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Introduction
Scheduling tasks are of great importance and 

well known in railway transportation. The most 
common scheduling tasks are as follows:

• routing problems (combinatory optimization 
problems where a set of routes to several con-
sumer points has to be found for a fleet of ve-
hicles located at one or more source points);

• timetabling tasks (preparation of train time-
tables in such a way that they should meet all 
available time constraints);

• volume planning tasks (traffic distribution 
with the required volume of transportation 
taken into account);

• timetabling and volume planning (prepara-
tion of train timetables considering all pos-
sible constraints);

• volume planning and routing tasks (construc-
tion of train timetables and preparation of 
routes);

• other optimization tasks.
The main difficulties in solving these problems 

by strict methods are combinatory complexities, 
exhaustive searches, computer memory deficiency, 

and time-consuming computations to reach an op-
timal solution.

In this case a number of heuristic algorithms are 
used. For example:

 - The Monte Carlo method. In scheduling prob-
lems, this method allows obtaining a series 
of approximated solutions, from which it is 
required to choose the best one. However, 
it is obvious that any verified change in the 
operation of a railway line will lead to neces-
sarily changing the basic parameters of an al-
gorithm, i.e. the type of a random value’s dis-
tribution function, mathematical expectation, 
dispersion etc.

 - Methods of dynamic programming (Bellman 
equation). The main idea of this method is 
the decomposition of a complex problem into 
a number of simple ones, whose solution is 
reduced to calculating a single variable. The 
method allows constructing a schedule using 
the optimality of any part of a schedule when 
it is optimal in general.

To sum up on the above methods, it should be 
noted that to achieve an optimal solution one needs 
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to have numerous tests, and it increases time expen-
ditures, while not giving any guarantee that an ob-
tained solution will be close to optimality.

Approaches to scheduling problems 
using artificial neural networks
In this context, algorithms based on or construct-

ed using ANN stand out. The reason is that artificial 
neural networks have a number of qualities inher-
ent in a human brain and not available in classical 
computer architectures, capable of learning with 
and without a teacher, and consolidating accumu-
lated knowledge.

Neural network solutions are applied to various 
types of scheduling tasks. There are various types of 
solutions.

David R. Martinelli and Hualiang Teng in [1] use 
a neural network to prepare a train formation plan. 
A train formation plan is the basis for further con-
struction of freight trains’ paths. They state the fol-
lowing task – for a given network of railway stations 
with existing routes, a table of requests and a given 
number of wagons one has to construct a train for-
mation plan to satisfy requests.

The authors solve this problem using a multi-
layer perceptron. The input layer contains as many 
neurons as there are requests for transportation, 
the output layer contains as many neurons as there 
are possible combinations of “request – scheduled 
train”. By training this network on existing training 
examples using the method of error back propaga-
tion, one can have new solutions satisfying these 
constraints.

The disadvantages of the method are the depen-
dence of a neural network on the available options 
of a train formation plan and the necessity to re-
train it every time the configuration of wagon flows 
changes.

For instance, papers [2-3] are based on the use of 
Hopfield networks. The paper [4] considers the issue 
of scheduling using Hopfield networks applied to the 
distribution of tasks across several processors. How-
ever, the method also has its drawback that is repre-
sented by a repeated use of heuristics and necessity 
to solve complex equations to obtain a schedule, even 
when some equations are already available.

To avoid problems associated with the use of 
Hopfield neural networks, such as long working 

hours and the amount of memory required, the au-
thors of [4] propose to use the competition of neu-
rons. The simulation results show that a competi-
tive neural network with the constraints taken into 
account in the proposed energy function provides 
a more suitable approach to solving such a class of 
planning problems as traveling salesman problems.

Paper [5] considers timetabling classes at uni-
versity using neural networks. The authors have 
adapted the Hopfield methodology to the task of 
timetabling classes: a neural network interpretation 
of the task is given, specific constraints of the energy 
function are considered, and the neural network is 
synthesized. The timetable of a certain number of 
classes that should be distributed by class rooms 
with constraints taken into consideration is pre-
sented in the form of integer piecewise-constant 
functions of time. As in the papers described above, 
the design of a neural network is selected and its 
energy function is configured. The authors note that 
they only developed an approach to construction 
of class timetables. They don’t calculate the coeffi-
cients of the obtained function, they don’t consider 
the issues of achieving its minimum and, respec-
tively, they don’t evaluate the quality of the resulting 
neural network solution.

A Hopfield neural network is often used in sched-
uling tasks. However, it is only used with the follow-
ing restriction – of importance is only the final dis-
tribution of resources (free / busy). This network 
can’t be applied in the following cases:

• It matters how the state of these resources 
changed;

• The state of a resource at a given moment of 
time should be equal to the state of a resource 
at the previous moment of time;

• These sequences should be memorized as 
well as shifted in a two-dimensional coordi-
nate space (e.g. time-distance).

As it is seen, the analyzed papers reflect the im-
plementation of a Hopfield network for processors, 
class timetables, but not for the systems in which 
the previous behavior determined the behavior at 
subsequent moments, and a railway line being that 
type of a system.

Let us consider some more materials where neu-
ral networks are applied to transport problems. In 
[6], neural networks, as one of the methods, are 
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used to predict congestion of roads in the city.
The application of Hopfield neural networks to 

optimize airport operations (aircraft landing sched-
uling) is given in [7].

As a target function for an airport with different 
aircrafts the paper considers the minimization of a 
landing time interpreted as a time interval between 
the arrival of the first and the last aircrafts.

For this purpose, possible modes of aircraft land-
ing – sequences – are encoded as chains. The clas-
sical function of Hopfield networks is used as an 
energy function, where one of the parts implies con-
straints (such as the impossibility of two planes to 
land on the same strip at the same time), and the 
second minimizes the landing time (using pairs of 
integer binary values of the output signals of Hop-
field neurons).

As soon as the Hopfield network has come to a 
stable state, mutation is applied to the individual 
outputs and the process of calculation of the energy 
function is repeated.

This task is more like the task of constructing a 
schedule for a single-track railway line, however, 
since not all planes are connected to each other 
upon arrival, and the behavior of a subsequent train 
on a single-track line depends on the behavior of a 
previous one, there are substantiated assumptions 
that the form of an energy function when construct-
ing a railway schedule can be different from that in-
dicated in [7].

For instance, V. A. Kostenko and A. V. Vinokurov 
in their paper study the issue of scheduling by us-
ing Hopfield networks [4] applied to the distribu-
tion of tasks across several processors. A number of 
problems should be solved to obtain solutions for 
combinatory optimization problems using neural 
networks of this class:

• To translate a task into the “language” of neu-
ral networks means to find correspondence 
between the states of neurons and the values 
of optimized parameters. 

• To construct a network energy function given 
the constraints and the target function. The 
energy function of a network at the minimum 
points of the target function should also have 
minimum points. If the constraints are violat-
ed, there should be fines increasing the value 
of the energy function. 

There arise two complex controversial issues:
1. How can we establish correspondence be-

tween the members of a network energy func-
tion and the members of the general form of 
network energy? 

2. How can we calculate weighting factors for 
penalty functions? 

The author of the paper obtains coefficients for 
penalty functions using heuristics, noting that their 
values are subject to future research. Analyzing the 
influence of the number of processes and proces-
sors on the number of correct decisions obtained, he 
comes to the conclusion that the optimal algorithm 
for constructing a timetable will be:

a. obtaining a schedule using a heuristic algo-
rithm;

b. obtaining bindings by the Hopfield network, 
provided that there are no restrictions on the 
order of the processes using the schedule ob-
tained in paragraph 1, as an initial approxima-
tion;

c. obtaining order by a heuristic algorithm of lo-
cal optimization.

The disadvantage of this method is the repeat-
ed use of heuristics and the need to solve complex 
equations to obtain a schedule, even taking into ac-
count the existing restrictions.

In addition to the use of neural networks to solve 
schedule tasks per se, let us consider such an as-
pect as modifying the designs of neural networks in 
terms of rebuilding internal elements and modify-
ing the entire or partial network structure.

Multilayer artificial neural network with 
variable signal conductivity
One of the attempts to overcome these short-

comings in the subject field of railway transport is 
the development of a multilayer artificial neural 
network with variable signal conductivity (abbrevi-
ated as MANN VSC) to the issues of scheduling. This 
was first done in 2015 [8], and is currently the main 
source for research in the field of improving the 
quality of education.

MANN VSC is a hybrid neural network that com-
bines the characteristic features of a multilayer per-
ceptron, the Wilshaw-van der Malsburg network 
with the Hopfield network.

In the paper by Ignatenkov A.V. [9] the following 
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explanations are given: “... from the point of view of 
the architecture of artificial neural networks, it is 
important to note one feature the developed neural 
network must satisfy: the importance of not only the 
value of the network error function on the output 
layer, but also the importance of the path from the 
start neuron through the layers to the final neuron 
of the network ...”. This aspect is considered in the 
topology below.

The topology of the special neural network with 
variable signal conductivity described in [10] is giv-
en in Fig . 1

The number of layers is equal to the number 
of railway stations. Each layer has 1440 neurons, 
which is equal to the number of minutes in the pe-
riod of twenty-four hours.

From each neuron of the i-th layer, there are con-
nections to each neuron of the next layer (a total of 
1440 links). In addition, each neuron is associated 
with several neurons on the left (i.e., with neurons 
with a smaller number) and on the right (with neu-
rons with a larger number).

Each matrix of weights W between two layers 
with numbers i, i+1 is a square matrix with the num-
ber of rows and columns equal to 1440. 

where Wij  is the weight value on the link connecting 
the neuron with the i-th layer number and the neu-
ron with the j-number of the adjacent layer.

Possible states of the neuron are: “active” – the 
input signal can be received at the input of the corre-

sponding neuron, “sleep” – the value of the potential 
of the given neuron is zero, “off” – the neuron cannot 
receive signals from the previous layer. The states of 
“sleep” exist for both even and odd directions.

 Weights of constraints are initially specified 
randomly by real numbers from zero to 0.1. Later 
they change as the neural network is trained. The 
transit of the signal through the connections be-
tween the neurons of neighboring layers displays 
the process of the train running along the path be-
tween the stations. Note that all weights of links 
from a neuron with number j from 0 to j+t (where 
t is minimum travel time) are taken equal minus in-
finity. These weights never change. 

Under normal conditions this network is trained 
according to several algorithms based on error back 
propagation and featuring some specifics:

1. MANN model for calculating the output vector 
of the network based on the competition of links for 
signal transit. Note that the values of the network’s 
output vector and the vector defining the state of the 
network are different in their physical sense, i.e. the 
input and the output of the network illustrates the 
points of entry and exit of a signal, while the values 
of neurons activation don’t have any explicit physi-
cal sense.

2. Special learning algorithms for MANN with al-
ternate changing of weights, i.e. the weights which 
help to reduce MANN’s errors increase while the 
weights preventing the reduction of errors are re-
duced.

Unlike existing learning algorithms, a fixed initial 
learning speed is used and an increase in the learn-
ing speed of the network is proposed depending on 
the past number of epochs. In addition, the ratio be-
tween the rate of increase of weights and the rate of 
decrease of weights is regulated by a special function.

 When testing and using the resulting network 
on simulation models of railway lines in 2015-2019, 
various schedules were obtained with the load level 
of 185 processes per day. The computational com-
plexity of the neural network is O(m2n) + O(mn2) for 
m neurons in the layer and n layers.

Therefore, the issue of improving the quality of 
training is relevant. Some main principles of model-
ling control strategies for such objects were briefly 
described in [10]. To this end, many attempts have 
been made, and their results will be shown below. 

Fig 1. The topology of MANN VSC
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Training of MANN in terms of digital 
signal processing
In a particular case when the error function could 

be described as a sum of sinusoidal harmonics with 
different frequencies and amplitudes we may use 
the results obtained in [11]. In a general case we are 
not sure in this signal error representation.

Fig. 2. One example of error function 

To analyze the behavior of the error function we 
plot its autocorrelation function (Fig. 3).

Fig. 3. ACF of the error function 

It gave us an assumption that it is possible to de-
compose the signal. The goal of this decomposition 
is to filter the main components of the error func-
tion. After filtering we should try to implicate the 
decomposition for a rational control scheme to train 
the network.

According to the useful practice in stochastic 
market signal processing, we have successfully im-
plicated LOESS techniques [12] to decompose the 
signal of the neural network error function. It was 
found that the analyzed signal consists of three per-
ceptible components: a trend part, a periodic signal 
and irregular components.

Fig. 4. An example of STL-decomposition of the error function 
(trend) 

The trend curve of the neural network error 
function provides guides for synthesis of the ratio-
nal control.

In terms of desired MANN’s output this behavior 
can be considered as acceptable, however, the au-
thors faced the following problem: the need to im-
plicate one control curve using 10 5-6 weight coeffi-
cients on average, which is computationally difficult 
and requires additional laborious studies in the de-
pendence of the error function on dynamics of each 
weight coefficient.

Therefore, despite the controllability of such a 
network, as illustrated in [13], the authors devel-
oped a number of techniques for its implementation.

Post-Training Technique
To develop this technique, we carried out a gen-

eralized analysis of signal change trajectories in 
phase coordinates (Fig. 5). 

Additionally, in order to study the behavior of the 
ANN as a system, phase portraits of the error of the 
artificial neural network in the coordinates (dE(t)/
dtE(t)) for a converged and non-converged network 
were constructed.
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Fig. 5. Phase portraits (left – converged network)

  
There is a certain similarity of portraits, i.e. the 

presence of certain quasi-stable cycles and points 
with a low error value, which are not part of the 
stable cycles. In this case, the rate of change of the 
error changes, while being on the indicated trajecto-
ries with an increase in the total error.

In the behavior of a multilayer artificial neural 
network [8], sharp jumps are observed both in the 
error itself and in the rate of change of the error. 
The reason for this is the network structure and 
the principle of choosing the maximum connection 
when calculating the output. When an even signal 
propagates through the connections between neu-
rons, then at the moment of activation of the neuron, 
according to the conditions of the problem, a dead 
zone occurs. The odd signal propagating through the 
links finds the maximum odd link, which can lead to 
an “off” neuron. In this case, the signal doesn’t go 
through the given connection but uses the next larg-
est weight connection. And this connection can be 
far from the point of the desired network output by 
a significant amount (network connections are ini-
tialized when it is created randomly). Thus, a sharp 
increase in the output error signal occurs. 

To mitigate this effect, the model for determining 
the width of the training links bundle for each neu-
ron was changed according to formula

, (11)

where s is the magnitude of the bundle of neuron 
connections for training, E (t) is the error, t is the 
number of the epoch.

Thus, the behavior of the network is controlled 
not only by an error, but also by its change in the 
previous step. If the network tries to increase the 
error, the width of the bundle of connections in-
creases.

The essence of post-training is as follows: dur-
ing the first epoch of the MANN displays primary 
errors and writes them as control ones. In subse-
quent epochs, current errors change, but before 
output, they are compared with the results of con-
trol errors of the previous epoch. In the case when 
the error of the new epoch turns out to be greater 
than the control error of the previous epoch, the 
retraining and lowering of the error value is start-
ed, thereby the network tries to reduce the error 
to the minimum value, simultaneously striving for 
a quasi-stable position. In the case when the er-
rors of the new epoch become less than the con-
trol errors of the previous one, the control errors 
are rewritten. After a certain number of epochs, 
the ANN comes into a quasi-stable state, but jumps 
also occur that on average happen once per 275 
epochs. Post-training is carried out 25 times, and 
afterwards a researcher deals with error results 
changed during the process.

Despite the fact that it was not possible to com-
pletely eliminate the oscillatory behavior of the net-
work, significantly lower error values are observed 
and the network has been near them for a long time. 
This allows us to stop training such a network at the 
right time and get a solution for a smaller number of 
epochs (1.7-2 times) than it is achieved with a clas-
sical network.

The results are presented in the graphs below in 
Fig. 6.
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Fig. 6. Phase portrait of a network with post-training (blue – 
even error, green – odd error)

If phase portraits are compared before and after 
post-training, one can see that post-training leads 
to reduction in random fluctuations. However, for a 
signal of even errors there are two modes, with one 
of them being replaced by another, and for odd er-
rors portraits give oscillations within a predefined 
region of the phase space.

Note that the initial design of the MANN did not 
have post-training, i.e. in fact had no memory. Con-
trol errors and post-training were introduced as 
one of the types of implicit memory. The program 
began to memorize the current error, then started 
a new epoch, received an error, and compared if it 
became better than the previous one. In the case of 
getting worse results, the retraining procedure was 
started until optimal results were obtained, but no 
more than a predetermined number of steps in post-
training. 

Unlike the first series of tests that were carried 
out on simulation models of railway lines sections, 
post-training was applied to the operation of the 
ANN on real lines of Russian Railways in the Eastern 
region for a network of 1920 neurons with 27 layers 
and a load of 170 trains per day.

The received error signal after changing the train-
ing scheme is given in Fig. 7 (1250 training epochs).

Its autocorrelation function is shown in Fig. 8.

Fig. 8. Autocorrelation function of the network (with post-training)

Fig. 7. Network error signal after the introduction of post-training
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As it can be seen from a comparison of Fig. 2 and 
Fig. 8, the following changes occurred in the behav-
ior of the error signal:

 - The severity of the correlation of the error 
signal with itself sharply decreased for time 
intervals of 0-60 epochs.

 - Not strong, although distinct peaks are ob-
served at intervals 13-14, 39, 52-53, 62-63. 
In their absolute value, they speak of an ex-
tremely weak degree of correlation.

 - In general, which is confirmed by Fig. 3, the 
nature of the error signal became smoother, 
and in epochs with a significant number al-
most without sharp deviations and outliers.

The received new error signal was decomposed 
according to the LOESS method (Fig. 9) in the RStu-
dio software environment. This method extracts the 
trend, periodic and residual random component 
from the error signal.

After receiving the results of errors of 1250 ep-
ochs, the authors conducted their analysis, built 
a graph, and displayed a trend. If we compare the 
graphs of the dynamics of the error of a multilayer 
ANN before and after post-training, then we can im-
mediately note a decrease in the dynamics of the 
spread of an error, a transition to a more stable posi-
tion of the network, stable points. Then the graphs 
were decomposed using the “STL” function of the 
“RStudio” software environment for a more detailed 
study, determination of the frequency of error oc-

currence, and identification of the causes of a sharp 
jump in error growth even from relatively stable po-
sitions.

It is seen that there is a significant correlation be-
tween the overshoots of the error signal in a num-
ber of decomposition residues and in the periodic 
component. At the same time, the contribution of 
the trend is low (1/15 at the beginning of training).

In this regard, it is necessary to create a mecha-
nism for controlling the state of the ANN, which, 
without fixing a complete set of bond weights in 
each epoch, would eliminate the influence of the 
periodic and residual components. Such a problem 
can be solved, for example, using approaches to the 
synthesis of optimal regulators.

PID control
The application of a trend component to control 

such an ANN consists in the fact that its values   can 

be used at the stage of training the network in ques-
tion as the reference values of a control error, which 
will reduce the training time and improve the qual-
ity of constructed timetables.

In search for various ways to control the error 
signal, the idea was proposed to apply a PID control-
ler that would correct the output signal trying to re-
duce the error of the output data and reducing the 
possibility of scatter and jumps.

PID control of the ANN error signal is implement-
ed according to the following formula:

Fig. 9. STL-decomposition of the error signal after ANN’s post-training
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 ,    
   

where s is the argument of the transfer function, K1  
is the coefficient of proportional regulation, K2 is the 
coefficient of integral regulation, K3 is the coefficient 
of differential regulation.

The PID controller algorithm is implemented in 
the programming language R in the RStudio envi-
ronment. 

As a setup, the approximation of the network er-
ror signal is set by an exponential function of the 
form Ae-kt, where t is the number of the network op-
eration epochs, A is the initial value of the network 
error with which training starts, and k is the coef-
ficient of the degree of error attenuation. The choice 
of such a setting function is due to the fact that it cor-
responds to the most common form of error reduc-
tion in the training of traditional neural networks.

For the MANN, consisting of 27 layers and 1920 
neurons in each layer and with 175 schedules as a 
load, the error signal without control changed ac-
cording to Fig. 10.

Fig. 10. Network error signal

The desired error change signal is shown in Fig. 
11.

Application of PID controller to the error signal 
with parameters K p = 10, K i = 1, K d = 0.01 showed 
that the control curve for the network error signal 
should look like this (Fig .12):

The algorithmic implementation of such control 
is carried out using the built-in techniques of the 
ANN and special techniques, including post-training 
etc.

An analysis of Fig. 12 shows that the control 
found is quite adequate to the existing behavior of 
the ANN error.

A promising development of this control is the 
introduction of decomposition and prediction of an 
error signal in real time in combination with the ap-
plied PID controller.

For the developed control system, the price of 
sustainability will be performed as follows. For each 
epoch, an additional perturbation is introduced into 
the error signal in the work of the MANN. The mag-
nitude of this perturbation is within [5 ... 100] and 
changes with step 5. The parameters of the PID con-
troller during testing (Table 2, Columns 2,3) were 
initially set as:

PID controller of even error:
Kp = 0.1, KI = 10, KD = 0.5

PID controller of odd error:
KP = 0.3, KI = 30, KD = 0.5

Fig. 11. Setup change

Fig. 12. Control curve for a given network
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The second series of tests (table 2, article 4.5):
New controller coefficients for an even error:

KP = 0.5, KI = 30, KD = 0.5

New controller coefficients for odd error:
KP = 1.5, KI = 30, KD = 0.5

The results are presented in Table 1.
Table 1 will be read as follows. The value of 0.31 

in the column “%” returns indicates that when a 
disturbance value of 0.31% of the average error is 
added to the error signal, its output value in the col-
umn “% resp” increased by 1.83% from the average.

This was done for error signals in the even and 
odd directions.

Compared to the first series of tests, in the sec-
ond series, the average response to disturbance de-
creased by 2%, which is insufficient.

To assess the stability value, let us introduce the 
stability coefficient (quality), which is calculated by 
the formula below:

,

Where:
Kst – coefficient of stability (quality),
Kdist – coefficient of disturbance,
Kresp – coefficient ofresponse.

The results are presented in Table 2.
The quality factor should be no more than 1, 

which means that the disturbance provided led to 
a response not exceeding in strength. Such modes 
with controller parameters KP = 1.5, KI = 30, KD = 0.5  
are observed in 2 cases out of 20.

For the purpose of identifying the most effective 
training modes of the network with the PID control-
ler, a second series of tests was carried out, during 
which the disturbance applied to the network input 
for 4 error signals varied from 0 to 55 with the step 
of 5, and the PID controller coefficients changed ac-
cording to the following scheme:

- KP: from 0.1 to 1 in increments of 0.2;
- KI: from 10 to 40 in increments of 10;
- KD: from 0.1 to 4.1 in increments of 1;
As in the first series, the values of the stability 

coefficients and the disturbance coefficient were 
calculated.

Table 1.

The magnitude of the 
disturbance, units/

epochs.

Test Series No. 1 Test series No. 2
Even Odd Even Odd

% dist % resp % dist % resp % dist % resp % dist % resp
1 2 3 4 5 6 7 8 9
5 0.31 101.83 0.4 104.15 0.28 100.42 0.33 98.8

10 0.56 103.01 0.74 105.53 0.55 101.91 0.65 102.00
15 0.89 104.19 1.23 106.91 0.88 102.76 0.95 105.01

...
95 5.18 120.95 7.16 140.09 5.15 119.11 5.80 122.85

100 5.24 122.88 6.89 144.24 5.53 120.81 6.09 128.46

Table 2.

The magnitude of the 
disturbance, units /epochs

Even
(small)

Odd
(small)

Even
New

Odd
New

1 2 3 4 5
5 5.96 10.45 1.49 -3.69

10 5.39 7.48 3.48 3.07
15 4.70 5.64 3.14 5.29

...
85 4.66 5.96 3.6 7.20
90 4.09 5.83 3.9 5.18
95 4.04 5.60 3.71 3.94

100 4.37 6.42 3.77 4.67
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The best solutions for even and odd errors are 
shown in the figures below (Fig. 13 and Fig. 14).

Fig. 13. Dynamics of a clear network error with the parameters 
of the PID controller 

K P = 0.1, K I = 40, K D = 2.1 with disturbance of 5

Thus, we can draw the following conclusions:
1) A total of 1100 launches were carried out, of 

which 136 were sustainable; 
2) The behavior of this network with a PID con-

troller can be considered stable only for weak dis-
turbances, the magnitude of which does not exceed 
10-15% of the final steady-state network error; 

3) The most stable mode under disturbance of 5 
is the regime with the following coefficients: 

• for an even controller, K P = 0.1, K I = 40, K D = 2.1;
• for an odd controller, K P = 0.3, K I = 10, K D = 2.1.
In addition to the PID controller and post-train-

ing with control errors or with a floating range of the 
links bundle for training, an alternative approach to 
training of such networks is proposed. 

MANN control using a three-layer 
perceptron
[14] describes the idea of training an ANN 

through parallel training of two networks at once, in 
which the second ANN runs through a lot of epochs, 
calculating errors, comparing them with the given 
parameters. If the results are satisfactory, then these 
values are transferred to the first ANN. In this case, 
the second ANN acts as an invisible duplicating neu-
ron in the main network, in which all calculations 
and determination of the best result are performed.

For the presented ANN design, such an algorithm 
is depicted in Fig.15.

We will implement this scheme in practice with a 
slight change using direct or inverse training of one 
neural network (MANN) using a multilayer percep-
tron.

The control ANN learns from a set of triples (“Er-
ror at the time” - “Status at the last moment” - “Con-
trol signal from the past at the given time”) or (“Er-
ror at the past” - “Error now” - “Control”).

The error output and the error itself (with a de-
lay) are fed to the trained control network. The re-
sponse of the control network is fed to the residual 
error and to the executive algorithm. Subsequently, 
the residual error integrator provides a signal to the 
control ANN as well.

As a practical implementation of the control found, 
we can use any of the algorithms (PID, post-training) 
to transmit a control signal. The error at the moment 
of time plus the magnitude of the control signal is the 
target error transmitted to the actuator.

Figures 17-18 present the graphs of an error un-
der direct neurocontrol provided that the MANN is 
used separately for different flows of a software sys-
tem – for freight and passenger flows.

Compared to the previously developed post-
training techniques, the number of overshoots and 
their frequency, as well as the absolute value of the 

Fig. 14. Dynamics of an even network error with the parameters 
of the PID controller 

K P = 0.1, K I = 40, K D = 2.1 with disturbance of 5
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Fig.15. An enlarged algorithm for simultaneous training of two networks
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error values   during overshoots were significantly 
reduced.

In some cases, a gain of the control signal is ap-
plied as:

K(t,E) = K0 ± α*E(t), u(t) = K(t,E)*U(t)
where E(t)  is the magnitude of the current error, 
⍺ is the proportionality coefficient, K0 is the initial 
gain, U(t) is the change in the error signal predicted 
by the multilayer perceptron, K(t,E) is the resulting 
gain, u(t) is the final control signal. 

As before, for testing of such approaches we 
chose the timetable for the line, where there are 185 
trains, 27 stations and 24 hours.

Comparison shows that the introduction of am-
plification in neurocontrol in some cases reduces 
the amount of residual errors in the steady state 
mode of ANN operation. However, this decrease is 
not so great to speak about the significant difference 
between the control techniques in question.

In general, the comparative effectiveness of MINS 
training methods is given in Table 5:

Fig. 16. Neurocontrol scheme
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Table 3. Comparison of neurocontrol techniques (perceptron) for a multi-layered network for passenger trains

Error
No gain Linear gain

Even Odd Even Odd
Median 152 54 155 53
Average 967 1070 1200 1225

Maximum 37050 56280 37040 56230
Minimum 152 0 152 0

Table 4. Comparison of neurocontrol techniques (perceptron) for a multi-layered network for freight trains

Error
No gain Linear gain

Even Odd Even Odd
Median 210 76 218 80
Average 756 717 746 802

Maximum 37040 56300 36940 56370
Minimum 184 38 185 32

Fig. 17. Network error dynamics (even error signal) Fig. 18. Network error dynamics (odd error signal)

Table 5. Comparative effectiveness of teaching methods MINS

Indicator Common Learning 
Algorithms Post-training PID controller ANN (direct neurocontrol)

Minimum 75 0 362 193

Maximum 134795 54392 211585 57895

Median 5469 265 471 210

Average value 16548 1240 1830 384

SD 6687 4621 4485 1180

Burst Frequency for 100 
epochs 50 3 15 0.4
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Conclusion
1. The article shows the application of an artifi-

cial neural network with variable signal con-
ductivity for solving the schedule problem.

2. The authors developed additional algorithms 
for managing the learning of a multilayer ANN 
with variable signal conductivity. The most ef-
fective from the standpoint of convergence to 
the solution are direct neurocontrol and post-
training.

3. Direct neurocontrol also gives the smallest 
spread in the dynamics of error signals and 
the smallest value of the median error, i.e. 50 
per cent of all estimates are in the range from 
0 to 210.

4. A comparison of the methods showed the ad-
vantages of direct neurocontrol; however, in 
order to develop the most rational network 
operation modes, computational experiments 
for different tasks and network sections are 
required. 

References
[1] Martinelli D.R. Optimization of railway operations using 

neural networks / D.R. Martinelli, H. Teng // Transpn. 
Res.-C. - 1996. - Vol. 4, No. 1. P. 33–49.

[2] Hopfield J. J. “Neural” Computation of Decisions in Opti-
mization Problems / J.J. Hopfield, D.W. Tank // Biological 
Cybernetics. - 1985. - Vol. 52, Issue 3. - P. 141–152. 

[3] Hopfield J.J. Neural networks and physical systems with 
emergent collective computational abilities / JJ Hopfield 
// Proc. Natl. Acad. Sci. USA - 1982. - Vol. 79, No. 8. - P. 
2554–2558.

[4] Kostenko, V. A. Local-optimal scheduling algorithms 
based on the use of Hopfield networks / V. A. Kostenko, A. 
V. Vinokurov // Programming. - 2003. - No. 4. - P. 27–40 
(in Russian). 

[5] Yakovlev, V.V. Solution of the task of timetabling classes 
at university using neural networks /V.V. Yakovlev, Yu. G. 

Vasiliev, B.M. Kalmykov // Bulletin of the Chuvash Univer-
sity. - 2008. - No. 2. [Electronic resource]. - URL: http://cy-
berleninka.ru/article/n/reshenie-zadachi-sostavleniya-
raspisaniya-zanyatiy-v-vuze-s-pomoschyu-neyropodob-
nyh-sete y

[6] Cavaliery S. Optimal path determination in a graph by 
Hopfield neural Network / S. Cavaliery, A. Di Stefano, O. 
Mirabella // Neural Networks. - 1994. - Vol. 7, No. 2. - P. 
397–404. 

[7] Agafonov, A. A. Mathematical models and adaptive meth-
ods for short-term forecasting of traffic parameters: The-
sis: 05.13.18 / Agafonov Anton Aleksandrovich. - Samara, 
2014.- 164 p. (in Russian).

[8] Olshansky A.M., Ignatenkov A.V. One approach to control 
of a neural network with variable signal conductivity // 
Information Technologies and Nanotechnologies (ITNT-
2017). - 201.- P. 984 -987. 

[9] Ignatenkov A.V. Neural network modeling and streamlin-
ing of traffic flows on railway lines. Abstract of Thesis, 
05.13.18. - Mathematical modeling, numerical methods 
and program complexes // Penza, PenzGU, 2018.-20 p., P. 
14 (in Russian). 

[10] Rozenberg Yefim, Olshansky Alexey et al. Some approach-
es to improving the quality of artificial neural network 
training// https://ceur-ws.org/Vol-2667/paper7.pdf, 
pp.27-29. 

[11] IgnatenkovA.V. Model iskusstvennoy neyronnoy seti dlya 
postroeniya graphika dvizheniya poezdov na dvukhput-
nom uchastke / A.V. Ignatenkov // International Scientific 
Conference Proceedings “Advanced Information Technol-
ogies and Scientific Computing”. - Samara, Samara Scien-
tific Center of RAS Publishing, 2016 - P.619-623. - ISBN 
978-5-93424-758-5 (in Russian). 

[12]  Olshansky, A. M., Ignatenkov, A. V. Development of an arti-
ficial neural network for constructing a train schedule // 
Bulletin of the Ryazan State Radio Engineering University 
(RGRU-2016). - 2016. - No. 55. - P. 73-80 (in Russian). 

[13]  Cleveland RB et al. STL: A Seasonal-Trend Decomposition 
// Journal of Official Statistics. - 1990. - T. 6. - No. 1. - P. 
3-73. 

[14] Géron Aurélien. Hands-on machine learning with Scikit-
Learn, Keras, and TensorFlow. O’Reilly Media, Inc., 2022.

Received: September 7, 2023
Accepted: November 21, 2023

About the authors
Alexey Olshansky is the Head of Centre for 
Mathematical and Computer Simulation of 
JSC NIIAS, PhD in Engineering. His areas of in-
terest are system analysis, theory of automat-

ic control of socio-economic systems, artificial neural networks 
and heuristic methods for designing control systems. He is the 
author of over 150 scientific papers and 20 patented inventions.

For citation
Alexey Olshansky, Study of Training Quality of Multilayer Artificial Neural Networks with Variable Signal Conductivity in Schedul-
ing Problems, JITA – Journal of Information Technology and Applications, Banja Luka, Pan-Europien University APEIRON, Banja 
Luka, Republika Srpska, Bosna i Hercegovina, JITA 13(2023) 2:76-90, (UDC: 004.032.26:556.131), (DOI: 10.7251/JIT2302076O, 
Volume 13, Number 2, Banja Luka, December (57-120), ISSN 2232-9625 (print), ISSN 2233-0194 (online), UDC 004

90        Journal of Information Technology and Applications        www.jita-au.com




