
JITA 14(2024) 2:136-141 ADRIJAn BožInovskI, eT Al.

Full Linearization of Ranking and Unranking of Catalan
Cipher Vectors Using Catalan Triangle Abstraction

Adrijan Božinovski1, Biljana Stojčevska2
1Faculty of Informatics, American University of Europe, Skopje, Macedonia, adrijan.bozinovski@fon.edu.mk

ORCID 0000-0003-2820-4016
2Faculty of Informatics, American University of Europe, Skopje, Macedonia, biljana.stojcevska@fon.edu.mk

ORCID 0009-0001-8915-6516

Original scientific paper
https://doi.org/10.7251/JIT2402136B UDC: 512.642/.644:514.122/.123

Abstract: This paper demonstrates how to abstract a version of the Catalan Triangle necessary to compute the rank value from a
given Catalan Cipher Vector, which is a process called ranking, and the process of obtaining a Catalan Cipher Vector from a given
rank value, which is a process called unranking. That version of the Catalan Triangle is called the Bottom Ones Catalan Triangle and
is not required to be computed in its entirety for the purpose of ranking and unranking, but only elements of it that are required for
the current computation. A formula is derived to compute each element of this triangle and it is demonstrated how the processes
of both ranking and unranking are fully linear.

Keywords: Bottom Ones Catalan Triangle, abstraction, ranking, unranking, Catalan Cipher Vector

Introduction
The Catalan Triangle is a number triangle which

is commonly used when dealing with problems relat-
ed to combinatorics, in particular the ones involving
counting. It is closely related to the Catalan Numbers
[1], since, by default, their sequence is found follow-
ing the first (i.e., longest) and second diagonal of this
triangle. Other diagonals of the Catalan Triangle also
produce integer sequences of their own [2, 3, 4, 5, 6,
7]. The M-th Catalan Number is computed as

(1)

Besides the version of the Catalan Triangle which
is considered the default one [8], other versions of it
also exist (e.g., [9, 10, 11] etc). One of the features of
every Catalan Triangle is the existence of a sequence
of elements all having the value of 1, i.e., the all 1’s
sequence [12], alongside the triangle’s row, column
or diagonal, depending on the version of the triangle.
Thus, both the all 1’s sequence and the Catalan Num-
bers sequence are found in every Catalan Triangle.
Each of them can be placed horizontally, vertically or
diagonally, depending on the version of the Catalan

Triangle being used. Notably, the all 1’s sequence and
the Catalan Numbers sequence are always placed at
extremes of the Catalan Triangle, i.e., at the longest di-
agonal, the leftmost column and/or the bottom row.

Of interest for this paper is a version of the Catalan
Triangle where the longest diagonal is removed, thus
leaving only one sequence of the Catalan Numbers in-
stead of two. Three variations of such a triangle can
be found: a) where the all 1’s sequence is located at
the leftmost column in the triangle [13, 14]; b) where
the all 1’s sequence is located at the longest diagonal
of the triangle [15, 16]; and c) where the all 1’s se-
quence is located at the bottom row of the triangle
[17]. All of these variations are shown in Figure 1.

1
1 2
1 3 5
1 4 9 14

1
2 1
5 4 1

14 14 6 1

14
9 5
4 3 2
1 1 1 1

a) b) c)

Figure 1. Three variations of the Catalan Triangle
with the first diagonal removed.

136 Journal of Information Technology and Applications www.jita-au.com

full linearization of ranking and unranking of catalan ciPher Vectors using catalan triangle abstraction JITA 14(2024) 2:136-141

The version of the Catalan Triangle with the first
diagonal removed is useful for the purposes of rank-
ing and unranking various enumerations of combi-
natorial data structures. Of interest for this paper is
the ranking of binary trees enumerated by Catalan
Cipher Vectors [17]. Catalan combinations [13] and
Codewords [18, 19] can also be used as enumera-
tions, as it is possible to directly transform them into
Catalan Cipher Vectors and vice versa, as well as each
other [17].

The process of obtaining the rank from a given Cat-
alan Cipher Vector, i.e., CCV, is called ranking, whereas
the process of obtaining the CCV from a given rank is
called unranking. Technically, ranking can be defined
as a function by which a number (i.e., integer) is ob-
tained from a vector, and the unranking process is the
reverse process. A requirement for both the ranking
and unranking processes, i.e., algorithms, of CCVs is
that a certain version of the Catalan Triangle – specifi-
cally the one displayed in Fig. 1c – be available. This
version will be called the Bottom Ones Catalan Tri-
angle or BOCT in this paper. The general algorithm
for obtaining the BOCT, as well as the BOCT itself,
have quadratic time and space complexity, respec-
tively [17].

However, the entire BOCT is not required in order
to obtain the rank of a CCV, but only elements of it
which are linearly dependent on the CCV for which
the rank is computed. The same is true for the un-
ranking process as well: only the values of the BOCT
that are necessary to generate the CCV from a given
rank are needed to be used, depending on the rank
value that needs to be unranked. Therefore, the en-
tire BOCT would be abstracted if it were possible to
compute only the values of the required elements of
the BOCT as they become needed. The purpose of this
paper is to demonstrate such an approach.

The side of the Catalan Triangle which contains
the all 1’s sequence will be referred to as the Edge of
the Catalan Triangle, and the side that contains the
Catalan Numbers sequence will be referred to as the
Diagonal of the Catalan Triangle. This will pertain to
both the default Catalan Triangle and the BOCT.

Converting the Default Catalan Triangle into
the Bottom Ones Catalan Triangle
Figure 2 shows the default Catalan Triangle and

the BOCT compared to each other, both with the size

N=4. The row and column indices for the default Cat-
alan Triangle and the BOCT are stated as (n, k) and (r,
c), respectively.

n\k 0 1 2 3 4
0 1
1 1 1
2 1 2 2
3 1 3 5 5
4 1 4 9 14 14

r\c 0 1 2 3
0 14
1 9 5
2 4 3 2
3 1 1 1 1

Figure 2. The default Catalan Triangle and the BOCT with N=4.

Equation (2) shows the formula for calculating the
value of the element with indices (n, k) in the default
Catalan Triangle [20]:

(2)

The BOCT is obtained from the default Catalan Tri-
angle by: 1) omitting the longest diagonal from it; 2)
transposing it; and 3) inverting it alongside the hori-
zontal. Following are insights in order to be able to
perform such a conversion.

In the default Catalan Triangle, on the row with in-
dex n=0 there is just one element, which is a part of
the longest diagonal. Thus, if the starting rows index
in the default Catalan Triangle is set to be 1, this will
have the effect of removing the longest diagonal from
the default Catalan Triangle. This is the transform
that is required to be applied as far as the rows are
concerned.

If the starting index of the columns in the default
Catalan Triangle is taken to be 1, this has the effect
of accessing elements in the subsequent (i.e., „to the
right“) column to the one of interest, when using (2).
One of the features of the default Catalan Triangle is
that each internal element (i.e., element not on the
Edge or the Diagonal) is a sum of the element to the
left of it and above it. In other words, C(n, k) = C(n,
k-1) + C(n-1, k). Placing k+1 instead of k results in C(n,
k+1) = C(n, k) + C(n-1, k+1), or, stated differently,

(3)

However, if k starts from 1 instead of 0, then k+1
becomes k in the right-hand side of (3). So, if the k+1
on the right-hand side of (3) is replaced with k, it will
be a valid substitution, provided that 1 is used for the

December 2024 Journal of Information Technology and Applications 137

JITA 14(2024) 2:136-141 ADRIJAn BožInovskI, eT Al.

starting index for the columns of the default Catalan
Triangle instead of 0.

Restating (3) by replacing k+1 with k, implement-
ing (2) into it and using the factorial representation of
the combination term produces

(4)

Thus, it is possible to compute the value of an ele-
ment in the Catalan Triangle using the values of the
elements in the adjacent column. So, if the starting
column of the default Catalan Triangle is 1 instead of
0, (4) should be used instead of (2) to compute the
value of each element of the triangle. This is the trans-
form that is required to be applied as far as the col-
umns are concerned.

This way, all of the requirements can be met: 1)
the effect of omitting the first diagonal from the Cata-
lan Triangle can be achieved by having the starting
index of the default Catalan Triangle be (1, 1) instead
of (0, 0), provided that (4) is used to compute the
value of the required element; 2) the transposition
effect can be achieved by exchanging the values for
the row and column in (4); and 3) the inversion effect
can be achieved when substituting n = N – r and k =
N – c. After implementing these transformations, the
final formula for calculating the value of the element
in the BOCT with indices for the row and column (r,
c) becomes

(5)

It is now possible to display an example of a BOCT
and compare its indices with those of a default Cata-
lan Triangle. Figure 3 shows the case for the size N=4.
The indices of the BOCT range from (0, 0) to (3, 3),
whereas those of the default Catalan Triangle, be-
cause of the inversion transformation, range from (4,
4) to (1, 1). The transposition is demonstrated by the
switched indices in the default Catalan Triangle.

k\n 4 3 2 1
r\c 0 1 2 3

4 0 14
3 1 9 5
2 2 4 3 2
1 3 1 1 1 1

For r=c=d, where 0 ≤ d ≤ N–1, (5) transforms into
(6)

which is the formula for obtaining the values of the el-
ements along the diagonal of the BOCT (which is the
reason for the bounds 0 ≤ d ≤ N–1). Those elements
are the Catalan Numbers, and substituting M = N–d
gives

(7)

which is another formula for computing the Catalan
Numbers. Multiplying by M in the numerator and de-
nominator on the right hand side of (7) transforms it
into (1).

Abstraction of the Bottom Ones Catalan
Triangle
As can be seen in (5), the factorial function needs

to be invoked three times in order to compute the val-
ue of the BOCT element with indices (r, c). The algo-
rithms for ranking and unranking are linear, provided
that the BOCT had already been generated and its ele-
ments are available for access [17]. Since the factorial
is a compounding function and is linear by itself as
well, the goal becomes to make it possible to access
the factorial of a given number in constant time, so
that the ranking and unranking algorithms remain
linear.

An analysis of (5) shows that the largest factorial
term is (2⋅N–1)!, which is found in the numerator,
and is obtained for r=c=0; the factorial terms in the
denominator thus become (N–1)! and (N+1)! respec-
tively. Given that the definition of the factorial is N! =
N× (N–1)!, where 0! = 1, it follows that it is necessary
to compute the value of (N–1)! in order to compute
the value of (N+1)!, which in turn needs to be com-
puted in order to compute the value of (2⋅N–1)!. The
aforementioned holds true for N ≥ 2, which is a nec-
essary requirement for a Catalan Triangle to exist (a
Catalan Triangle of just one element is essentially just
the number 1).

Thus, if the values of the factorials of all positive
integers up to and including (2⋅N–1)! are available to
be used on demand, the computation of (5) is done
in constant time. This can be achieved using a linear
data structure which can access the values of its ele-
ments using indexing, e.g., an array. Given that 0! = 1,
the value of the element with index 0 is initially set to

Figure 3. A BOCT with size N=4, superimposed with
the corresponding indices of the default Catalan

Triangle of the same size.

138 Journal of Information Technology and Applications www.jita-au.com

full linearization of ranking and unranking of catalan ciPher Vectors using catalan triangle abstraction JITA 14(2024) 2:136-141

be 1, whereas the value of each subsequent element
is computed as per the factorial function definition.
Both the process of populating such a structure and
the structure itself have linear time and space com-
plexities. Figure 4 shows an example of such a struc-
ture for N = 4.

f[0] f[1] f[2] f[3] f[4] f[5] f[6] f[7]
1 1 2 6 24 120 720 5040

Figure 4. An example for N = 4: an array of all factorials up to
and including (2×4 – 1)! = 7! would be sufficient to compute the
values of all the elements of the BOCT required to rank and/or

unrank any CCV of size N = 4.

Fully Linear Algorithms for Ranking and
Unranking of Catalan Cipher Vectors

The following algorithms are modifications to
the ranking and unranking algorithms found in [17],
which are shown to be linear there. The algorithms in
this paper focus on the ranking and unranking pro-
cesses instead on the full generation of binary trees
using the CCVs. They also utilize the abstraction ap-
proach explained in the previous sections. They are
presented as functions and pseudocode (which re-
sembles the C++ language) is given for each of them.

During the ranking and unranking processes, the
elements in a Catalan Cipher Vector are sequentially
read and updated, respectively. In both cases, the size
of the CCV is taken to be N, and this value is assumed
to be known and stored in the variable N. The array
variable CCV, of size N, which stores the elements of
the CCV currently being processed, is also assumed
to be initialized and populated with valid values, as
defined in [17].

The Bottom Ones Catalan Triangle Element Value
Computation Function

Pseudocode 1 presents the function for comput-
ing the value of the BOCT element that is needed for
the ongoing ranking or unranking process. This func-
tion is auxiliary but is called during both the ranking
and unranking process. The parameters are: N (the
size of the CCV, as previously introduced); r – the row
index of the element in the BOCT being accessed; and
c – the column index of the element in the BOCT being
accessed.

Pseudocode 1. The function for the calculation of the BOCT
element given the size of the BOCT N, the row of the element r

and the column of the element c.

function BOCTel(N, r, c)
{
 num = (r-c+2) * f[2*N-r-c-1];
 den = f[N-r-1] * f[N-c+1];
 return num / den;
}

The Ranking Function
Pseudocode 2 shows the ranking function for a

given array parameter CCV. Variables additional to
the ones already known are: v – the index in the CCV
array; and rank – the value of the rank being comput-
ed during the ranking process.

Pseudocode 2. The ranking function.

function Rank(CCV)
{
 r = 0;
 c = 0;
 rank = 0;
 for(v = 0; v < N; ++v)
 {
 while (CCV[v] > (r + c))
 rank += BOCTel(N, r, c++);
 ++r;
 }
 return rank;
}

The Unranking Function
Pseudocode 3 shows the unranking function for a

given parameter rank.

Pseudocode 3. The unranking function.

function Unrank(rank)
{
 r = 1;
 c = 0;
 v = 0;
 CCV = new array[N];
 CCV[v++] = 0;
 while(v < N)
 {

December 2024 Journal of Information Technology and Applications 139

JITA 14(2024) 2:136-141 ADRIJAN BOŽINOVSKI, ET AL.

 while (BOCTel(N, r, c) <= rank)
 rank -= BOCTel(N, r, c++);
 CCV[v++] = r++ + c;
 }
 return CCV;
}

Analysis of the Algorithms
Both the ranking and unranking algorithms tra-

verse the CCV linearly and they access only the ele-
ments of the BOCT that are required during the cor-
responding process [17]. For each element of the CCV
being processed, a corresponding element in each
of the rows on the BOCT is accessed. Depending on
the value of the element in the CCV, there is either no
displacement from the left vertical (i.e., the Edge) of
the BOCT, or there is some, up to at most the value of
the index of the row (i.e., the element on the Diago-
nal). However, once that displacement occurs when
processing an element of the CCV, the displacement is
not reset in the subsequent row.

This means that the required elements in the BOCT
are traversed in a single line, without segments of the
line being repeated or intersected. This ensures that,
in the best case, only the elements of the leftmost col-
umn will be traversed, so the time complexity of both
the ranking and unranking algorithm will be (N). In
the worst case, the full lengths of both the column and
the bottom row will be traversed, so the time complex-
ity for both algorithms will be (2N) = (N). Thus,
the time complexity of both algorithms is (N), even
though that may not be apparent upon initial over-
views of their respective pseudocodes. Given that the
preliminary process of generating the array of factori-
als for positive integers from 0 to 2N–1 is also linear,
this means that the full processes of both ranking and
unranking, alongside all of their necessary algorithms
and data structures, are linear for both time and space
complexity.

CÊÄ�½çÝ®ÊÄ
The process of obtaining an integer for a given

Catalan Cipher Vector is called ranking, and the re-
verse process is called unranking. This paper pres-
ents the principle and algorithms for abstraction of
the Bottom Ones Catalan Triangle, which is a version
of the Catalan Triangle that is used for the processes
of ranking and unranking of Catalan Cipher Vectors. A

formula is presented that computes the values of the
elements of the Bottom Ones Catalan Triangle as they
become necessary during the ranking and unranking
processes. This way, the triangle doesn’t need to be
generated fully and is therefore abstracted during the
ranking and unranking processes, thus circumventing
the default quadratic time and space requirements
for its computation. Instead, a linear data structure,
such as an array, is used for storing values of facto-
rials necessary for such computations, thus making
both the ranking and unranking processes fully linear
for both time and space complexity.

Acknowledgment
Professor Veno Pačovski, who passed away in 2020, was the
third author in the paper that has introduced the Catalan Ci-
pher Vectors in 2013. The authors of this paper would like to
remember him as a person full of vitality, energy and drive
to promote and improve Computer Science, like he used to
be back then.

R�¥�Ù�Ä��Ý
[1] L. Comtet, Advanced Combinatorics, Reidel, 1974.
[2] K. H. Kim, D. G. Rogers and F. W. Roush, “Similarity rela-

tions and semiorders”, Proceedings of the Tenth South-
eastern Conference on Combinatorics, Graph Theory and
Computing, Boca Raton, FL, pp. 577-594, 1979.

[3] R Sedgewick and P. Flajolet, Analysis of Algorithms, Addi-
son Wesley, 1996.

[4] C. Krishnamachary and M. Bheemasena Rao, “Determi-
nants Whose Elements are Eulerian, Prepared Bernoul-
lian and Other Numbers”, J. Indian Math. Soc., Vol. 14,
1922.

[5] N. J. A. Sloane and S. Plouffe, The Encyclopedia of Integer
Sequences, Academic Press, 1995.

[6] D. E. Davenport, L. W. Shapiro, L. K. Pudwell and L. C.
Woodson, “The Boundary of Ordered Trees”, J. Integer
Seq., Vol. 18, 2015.

[7] H. H. Gudmundsson, “Dyck paths, standard Young tab-
leaux, and pattern avoiding permutations”, Pure Mathe-
matics and Applications, Vol. 21, No.2, pp. 265-284, 2010.

[8] A. Proskurowski and E. Laiman, “Fast enumeration, rank-
ing, and unranking of binary trees”, Proceedings of the
Thirteenth Southeastern Conference on Combinatorics,
Graph Theory and Computing, Boca Raton, FL, pp. 401-
413, 1982.

[9] Y. Shablya, D. Kruchinin and V. Kruchinin, “Method for De-
veloping Combinatorial Generation Algorithms Based on
AND/OR Trees and Its Application”, Mathematics, Vol. 8,
No. 6, ar. 962, 2020.

[10] The On-Line Encyclopedia of Integer Sequences, published
electronically at https://oeis.org, Sequence A181645,
2010.

[11] R. K. Guy, “Catwalks, Sandsteps and Pascal Pyramids”, J.
Integer Sequences, Vol. 3, 2000.

[12] A. M. Hinz, S. Klavžar, U. Milutinović, and C. Petr, The Tower
of Hanoi - Myths and Maths, Birkhäuser 2013.

140 Journal of Information Technology and Applications www.jita-au.com

full linearization of ranking and unranking of catalan ciPher Vectors using catalan triangle abstraction JITA 14(2024) 2:136-141

[13] M. Črepinšek and L. Mernik, “An efficient representation
for solving Catalan Number related problems”, Int. Jour.
Pure Appl. Math., vol. 56, no. 4, pp. 589–604, 2009.

[14] B. Derrida, E. Domany and D. Mukamel, “An Exact Solu-
tion of a One-Dimensional Asymmetric Exclusion Model
with Open Boundaries”, J. Stat. Phys., Vol. 69, pp. 667-687,
1992.

[15] L. W. Shapiro, “A Catalan Triangle”, Discr. Math. 14, pp.
83–90, 1976.

[16] B. A. Bondarenko, Generalized Pascal Triangles and Pyra-
mids, Their Fractals, Graphs and Applications, The Fibo-
nacci Association, 1990.

[17] A. Božinovski, B. Stojčevska and V. Pačovski, “Enumera-
tion, Ranking and Generation of Binary Trees Based on

Level-Order Traversal Using Catalan Cipher Vectors”, Jour.
Inf. Tech. Appl., vol. 3, no. 2, pp. 78–86, 2013.

[18] D. Roelants van Baronaigen, “A loopless algorithm for
generating binary tree sequences”, Inf. Proc. Lett. 39, pp.
189–194, 1991.

[19] D. Zerling, “Generating Binary Trees Using Rotations”,
Jour. ACM, vol, 27, pp. 694–701, 1985.

[20] D. F. Bailey, “Counting Arrangements of 1’s and -1’s”, Math-
ematics Magazine, vol. 69, no. 2, pp. 128–131, 1996.

Received: November 13, 2024
Accepted: November 23, 2024

For citation
Adrijan Božinovski, Biljana Stojčevska, Full Linearization of Ranking and Unranking of Catalan Cipher Vectors Using Catalan Tri-
angle Abstraction, JITA – Journal of Information Technology and Applications, Banja Luka, Pan-Europien University APEIRON, Ban-
ja Luka, Republika Srpska, Bosna i Hercegovina, JITA 14(2024)2:136-141, (UDC: 512.642/.644:514.122/.123), (DOI: 10.7251/
JIT2402136B, Volume 14, Number 2, Banja Luka, December (89-188), ISSN 2232-9625 (print), ISSN 2233-0194 (online), UDC 004

About the authors
Adrijan Božinovski works as a Full Profes-
sor at the Faculty of Informatics at the Ameri-
can University of Europe. He obtained his BSc
from University “Ss. Cyril and Methodius” in
Skopje, Macedonia, and his MSc and PhD from
University of Zagreb, Croatia. His research in-
terests include Robotics, Artificial Intelligence,
Biomedical Engineering, Data Structures and

Algorithms.

Biljana Stojcevska works as a Full Professor
at the American University of Europe in Sko-
pje. She received her PhD degree in Computer
Science at the Institute of Informatics, Faculty
of Natural Sciences and Mathematics, at “Ss.
Cyril and Methodius” University in Skopje. The
areas of her interest are computer networks,
network congestion management, operating

systems and programming languages.

December 2024 Journal of Information Technology and Applications 141

