New Hybrid-Based Self-Test Strategy for Faulty Modules of Complex Microcontroller Systems

Authors

  • Mohamed H. El-Mahlawy
  • Sherif Hussein
  • Gouda I. Mohamed

DOI:

https://doi.org/10.7251/ELS1822059E

Abstract

In this paper, a new hybrid test strategy, called hybrid-based self-test (HYBST), is presented to test complex digital circuits such as microcontrollers. This test strategy integrates the signature multi-mode hardware-based self-test (SM-BST) with the software-based self-test (SBST). In this test strategy, the microcontroller is divided into a number of main modules, and then test subroutines are used to functionally test each module, based on its instruction set architecture (ISA). The ISA is used to generate test subroutines that represent test pattern generators (TPGs) and part of the test controller. The SMHBST represents the other part of the test controller and the test response compaction (TRC). The experimental results illustrate the superiority of the HYBST in the memory utilization, test application time, testing of internal modules of the microcontroller, and testing of general-purpose input-output (GPIO) pins of the microcontroller. In addition, an integrated test solution for fault diagnosis of the circuit boards including random logic integrated circuits (ICs) and microcontroller chips is presented to indicate a real practical test strategy.

Published

2019-09-19