Fujimoto, R.M., Ammar, M., “A Generic Framework for
Parallelization of Network Simulations”, in Proc. 7th Int.Symposium on
Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, 1999, p. 128-135.

[11] Riley, G.F., “The Georgia Tech Network Simulator”, in Proc. of the
Workshop on Models, Methods, and Tools for Reproducible Network
Research (MoMe Tools), 2003.

[12] Varga, A., “The OMNeT++ discrete event simulation system”, Proc. of
the European Simulation Multiconference (ESM '2001), Prague, Czech
Republic, 2001.

[13] Sekercioglu, Y. A., Varga, A., Egan, G. K., “Parallel Simulation Made
Easy With Omnet++”, in Proc. of the European Simulation Symposium
(ESS2003), Oct. 2003, Delft, The Netherlands.

[14] Grama, A., Gupta, A., Karypis, G., Kumar, V., Introduction to Parallel
Computing, 2nd Edition, Addison-Wesley, Reading, MA, 2003.

	I. Introduction
	II. Related Work
	III. GPGPU, CUDA, and OpenCL
	IV. Network Simulator Modules
	A. Program Transformations

	V. Performance Analysis
	VI. Conclusion

