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Abstract: This paper demonstrates how to abstract a version of the Catalan Triangle necessary to compute the rank value from a 
given Catalan Cipher Vector, which is a process called ranking, and the process of obtaining a Catalan Cipher Vector from a given 
rank value, which is a process called unranking. That version of the Catalan Triangle is called the Bottom Ones Catalan Triangle and 
is not required to be computed in its entirety for the purpose of ranking and unranking, but only elements of it that are required for 
the current computation. A formula is derived to compute each element of this triangle and it is demonstrated how the processes 
of both ranking and unranking are fully linear.
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Introduction
The Catalan Triangle is a number triangle which 

is commonly used when dealing with problems relat-
ed to combinatorics, in particular the ones involving 
counting. It is closely related to the Catalan Numbers 
[1], since, by default, their sequence is found follow-
ing the first (i.e., longest) and second diagonal of this 
triangle. Other diagonals of the Catalan Triangle also 
produce integer sequences of their own [2, 3, 4, 5, 6, 
7]. The M-th Catalan Number is computed as

(1)

Besides the version of the Catalan Triangle which 
is considered the default one [8], other versions of it 
also exist (e.g., [9, 10, 11] etc). One of the features of 
every Catalan Triangle is the existence of a sequence 
of elements all having the value of 1, i.e., the all 1’s 
sequence [12], alongside the triangle’s row, column 
or diagonal, depending on the version of the triangle. 
Thus, both the all 1’s sequence and the Catalan Num-
bers sequence are found in every Catalan Triangle. 
Each of them can be placed horizontally, vertically or 
diagonally, depending on the version of the Catalan 

Triangle being used. Notably, the all 1’s sequence and 
the Catalan Numbers sequence are always placed at 
extremes of the Catalan Triangle, i.e., at the longest di-
agonal, the leftmost column and/or the bottom row.

Of interest for this paper is a version of the Catalan 
Triangle where the longest diagonal is removed, thus 
leaving only one sequence of the Catalan Numbers in-
stead of two. Three variations of such a triangle can 
be found: a) where the all 1’s sequence is located at 
the leftmost column in the triangle [13, 14]; b) where 
the all 1’s sequence is located at the longest diagonal 
of the triangle [15, 16]; and c) where the all 1’s se-
quence is located at the bottom row of the triangle 
[17]. All of these variations are shown in Figure 1.
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Figure 1. Three variations of the Catalan Triangle 
with the first diagonal removed.
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The version of the Catalan Triangle with the first 
diagonal removed is useful for the purposes of rank-
ing and unranking various enumerations of combi-
natorial data structures. Of interest for this paper is 
the ranking of binary trees enumerated by Catalan 
Cipher Vectors [17]. Catalan combinations [13] and 
Codewords [18, 19] can also be used as enumera-
tions, as it is possible to directly transform them into 
Catalan Cipher Vectors and vice versa, as well as each 
other [17].

The process of obtaining the rank from a given Cat-
alan Cipher Vector, i.e., CCV, is called ranking, whereas 
the process of obtaining the CCV from a given rank is 
called unranking. Technically, ranking can be defined 
as a function by which a number (i.e., integer) is ob-
tained from a vector, and the unranking process is the 
reverse process. A requirement for both the ranking 
and unranking processes, i.e., algorithms, of CCVs is 
that a certain version of the Catalan Triangle – specifi-
cally the one displayed in Fig. 1c – be available. This 
version will be called the Bottom Ones Catalan Tri-
angle or BOCT in this paper. The general algorithm 
for obtaining the BOCT, as well as the BOCT itself, 
have quadratic time and space complexity, respec-
tively [17]. 

However, the entire BOCT is not required in order 
to obtain the rank of a CCV, but only elements of it 
which are linearly dependent on the CCV for which 
the rank is computed. The same is true for the un-
ranking process as well: only the values of the BOCT 
that are necessary to generate the CCV from a given 
rank are needed to be used, depending on the rank 
value that needs to be unranked. Therefore, the en-
tire BOCT would be abstracted if it were possible to 
compute only the values of the required elements of 
the BOCT as they become needed. The purpose of this 
paper is to demonstrate such an approach.

The side of the Catalan Triangle which contains 
the all 1’s sequence will be referred to as the Edge of 
the Catalan Triangle, and the side that contains the 
Catalan Numbers sequence will be referred to as the 
Diagonal of the Catalan Triangle. This will pertain to 
both the default Catalan Triangle and the BOCT.

Converting the Default Catalan Triangle into 
the Bottom Ones Catalan Triangle
Figure 2 shows the default Catalan Triangle and 

the BOCT compared to each other, both with the size 

N=4. The row and column indices for the default Cat-
alan Triangle and the BOCT are stated as (n, k) and (r, 
c), respectively.

n\k 0 1 2 3 4
0 1
1 1 1
2 1 2 2
3 1 3 5 5
4 1 4 9 14 14

r\c 0 1 2 3
0 14
1 9 5
2 4 3 2
3 1 1 1 1

Figure 2. The default Catalan Triangle and the BOCT with N=4.

Equation (2) shows the formula for calculating the 
value of the element with indices (n, k) in the default 
Catalan Triangle [20]:

(2)

The BOCT is obtained from the default Catalan Tri-
angle by: 1) omitting the longest diagonal from it; 2) 
transposing it; and 3) inverting it alongside the hori-
zontal. Following are insights in order to be able to 
perform such a conversion.

In the default Catalan Triangle, on the row with in-
dex n=0 there is just one element, which is a part of 
the longest diagonal. Thus, if the starting rows index 
in the default Catalan Triangle is set to be 1, this will 
have the effect of removing the longest diagonal from 
the default Catalan Triangle. This is the transform 
that is required to be applied as far as the rows are 
concerned.

If the starting index of the columns in the default 
Catalan Triangle is taken to be 1, this has the effect 
of accessing elements in the subsequent (i.e., „to the 
right“) column to the one of interest, when using (2). 
One of the features of the default Catalan Triangle is 
that each internal element (i.e., element not on the 
Edge or the Diagonal) is a sum of the element to the 
left of it and above it. In other words, C(n, k) = C(n, 
k-1) + C(n-1, k). Placing k+1 instead of k results in C(n, 
k+1) = C(n, k) + C(n-1, k+1), or, stated differently, 

(3)

However, if k starts from 1 instead of 0, then k+1 
becomes k in the right-hand side of (3). So, if the k+1 
on the right-hand side of (3) is replaced with k, it will 
be a valid substitution, provided that 1 is used for the 
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starting index for the columns of the default Catalan 
Triangle instead of 0.

Restating (3) by replacing k+1 with k, implement-
ing (2) into it and using the factorial representation of 
the combination term produces

(4)

Thus, it is possible to compute the value of an ele-
ment in the Catalan Triangle using the values of the 
elements in the adjacent column. So, if the starting 
column of the default Catalan Triangle is 1 instead of 
0, (4) should be used instead of (2) to compute the 
value of each element of the triangle. This is the trans-
form that is required to be applied as far as the col-
umns are concerned.

This way, all of the requirements can be met: 1) 
the effect of omitting the first diagonal from the Cata-
lan Triangle can be achieved by having the starting 
index of the default Catalan Triangle be (1, 1) instead 
of (0, 0), provided that (4) is used to compute the 
value of the required element; 2) the transposition 
effect can be achieved by exchanging the values for 
the row and column in (4); and 3) the inversion effect 
can be achieved when substituting n = N – r and k = 
N – c. After implementing these transformations, the 
final formula for calculating the value of the element 
in the BOCT with indices for the row and column (r, 
c) becomes

(5)

It is now possible to display an example of a BOCT 
and compare its indices with those of a default Cata-
lan Triangle. Figure 3 shows the case for the size N=4. 
The indices of the BOCT range from (0, 0) to (3, 3), 
whereas those of the default Catalan Triangle, be-
cause of the inversion transformation, range from (4, 
4) to (1, 1). The transposition is demonstrated by the 
switched indices in the default Catalan Triangle.

k\n 4 3 2 1
r\c 0 1 2 3

4 0 14
3 1 9 5
2 2 4 3 2
1 3 1 1 1 1

For r=c=d, where 0 ≤ d ≤ N–1, (5) transforms into 
(6)

which is the formula for obtaining the values of the el-
ements along the diagonal of the BOCT (which is the 
reason for the bounds 0 ≤ d ≤ N–1). Those elements 
are the Catalan Numbers, and substituting M = N–d 
gives 

(7)

which is another formula for computing the Catalan 
Numbers. Multiplying by M in the numerator and de-
nominator on the right hand side of (7) transforms it 
into (1).

Abstraction of the Bottom Ones Catalan 
Triangle
As can be seen in (5), the factorial function needs 

to be invoked three times in order to compute the val-
ue of the BOCT element with indices (r, c). The algo-
rithms for ranking and unranking are linear, provided 
that the BOCT had already been generated and its ele-
ments are available for access [17]. Since the factorial 
is a compounding function and is linear by itself as 
well, the goal becomes to make it possible to access 
the factorial of a given number in constant time, so 
that the ranking and unranking algorithms remain 
linear.

An analysis of (5) shows that the largest factorial 
term is (2⋅N–1)!, which is found in the numerator, 
and is obtained for r=c=0; the factorial terms in the 
denominator thus become (N–1)! and (N+1)! respec-
tively. Given that the definition of the factorial is N! = 
N× (N–1)!, where 0! = 1, it follows that it is necessary 
to compute the value of (N–1)! in order to compute 
the value of (N+1)!, which in turn needs to be com-
puted in order to compute the value of (2⋅N–1)!. The 
aforementioned holds true for N ≥ 2, which is a nec-
essary requirement for a Catalan Triangle to exist (a 
Catalan Triangle of just one element is essentially just 
the number 1).

Thus, if the values of the factorials of all positive 
integers up to and including (2⋅N–1)! are available to 
be used on demand, the computation of (5) is done 
in constant time. This can be achieved using a linear 
data structure which can access the values of its ele-
ments using indexing, e.g., an array. Given that 0! = 1, 
the value of the element with index 0 is initially set to 

Figure 3. A BOCT with size N=4, superimposed with 
the corresponding indices of the default Catalan 

Triangle of the same size.
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be 1, whereas the value of each subsequent element 
is computed as per the factorial function definition. 
Both the process of populating such a structure and 
the structure itself have linear time and space com-
plexities. Figure 4 shows an example of such a struc-
ture for N = 4.

f[0] f[1] f[2] f[3] f[4] f[5] f[6] f[7]
1 1 2 6 24 120 720 5040

Figure 4. An example for N = 4: an array of all factorials up to 
and including (2×4 – 1)! = 7! would be sufficient to compute the 
values of all the elements of the BOCT required to rank and/or 

unrank any CCV of size N = 4.

Fully Linear Algorithms for Ranking and 
Unranking of Catalan Cipher Vectors

The following algorithms are modifications to 
the ranking and unranking algorithms found in [17], 
which are shown to be linear there. The algorithms in 
this paper focus on the ranking and unranking pro-
cesses instead on the full generation of binary trees 
using the CCVs. They also utilize the abstraction ap-
proach explained in the previous sections. They are 
presented as functions and pseudocode (which re-
sembles the C++ language) is given for each of them.

During the ranking and unranking processes, the 
elements in a Catalan Cipher Vector are sequentially 
read and updated, respectively. In both cases, the size 
of the CCV is taken to be N, and this value is assumed 
to be known and stored in the variable N. The array 
variable CCV, of size N, which stores the elements of 
the CCV currently being processed, is also assumed 
to be initialized and populated with valid values, as 
defined in [17].

The Bottom Ones Catalan Triangle Element Value 
Computation Function

Pseudocode 1 presents the function for comput-
ing the value of the BOCT element that is needed for 
the ongoing ranking or unranking process. This func-
tion is auxiliary but is called during both the ranking 
and unranking process. The parameters are: N (the 
size of the CCV, as previously introduced); r – the row 
index of the element in the BOCT being accessed; and 
c – the column index of the element in the BOCT being 
accessed.

Pseudocode 1. The function for the calculation of the BOCT 
element given the size of the BOCT N, the row of the element r 

and the column of the element c.

function BOCTel(N, r, c) 
{
 num = (r-c+2) * f[2*N-r-c-1];
 den = f[N-r-1] * f[N-c+1];
 return num / den;
}

The Ranking Function
Pseudocode 2 shows the ranking function for a 

given array parameter CCV. Variables additional to 
the ones already known are: v – the index in the CCV 
array; and rank – the value of the rank being comput-
ed during the ranking process.

Pseudocode 2. The ranking function.

function Rank(CCV)
{
 r = 0;
 c = 0;
 rank = 0;
 for(v = 0; v < N; ++v)
 {
  while (CCV[v] > (r + c))
   rank += BOCTel(N, r, c++);
  ++r;
 }
 return rank;
}

The Unranking Function
Pseudocode 3 shows the unranking function for a 

given parameter rank.

Pseudocode 3. The unranking function.

function Unrank(rank)
{
 r = 1;
 c = 0;
 v = 0;
 CCV = new array[N];
 CCV[v++] = 0;
 while(v < N)
 {
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  while (BOCTel(N, r, c) <= rank)
   rank -= BOCTel(N, r, c++);
  CCV[v++] = r++ + c;
 }
 return CCV;
}

Analysis of the Algorithms
Both the ranking and unranking algorithms tra-

verse the CCV linearly and they access only the ele-
ments of the BOCT that are required during the cor-
responding process [17]. For each element of the CCV 
being processed, a corresponding element in each 
of the rows on the BOCT is accessed. Depending on 
the value of the element in the CCV, there is either no 
displacement from the left vertical (i.e., the Edge) of 
the BOCT, or there is some, up to at most the value of 
the index of the row (i.e., the element on the Diago-
nal). However, once that displacement occurs when 
processing an element of the CCV, the displacement is 
not reset in the subsequent row. 

This means that the required elements in the BOCT 
are traversed in a single line, without segments of the 
line being repeated or intersected. This ensures that, 
in the best case, only the elements of the leftmost col-
umn will be traversed, so the time complexity of both 
the ranking and unranking algorithm will be (N). In 
the worst case, the full lengths of both the column and 
the bottom row will be traversed, so the time complex-
ity for both algorithms will be (2N) = (N). Thus, 
the time complexity of both algorithms is (N), even 
though that may not be apparent upon initial over-
views of their respective pseudocodes. Given that the 
preliminary process of generating the array of factori-
als for positive integers from 0 to 2N–1 is also linear, 
this means that the full processes of both ranking and 
unranking, alongside all of their necessary algorithms 
and data structures, are linear for both time and space 
complexity.

CÊÄ�½çÝ®ÊÄ
The process of obtaining an integer for a given 

Catalan Cipher Vector is called ranking, and the re-
verse process is called unranking. This paper pres-
ents the principle and algorithms for abstraction of 
the Bottom Ones Catalan Triangle, which is a version 
of the Catalan Triangle that is used for the processes 
of ranking and unranking of Catalan Cipher Vectors. A 

formula is presented that computes the values of the 
elements of the Bottom Ones Catalan Triangle as they 
become necessary during the ranking and unranking 
processes. This way, the triangle doesn’t need to be 
generated fully and is therefore abstracted during the 
ranking and unranking processes, thus circumventing 
the default quadratic time and space requirements 
for its computation. Instead, a linear data structure, 
such as an array, is used for storing values of facto-
rials necessary for such computations, thus making 
both the ranking and unranking processes fully linear 
for both time and space complexity.
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