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Abstract: In this-paper, a system for analyzing chaotic patterns in financial markets has been developed by combining classical
chaos metrics with artificial immune systems for anomaly detection. Implemented indicators include the Lyapunov exponent,
correlation dimension, approximate entropy, Hurst exponent, and the distance from a reference Lorenz trajectory. These metrics
enable the detection of changes in market stability and predictability over time. An adaptive algorithm inspired by artificial immune
systems was developed for identifying anomalous behaviors, adjusting detectors based on detected deviations. The results are
presented through a series of interactive visualizations, including 3D plots, time series, and anomaly density maps. In addition
to standard analysis, the system supports false alarm detection through controlled parameter variations. This approach provides
deeper insights into the complex dynamics of financial markets and can serve as a tool for forecasting periods of instability.
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INTRODUCTION

The intricate and nonlinear dynamics of finan-
cial markets have long challenged researchers seek-
ing to model, predict, and understand their behavior
[1]. In particular, the emergence of chaotic patterns
[2], characterized by sensitivity to initial conditions
and underlying structural complexity, necessitates
the development of sophisticated analytical frame-
works. Within this context, quantifying chaos using
dynamical system metrics—such as the Lyapunov ex-
ponent, correlation dimension, approximate entropy,
and the Hurst exponent—has proven instrumental
in revealing hidden order within seemingly stochas-
tic market behavior [3,4]. This study introduces an
integrated computational framework for the detec-
tion and analysis of chaotic phenomena in financial
time series. By employing a combination of classical
chaos theory metrics and novel bio-inspired anomaly
detection techniques—specifically, artificial immune

system algorithms—this work offers a robust meth-
odology for identifying critical transitions and stabil-
ity fluctuations in financial markets. The innovative
incorporation of Lorenz attractor trajectory compari-
sons further enhances the model’s sensitivity to non-
linear deviations, providing an enriched perspective
on temporal evolution and emergent anomalies [5].
The proposed system facilitates both qualitative and
quantitative exploration through interactive, multi-
dimensional visualizations, encompassing 3D scat-
ter plots, temporal evolution graphs, and anomaly
density heatmaps. Within this context, two distinct
adaptive immune detection models are employed to
simulate varying market surveillance scenarios—one
of which incorporates stochastic false alarm mecha-
nisms to emulate noisy and unpredictable detection
environments. The second model operates without
false alarm mechanisms, thereby reflecting a more
idealized and deterministic surveillance framework
for comparative analysis. By integrating traditional
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chaos theory with quantitative classification based
on dynamical system indicators—such as the Lyapu-
nov exponent and the Hurst exponent—the present-
ed approach aims to enhance early warning systems
and predictive analytics in financial engineering.

METHODOLOGY

In this work, an innovative methodology was de-
veloped for analyzing the chaotic characteristics of
capital markets by combining mathematical mod-
els, chaos-based metrics (such as the Lyapunov and
Hurst exponents), and adaptive immune system-in-
spired detection frameworks. The analysis was car-
ried out through a series of functional components
that enable quantitative measurement of nonlinear
dynamics in stock price time series, as well as anom-
aly detection in market behavior. Stock price data
were obtained using the Yahoo Finance service, en-
suring the timeliness and relevance of the time series
for the purposes of the analysis. Each method used
is described in detail below. The Lorenz system is a
classic mathematical model that describes chaotic
behavior. It was created in 1963 when meteorologist
Edward Lorenz tried to model atmospheric convec-
tion [6]. A particularly notable feature of this system
is its extreme sensitivity to initial conditions, where
even minimal changes can lead to vastly different out-
comes—a hallmark of chaotic behavior.

The Lorenz system is defined by three coupled
nonlinear differential equations:

dr (1)
—— F(y —x)

%_x[p—z]—y (2)
== xy — fiz (3)

di

Where:

X — position in space (can be seen as the system'’s
state),

y - second coordinate (e.g., rate of change),

z - third coordinate (could represent heat or altitude
in atmospheric modeling) [7];

Parameters that control the system’s behavior:
0=10(Prandtl number - measures the ratio of viscos-
ity to thermal diffusivity),

p=28(Rayleigh number - measures temperature dif-
ference),

B=83(geometric factor - depends on the system’s
shape);

When these parameters are set to these values,
the Lorenz system exhibits pure chaotic behavior —
the famous “Lorenz attractor”[8].

Numerical solutions were obtained using the
variable-step integration method via the solve ivp
function, with initial conditions (x,, y,, z,) = (1.0, 1.0,
1.0) and a time step of dt = 0.01. The resulting trajec-
tory consists of state vectors (x(t), y(t), z(t)) at each
discrete time point, allowing the creation of a repre-
sentative pattern of chaotic behavior. After generat-
ing the Lorenz trajectory, a function was developed to
quantify the similarity between the real-time series
of market prices and the reference chaotic trajectory.
The market price time window and the x-component
of the Lorenz trajectory were independently normal-

ized using standard Z-score normalization:
L=y
T+ 108

Uporm = (4)
where represents the mean, and the standard de-
viation of the observed series [9]. Normalization re-
moves the influence of absolute scale, enabling a fo-
cus purely on fluctuation patterns.

The similarity between the normalized sequences
was then measured using the Euclidean norm:

:'.I'[:tt.l-‘} - |Z{_H| m ”E:]!! (5)

\ 1=1

where m is the length of the shorter of the two com-
pared sequences. This metric quantifies the global
distance between the two signals, where lower dis-
tance values indicate a higher degree of similarity, i.e.,
a stronger chaotic resemblance between the market
window and the Lorenz attractor [10]. In this way, a
robust method was created for detecting latent chaot-
ic dynamics within time series of market prices [11].
The choice of the Lorenz system as a reference model
is justified by its ability to exhibit extremely sensi-
tive and nonlinear behavior despite its deterministic
nature, providing a valid benchmark for comparison
with real-world market processes [12].

In this study, four key metrics were applied to
quantify chaotic behavior in time series: Approxi-
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mate Entropy, Hurst Exponent, Maximal Lyapunov
Exponent, and Correlation Dimension. Each of these
metrics provides a specific perspective on the inter-
nal complexity and predictability of temporal pro-
cesses.

Approximate Entropy (ApEn) measures the regu-
larity and unpredictability of fluctuations in a time
series [13]. Formally, ApEn is defined as:

ApEn{m,r) = ¢(m) — ¢(m + 1) (6)
where:
. Mg
i) s —————— InC™(r) (7)
N=m+1 ;

Here, "(r]represents the proportion of vectors of
length mmm that are within a distance r from the ref-
erence vector x(i). The threshold r is usually chosen
as a percentage of the standard deviation of the time
series.

The distance between two vectors is measured by
the maximum absolute difference between their re-
spective components [14].

d(x(iLx(i = , max Ixli+k=1)—x(j+ k—1)|

(8)
Higher values of Approximate Entropy indicate
lower predictability and greater chaos within the sys-
tem.The Hurst Exponent is a measure of long-term
memory in a time series [15]. Its interpretation is as
follows:
e H=0.5: The process is a random walk (mem-
oryless),
¢ H>0.5H: Positive autocorrelation (trending be-
havior),
¢ H<(0.5H: Negative autocorrelation (mean-re-
verting behavior).
Hurst’s relation is expressed through the rescaled
range analysis:
E[R(r)/S(n)] ot n¥ (9)
where R(n) is the range of cumulative deviations, S(n)
is the standard deviation, and nnn is the length of the
subseries.
The Maximal Lyapunov Exponent measures the
rate of divergence between initially close trajectories
in the phase space [16]. Formally:

1. d(t)
Amax = .“ET.}, FEHM'
where d(0) and d(t) are the initial and evolved dis-
tances between two nearby points, respectively.
The Correlation Dimension estimates the fractal
complexity of a system [17]. It is defined through the

correlation function C(r) as:

2
Clr) = ,'.:!'iI:IrL m ; e(r— ||.1_'I - X ” (1)

where 0 is the Heaviside step function, and r is the
distance threshold. In practice, the correlation di-
mension D, is approximated as:
dint(r)
dlnr

(10)

g = (12)

For calculation, the distance matrix between re-
constructed phase space vectors is generated, and
the number of vector pairs with distances less than r
is counted, providing an insight into the complexity of
the dynamical system [18].

The Artificial Immune System (AIS) is inspired
by the biological immune system and is utilized for
anomaly detection in complex datasets. Two versions
of the AIS algorithm were used here: without false
alarms and with false alarms, both based on reac-
tive cloning of detectors [19]. For a dataset X = {x1,
x2, ..., XN} where each vector instance is defined as:

¥i = (Lyapunovi, CorrDimi, ApproxEntropyi,

Hursti, Lorenz Disti) (13)
the features are first standardized:
_ TR
T= " g (14)

where and are the vectors of mean values and stan-
dard deviations of the individual features.

The formulation with false alarms is:
Anomaly = |,’mém di = @y (rand() < pfalse)(15)

where rand () is a uniformly random value from the
interval [0,1].

RESULTS

In this study, we analyzed the chaotic dynamics
of the stock prices of major technology companies
(AAPL, MSFT, GOOGL, NVDA, INTC, AMD, and IBM)
[20, 21] using a set of nonlinear time series met-
rics. The analysis covered the period from January
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1, 2020, to April 3, 2025. For each company’s clos-
ing price time series, a sliding window approach was
used with a window size of

W = 200 (16)
samples and a step size of S = 20. Within each win-
dow, the following metrics were calculated:

¢ Maximum Lyapunov Exponent (Amax), indicat-

ing sensitivity to initial conditions.

o Correlation Dimension (D,), measuring the

fractal complexity of the trajectory.

e Approximate Entropy (ApEn), evaluating the

unpredictability of the system.

e Hurst Exponent (H), indicating long-term

memory and trend persistence.

* Lorenz Distance (d, ), comparing the real

data to the reference Lorenz attractor.

The calculated features were then passed through
the Artificial Immune System (AIS) algorithm for
anomaly detection. Two AIS versions were tested:
Normal AIS without induced false alarms, AIS with
False Alarms, which introduces 5% random anoma-
lies to simulate realistic detection imperfections. Ad-
ditionally, each time window was classified into one
of several market states based on threshold condi-
tions over the Lyapunov exponent and Hurst expo-
nent. Classification of Market States Based on Lyapu-
nov and Hurst Exponents (Table 1) [22].

Table 1. Summary of Quantitative Data for Apple Inc.

Lyapunov Hurst Market State
A>0.3 H<0.3 Very Chaotic
0.1<A<0.30 H<0.4 Chaotic
A<0.05 H>0.7 Highly Predictable
A<0.1 0.5<H<0.70 Stable
0.05<A<0.2 0.4<H<0.6 Semi-Stable
otherwise otherwise Highly Unstable

A series of visualizations was generated to illus-
trate the behavior and evolution of chaotic metrics
across time for selected stock market symbols. These
include time-series plots of individual metrics (Ly-
apunov exponent, correlation dimension, approxi-
mate entropy, Hurst exponent, and Lorenz distance),
a 3D scatter plot of the Lyapunov-Correlation Dimen-
sion-Lorenz Distance space, as well as anomaly de-
tection visualizations such as heatmaps and scatter
diagrams. These visual analyses reveal transitions
between different market states and highlight the ar-
tificial immune system'’s effectiveness in identifying
anomalies, even when false alarms are introduced,
such as during periods of heightened volatility (e.g.,
the 2020 pandemic shock).
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The following images show the results for Apple
(Figurel, Figure 2, Figure 3, Figure 4 and Figure
5)
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Figure 1. Summary of Quantitative Data for Apple Inc.
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The following images show the results for
Microsoft. (Figure 6, Figure 7, Figure 8, Figure 9
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and Figure 10).
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Figure 6. Summary of Quantitative Data for Microsoft Inc.
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Figure 10. Lyapunov vs Hurst Scatter and Anomaly Detection
over Time for Microsoft Inc.

Figure 8. Lorenz Attractor Reference
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The following images show the results for

Nvidia

(Figure 16, Figure 17, Figure 18, Figure 19 and

Figure 20).

Figure 16. Summary of Quantitative Data for Nvidia Inc.
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Figure 18. Lorenz Attractor Reference
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The following images show the results for Intel.
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The following images show the results for AMD
(Figure 26, Figure 27, Figure 28, Figure 29 and

Figure 30).
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Figure 26. Summary of Quantitative Data for AMD Inc.
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The following images show the results for IBM.

(Figure 31, Figure 32, Figure 33, Figure 34 and

Figure 35).
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Figure 31. Summary of Quantitative Data for IBM

Inc

Figure 33. Lorenz Attractor Reference

Figure 34. Chaos Metrics Over Time
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DiscussION

The combination of chaotic metrics (such as the
Lyapunov exponent, correlation dimension, approxi-
mate entropy, Hurst exponent, and Lorenz distance)
with an artificial immune system enables efficient
market classification based on various dynamic
states. This methodology not only uncovers the cha-
otic characteristics of the market but also allows for
market classification by identifying stable and unsta-
ble patterns. In this work, the algorithms are applied
in two modes: one without false alarms, and another
where false alarms are introduced to test the system'’s
robustness under conditions of high volatility. The
discussion below thoroughly examines the classifica-
tion results by company, clearly indicating the use of
both algorithms. For a summarized overview of the
key metrics for each company, please refer to Table
2. Time series analysis for Apple indicates the pres-
ence of chaotic yet predictable patterns in market
behavior. The Lyapunov exponent, with values rang-
ing between 0.48 and 0.56, confirms the system'’s di-
vergence and the presence of chaos, which is charac-
teristic of dynamic and nonlinear systems. However,
the Approximate Entropy, ranging from 0.33 to 0.40,
shows a relatively low level of entropy, suggesting
that price movement patterns are somewhat predict-
able. A high Hurst exponent (~0.79-0.86) further
suggests the existence of long-term dependence and
stable trends—when the price rises, there is a high
probability that the upward trend will persist. The
correlation dimension, although negative (likely due
to a scaling error), indicates a high level of complexity
in market behavior. The Lorenz distance, with a con-
stant value around 457, points to a stable attractor
distribution, and the absence of anomalies confirms
that the market chaos is unfolding within expected
bounds. Time series analysis for Microsoft reveals
more pronounced chaotic characteristics compared
to Apple. The Lyapunov exponent ranges from 0.68
to 1.0, indicating a higher degree of chaos and greater
system divergence. The correlation dimension, with
values between -2.5 and -2.9, also suggests a high
level of complexity, although the negative values are
likely due to a scaling error. Approximate Entropy, in
the range of 0.57 to 0.72, reflects greater unpredict-
ability of patterns compared to Apple, meaning that
Microsoft’s market behavior is harder to model. The
Hurst exponent remains relatively high (0.69-0.76),

confirming the presence of long-term dependencies,
although somewhat less pronounced than in Apple’s
case. The Lorenz distance indicates lower attractor
stability compared to Apple, further contributing to
the depiction of a more dynamic and potentially more
volatile market. Nevertheless, despite the stronger
chaotic behavior, no anomalies were detected, in-
dicating that Microsoft’s market behavior—though
complex and unpredictable—still occurs within ex-
pected bounds. Microsoft exhibits stronger chaotic
characteristics and lower predictability compared
to Apple, while maintaining fundamental structural
stability. The Lyapunov exponent is negative (rang-
ing from -0.18 to -0.00), indicating that the system
is not divergent and does not exhibit chaotic char-
acteristics—instead, the behavior is stable and pre-
dictable. The Hurst exponent, ranging from 0.5 to
0.6, suggests behavior close to a random walk, with
no pronounced long-term dependence. Approximate
Entropy falls within a moderate range (0.45-0.61),
indicating a medium level of unpredictability—high-
er than Apple’s, but lower than Microsoft’s. The cor-
relation dimension points to a complex structure,
similar to the previous companies, suggesting multi-
layered dynamics despite the absence of chaos. The
Lorenz distance remains stable, supporting the ex-
istence of a consistent attractor structure over time.
No anomalies were recorded, further confirming the
consistency of market behavior. Time series analy-
sis for Google shows more stable dynamic behavior
compared to Apple and Microsoft. In conclusion,
Google stands out as a system with stable and rela-
tively predictable patterns, lacking chaos and exhib-
iting less long-term dependence compared to Apple
and Microsoft.The Lyapunov exponent for NVIDIA
has extremely negative values (~-1.5 to -1.6), indicat-
ing an exceptionally stable system with no signs of
divergence. The Hurst exponent ranges from 0.6 to
0.7, suggesting the presence of mild, mostly upward
trends in the time series. Approximate Entropy, rang-
ing from 0.30 to 0.44, indicates a relatively low level
of unpredictability, meaning that behavioral patterns
are clearly present and can be modeled with relative
ease. NVIDIA demonstrates a high degree of stability
with moderate trends and low entropy, making it a
system with well-defined and predictable dynamics.
The Lyapunov exponent for Intel ranges between
-0.42 and -0.59, indicating stable system behavior
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without signs of divergence, though not as extreme-
ly stable as in NVIDIA’s case. Approximate Entropy,
ranging from 0.54 to 0.61, indicates a moderate level
of entropy, meaning that Intel exhibits a moderate de-
gree of predictability—patterns are present but not
fully clearly defined. Approximate Entropy for AMD,
ranging from 0.37 to 0.44, indicates a moderate level
of predictability—behavioral patterns are present
but not fully stable. The Lyapunov exponent, ranging
from 0.17 to 0.24, shows a slightly divergent system
with low but positive values, indicating a certain de-
gree of chaotic behavior. In conclusion, AMD’s mar-
ket behavior is characterized by a balance between
predictable patterns and mild instability, making it a
moderate yet dynamic system. For IBM, Approximate
Entropy shows a significant increase—from 0.59 to
0.91—which clearly indicates growing unpredict-
ability in market behavior patterns. At the same time,
the Lyapunov exponent shifts from positive (0.15) to
negative values (-0.31), signaling a transition of the
system from a mildly chaotic state toward more sta-
ble dynamics. This combination points to a complex
change: while the system’s structure is stabilizing in
terms of divergence, its local patterns are becoming
increasingly irregular and harder to predict. IBM is in
a specific transitional phase—structurally moving to-
ward stability, while simultaneously experiencing an
increase in internal chaos.

Table 2. Summary of Chaotic Metrics by Company

Compan Lyapunov Approx. Hurst Corr. Lorenz
pany Exponent Entropy Exponent Dimension  Distance
AAPL  0.48-0.56 0.33-040 0.79-0.86 (error) ~457
MSFT  068-100 057-072 069-076 -25t0-29 |OWerthan
Apple
High
GOOGL -0.18--0.00 0.45-0.61 0.50-0.60 . Stable
complexity
NVDA  -15--16 030-0.44 0.60-0.70 N/A Stable
INTC  -0.42--0.59 0.54-0.61 N/A N/A Stable
AMD  0.17-0.24 037-0.44 N/A N/A N/A
B 0P 0s9-091 N NA  Stable

Microsoft showed the highest stability in terms of
long-term predictability, indicated by its negative Ly-
apunov exponents and relatively low entropy values,
suggesting a more consistent and predictable market
behavior. Apple, on the other hand, demonstrated
the best balance between growth and predictability,

with chaotic traits combined with long-term stabil-
ity and low entropy, indicating the potential for both
stable trends and growth opportunities. NVIDIA and
Google exhibited negative Lyapunov exponents and
low to moderate entropy, reflecting their relatively
stable and predictable dynamics, though their mar-
ket behavior was somewhat less dynamic compared
to companies like Apple and Microsoft. AMD, with
more pronounced chaotic characteristics and lower
predictability, was better suited for short-term and
active trading strategies. Intel, offering moderate sta-
bility without significant fluctuations, represents a
more conservative option with relatively predictable
behavior. IBM, however, showed a sharp increase in
entropy, signaling growing unpredictability despite
indications of structural stability, suggesting that it
may not be ideal for long-term positions.

CONCLUSION AND FUTURE WORK

This work presents a comprehensive system
for analyzing chaotic patterns in financial markets,
combining classical chaos theory metrics with arti-
ficial immune system algorithms for anomaly detec-
tion and market classification. The system not only
detects chaotic behaviors but also classifies market
states into categories such as “chaotic,” “stable,” or
“predictable,” based on the calculated metrics. By
utilizing indicators such as the Lyapunov exponent,
correlation dimension, approximate entropy, Hurst
exponent, and the distance from a reference Lorenz
trajectory, the system enables both quantitative and
qualitative assessment of market stability, predict-
ability, and dynamic transitions between different
market states over time. This classification frame-
work provides a deeper understanding of market
behavior, highlighting periods of instability and of-
fering insights for market prediction and risk as-
sessment. The analysis reveals clear differences in
the dynamic behavior of the companies under con-
sideration. While Apple and Microsoft exhibit more
pronounced chaotic characteristics—marked by high
Lyapunov and Hurst exponents indicating long-term
dependencies—companies like NVIDIA and Google
demonstrate more stable and predictable behavioral
patterns. Particularly notable is IBM, which seems to
be in a transitional phase—shifting from mild chaos
towards greater structural stability, while also expe-
riencing an increase in short-term unpredictability.
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From an investment strategy perspective, the results
enable a practical classification of market options. If
maximum stability is the goal, NVIDIA and Google
stand out as the most reliable choices due to their
negative Lyapunov exponents and low to moderate
entropy values, indicating consistent and predict-
able dynamics. For those seeking a balance between
growth and predictability, Apple emerges as the op-
timal option—exhibiting chaotic traits along with
stable long-term trends and low entropy. Microsoft
and AMD, with more pronounced chaotic behavior
and lower predictability, are better suited for active
trading and short-term strategies. Intel offers a more
conservative option—stable and moderately predict-
able, without significant fluctuations. After results
analysis we can conclude that IBM is not recommend-
ed for long-term positions due to a sharp increase in
entropy, which points to growing unpredictability de-
spite signs of structural stabilization. The proposed
algorithm, a combination of artificial immune sys-
tems and chaos theory metrics, proved effective in
detecting anomalous behavior and dynamic shifts
without generating false alarms, further confirming
the robustness of the proposed system. Interactive
visualizations enable intuitive interpretation of com-
plex results and contribute to a better understanding
of the nonlinear processes that characterize modern
financial markets. This approach represents a step
toward the development of advanced tools for early
instability detection and potential crisis forecasting,
with potential applications in financial engineering,
risk management, and strategic investment planning.
Future research will focus on refining the classifica-
tion system by incorporating additional market fac-
tors and expanding the scope to include more diverse
financial instruments, such as commodities and cryp-
tocurrencies. Further improvements can be made to
the anomaly detection algorithms, enhancing their
sensitivity to subtle market shifts without increasing
the risk of false positives. Additionally, exploring the
integration of machine learning techniques to com-
plement the chaos-based analysis could offer deeper
insights into market behavior, improving both the
accuracy and reliability of predictions. The system
could also be expanded to support real-time market
monitoring and decision-making, enabling proactive
responses to emerging market conditions.
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