
FULL TEXT SEARCH AND INDEXING IN LANGUAGES WITH TWO ALPHABETS JITA 4(2014) 1:41-45

FULL TEXT SEARCH AND INDEXING IN LANGUAGES
WITH TWO ALPHABETS

Tijana Talić
Paneuropean University APEIRON, Banja Luka, e-mail: tijana.t@apeiron-uni.eu

Case study

DOI: 10.7251/JIT1401041T UDC: 004.738.5.057.4

Abstract: The languages spoken in Bosnia and Herzegovina use both Cyrillic and Latin equally. This is an additional problem
with indexing and full text searching. In this paper, we are analyzing this problem. Using the tools available on PostgreSQL
and ispell dictionaries, we made a solution. As part of the solutions, we created a dictionary of stop words, adjusted the affi x fi le
for both alphabets and from the list of words made functional vocabularies for indexing and searching. We made a full search
confi guration which is useful for indexing texts in both alphabets.

Key words: Semantic full-text search; Indexing; Artifi cial intelligence

With the rapid development of information tech-
nology there has been an exponential increase of the
available data. To process and use such information,
we need a new and faster way of using the data. One
of the current problems is text searching, which apart
from the speed requires a minimum disk space. Th is
technology has emerged as a necessity due to the pres-
ence of a large number of digital documents we have.

Full text search provides the ability to identify the
documents in natural, spoken languages, that satisfy
the search condition, and also it sorts them accord-
ing to the query criteria. Th e most common type of
search is: fi nding all documents containing specifi ed
query terms and returning them in order of similarity
to your inquiry. Query terms and similarities are very
fl exible and depend on the particular program. Th e
simplest search observes the query as a set of words,
and it observes the similarity as the word frequency
listed in the document.

Th is technology has an increasing importance,
especially in archiving overall achievements of a
particular community, or of all humanity, whether
they are in domain of art or scientifi c research and
achievements.

Operators for text search in databases have existed
for years. Operators “Like (~, ~ *)” and “iLike” for
text data types, are available in most databases, but
they lack many essential features required for mod-
ern information systems:

• Th ere is no linguistic support, even for the
English language. Regular expressions are not
enough, because they cannot process derived
words easily. It is possible to use OR in the
search for more derived forms, but this is de-
manding and inaccurate (some words can have
several thousand derivatives);

• Th ere is no ranking (sorting) of search results,
which makes them ineff ective, especially when
it has been found over thousands of docu-
ments that contain the searched terms;

• Th ey are slow because there is no support for
indexes and they must process each document
at each time.

When we talk about full text search system a doc-
ument is defi ned as a unit of searching whether it is
in terms of a data base column or text fi le.

Full text searching in documents can be made di-
rectly, without prior processing, i.e. without index-

June 2014 Journal of Information Technology and Applications 41

JITA 4(2014) 1:41-45 Tijana Talić:

ing. In this mode, text search is performed by succes-
sive reading and comparison with query criteria. Th e
main feature of this search method is that it is very
slow. For any criteria change we reiterate the reading
and search again.

Full text indexing allows documents to be pre-
processed and obtained indexes to be saved for
later quick search. In this way, practically we have
a processed document located in an index base in
which we perform only the fi nal comparison. Th is
avoids constant reinterpretation of the document.
Document Processing for full text comparison and
indexing includes:

• Parsing document to tokens. It is useful for
identifying diff erent classes of tokens, for ex-
ample, numbers, words, compound words,
e-mail addresses. Each of these categories is
treated diff erently in the further search. In
general, the category tokens depend on the ap-
plication. Th e most modern databases have a
predefi ned category. For example, PostgreSQL
has a defi ned category of tokens for the major-
ity of searches.

• Conversion of tokens into lexemes. Lexeme is
a string just as a token, but it is normalized so
that diff erent forms of the same word are equal.
For example, the normalization almost always
involves the conversion of large to small letters,
and often includes the removal of extensions.
Th is allows search engines to fi nd various forms
of the same word, without boring entering all
possible versions. Normalization regularly in-
cludes the elimination of so-called stop words.
Stop words are those words that frequently oc-
cur in the document and whose search is point-
less, such as auxiliary verbs, conjunctions ...
For this purpose there are special programs
called dictionaries.

• Indexing involves saving pre-processed docu-
ments optimally adapted to search. Each docu-
ment is presented as an organized row of nor-
malized lexemes. For the purpose of doing the
ranking range it is desirable with the lexeme to
save the data about the place of their occurrence.
A document that contains part in which the
term appears frequently is ranked higher than
the one in which the term is scattered in the text.

Th is technology signifi cantly uses ispell and
stem dictionaries, which are, unfortunately for
the languages spoken here, generally arranged
poorly.

• Comparison occurs to this group of normal-
ized lexemes. Criteria queries are processed
in the same manner and the words within it
are also converted to lexemes, then the com-
parison is made. Th is is the way in which the
adjustment of the natural spoken language re-
search is made. For the realization of this pro-
cess we use:

PARSERS

Parsers are responsible for dividing the document
to tokens and for the recognition of the tokens’ type.
Th e set of possible token types is defi ned by the pars-
er itself. It should be noted that the parser does not
modify the text, but only determines the acceptable
word barrier.

DICTIONARIES

Dictionaries are used to normalize words and re-
move words that should not be taken into account
during the search (stop words). Normalization does
not always have linguistic meaning, and generally de-
pends on the semantics of the application.

Dictionary is a program that accepts input sym-
bols and it returns:

• • string of lexemes if the token is known to the dic-
tionary (one token can produce more lexemes)
• an empty string if the token is known to the
dictionary but it is recognized as a stop word
• NULL if the dictionary did not recognize the
symbol

Th e stop words are words that are very common,
occurring in almost every document, and they are
irrelevant to the search. Th us, they can be ignored in
the context of the full text search.

Simple Dictionary converts the uppercase letters
of the input token to lowercase and checks it in the
dictionary of stop words. If the token is found in
the fi le then it returns an empty string, or token is
rejected. If not, then the token converted to lower-
case returns as lexeme. Dictionary can be confi gured

42 Journal of Information Technology and Applications www.jita-au.com

FULL TEXT SEARCH AND INDEXING IN LANGUAGES WITH TWO ALPHABETS JITA 4(2014) 1:41-45

to report all regular words as unrecognized, allowing
them to be passed to the next dictionary in the list.

Synonym Dictionary is used to create dictionar-
ies that replace the word to its synonym.

Th esaurus is a collection of words that contains
information about the relationship of words and
phrases.

Basically thesaurus replaces all non-priority terms
to prioritize one and optionally keeps the original
terms for indexing. Th e current implementation of
PostgreSQL vocabulary thesaurus is a dictionary
of synonyms expansion by adding support for the
phrases.

Template Ispell dictionaries supports morpho-
logical dictionaries, which can normalize the diff erent
linguistic forms of the word in the same lexeme. For
example, English Ispell dictionary can match all decli-
nations and conjugations of the search term bank, for
example: Banking, banked, banks, banks’ and bank’s.
Snowball dictionary template is based on the Mar-
tin Porter’s project. He is the creator of the popular
Porter stemming algorithm for English. Snowball
now provides stemming algorithms for many lan-
guages. Each algorithm understands how to reduce
common variations of word forms to its base or stem,
using the language spelling. Snowball dictionary re-
quires a language parameter to identify which stem-
mer to use, and if it is necessary it may indicate the
term of the stop word fi le that provides a list of words
that should be removed.

CONFIGURATION

Functionality, dictionary combining and adjusting
the needs in the PostgreSQL, is done by confi gura-
tion. Confi guration determines how the search is
performed, by which dictionaries and in what order.
Dictionary can have multiple diff erent confi gurations
and depending on the application, we can defi ne dif-
ferent types of confi gurations. For example, for search
mathematical texts we can defi ne a special dictionary.

In this paper, for the purpose of archiving systems,
we consider making a full text search confi guration
in conditions of the use of languages with two alpha-

bets out of English and Russian speaking areas. On
the territory of Bosnia and Herzegovina, Cyrillic and
Latin alphabet are used equally. We want to create a
confi guration that will perform the search on both
alphabets. For this purpose, we use PostgreSQL. Its
built-in full text search system is very fl exible. It al-
lows the defi nition of the user dictionaries and mak-
ing confi guration of the text search by the combina-
tion of these dictionaries.

Parser RDBMS satisfi es our needs.

Th e basis of every search is right dictionary.
An indispensable element of every dictionary is a dic-
tionary of stop words. In our case, this dictionary had
to be made from the scratch, because in the available
resources we have not found anything. Using gram-
mar, spelling of the language and the method of text
analysis in the spoken language, we defi ned a dic-
tionary of stop words for general purposes. It looks
like this:

a ja mojem oni ste
ako je mom ono su
ali jer na onom t
bi jeste nama ova ta

bismo ji naše ovaj taj
biste k ne ove tako
biti ka ni ovi te
će kad niti ovim tebi

ćemo kako njega ovo ti
ćeš kao njemu ovom to
ćete kod njihov pa tom
ću koja njihovi po u
da koje njihovom pri uz
do koji njima s vam
g kojima njoj sa vama
ga koliko o sam vaše
i kom od se vi

ih kome on še za
ili li ona si
iz mi one smo

TABLE 1. Stop words dictionary

For the forming of the confi guration, we
use ISPEEL confi guration template. For the af-
fi x fi le, we exploit a fi le that is for the Croa-
tian language made by Denis Lackovic [2].
List of words we took from the available ispell and
myspell sources. We made two dictionaries, one for
Latin and the other for Cyrillic. Th e basis of the Cy-

June 2014 Journal of Information Technology and Applications 43

JITA 4(2014) 1:41-45 Tijana Talić:

rillic affi x fi le is taken from the previously mentioned
fi le by Denis Lackovic.

Th en, we process the list of words with this com-
mand:
munchlist -l ./bsh.affi x bsh-list.dict >
bsh.dict
munchlist -l ./bsh_c.affi x bsh-list_c.dict
> bsh_c.dict

In this way we get two confi guration fi les for the
vocabulary. We played with a thesaurus. For example,
often in search, if we search for “bijelo”, we want to
fi nd also “belo”. Sometimes in the search for specifi c
purposes we want to index some of the words equally
in the Cyrillic and Latin text. For verifying, we made
a dictionary of synonyms:

carina carina

carinski Carinski

carinske Carinske

zakon Zakon

pravilnik Pravilnik

procedure Procedure

postgresql Pgsql

postgres Pgsql

belo Bijelo

mleko mlijeko
TABLE 2. Synonym dictionary

Note that we only use dictionary for verifying
functionality and there is no linguistic meaning.

Now we will create confi gurations of dictionaries:
CREATE TEXT SEARCH DICTIONARY bsh (
 TEMPLATE = ispell,
 dictfi le = ‘bsh’, stopwords = ‘bsh’,
afffi le = ‘bsh’);
CREATE TEXT SEARCH DICTIONARY bsh_c (
 TEMPLATE = ispell,
 dictfi le = ‘bsh_c’, stopwords =
‘bsh_c’, afffi le = ‘bsh_c’);
CREATE TEXT SEARCH DICTIONARY bsh_syn (
 TEMPLATE = synonym,
 synonyms = ‘bsh’);

We created confi gurations of dictionaries for two
imaginary languages and a thesaurus. Now, we can

confi gure full-text search.
CREATE TEXT SEARCH CONFIGURATION bsh (
PARSER = “default”);
ALTER TEXT SEARCH CONFIGURATION bsh ADD MAP-
PING FOR asciihword WITH bsh_syn,bsh,bsh_c;
ALTER TEXT SEARCH CONFIGURATION bsh ADD MAP-
PING FOR asciiword WITH bsh_syn,bsh,bsh_c;
ALTER TEXT SEARCH CONFIGURATION bsh ADD
MAPPING FOR email WITH simple;
ALTER TEXT SEARCH CONFIGURATION bsh ADD
MAPPING FOR fi le WITH simple;
ALTER TEXT SEARCH CONFIGURATION bsh ADD
MAPPING FOR fl oat WITH simple;
ALTER TEXT SEARCH CONFIGURATION bsh ADD
MAPPING FOR host WITH simple;
ALTER TEXT SEARCH CONFIGURATION bsh ADD
MAPPING FOR hword WITH bsh_syn,bsh,bsh_c;
ALTER TEXT SEARCH CONFIGURATION bsh ADD
MAPPING FOR hword_asciipart WITH bsh_
syn,bsh,bsh_c;
ALTER TEXT SEARCH CONFIGURATION bsh ADD
MAPPING FOR hword_numpart WITH simple;
ALTER TEXT SEARCH CONFIGURATION bsh ADD MAP-
PING FOR hword_part WITH bsh_syn,bsh,bsh_c;
ALTER TEXT SEARCH CONFIGURATION bsh ADD
MAPPING FOR int WITH simple;
ALTER TEXT SEARCH CONFIGURATION bsh ADD
MAPPING FOR numhword WITH simple;
ALTER TEXT SEARCH CONFIGURATION bsh ADD
MAPPING FOR numword WITH simple;
ALTER TEXT SEARCH CONFIGURATION bsh ADD
MAPPING FOR sfl oat WITH simple;
ALTER TEXT SEARCH CONFIGURATION bsh ADD
MAPPING FOR uint WITH simple;
ALTER TEXT SEARCH CONFIGURATION bsh ADD
MAPPING FOR url WITH simple;
ALTER TEXT SEARCH CONFIGURATION bsh ADD
MAPPING FOR url_path WITH simple;
ALTER TEXT SEARCH CONFIGURATION bsh ADD
MAPPING FOR version WITH simple;
ALTER TEXT SEARCH CONFIGURATION bsh ADD
MAPPING FOR word WITH bsh_syn,bsh,bsh_c;

Above we confi gured all types of tokens, although
for our purposes it would be useful to exclude some
types of tokens.

Let us look at the result of this confi guration in
the example of the noun “izvor” and its cases:
SELECT * FROM to_tsvector(‘izvor izvora
izvoru izvore izvorom’);

44 Journal of Information Technology and Applications www.jita-au.com

FULL TEXT SEARCH AND INDEXING IN LANGUAGES WITH TWO ALPHABETS JITA 4(2014) 1:41-45

 to_tsvector

 ‘izvor’:1,2,3,4 ‘izvori’:2,3,4,5

SELECT * FROM to_tsvector(‘izvor izvorа
izvoru izvore izvorom’);
 to_tsvector

 ‘izvor’:1,2,3,4 ‘izvori’:2,3,4,5

We can see that cases of the word “izvor”
give as a result two lexemes: nominative
of singular and nominative of plural, in-
dicating that this dictionary works as ex-
pected.
Let us look at how our dictionary process-
es query condition:
SELECT * FROM to_tsquery(‘bsh’, ‘izvor &
izvoria’);
 to_tsquery

“’izvor’ & ‘izvorima’”
It is as we expected.
Now if we perform the comparison we got:
SELECT to_tsvector(‘bsh’ , ‘izvor izvora
izvoru izvore’) @@ to_tsquery(‘bsh’ , ‘iz-
vor’);
 ?column?

From this, we can see that our confi guration success-
fully handles with language, when is concerned more
derivative of the same word. In this case, it successfully
identifi es the diff erent word cases of the same word.
Further, by detailed analysis, we determined that we
should continue to work on developing affi x confi g-

uration fi le, which is essential for machine recogni-
tion of linguistic features of spoken language.

CONCLUSION

In this paper, using the tools available in the
RDBMS PostgreSQL and ispell system we made a
confi guration: such that each text is indexed in the
alphabet by which was actually written.

If we would like to index all text in one alphabet,
we had to work on the construction of custom pars-
ers that in determining of the token perform trans-
literation. Th e process of transliteration is slow and
tedious. Th e confi guration that we composed in this
paper, has the best use if we make application for
searching that forward two queries. We transliterate
the original query from one alphabet to another and
forward to compare both queries. We merge the ob-
tain result and display to the user. With this, we sat-
isfi ed determined conditions for ensuring the pres-
ervation of the language purity. At the same time,
the application provides an effi cient search despite
the alphabet of the language. Th e text indexes remain
consistent with the original texts and enable an ac-
cess to the index through another application in a
diff erent way.

Authorship statement
Author(s) confi rms that the above named article is an original work, did
not previously published or is currently under consideration for any other
publication.

Confl icts of interest
We declare that we have no confl icts of interest.

LITERATURE
[1] Talic, T. (2014), Digitalno arhiviranje i upravljanje dokumentima, M.Sc. thesis, Banja Luka, Panevropski

univerzitet Apeiron
Internet sorces:
[2] http://cvs.linux.hr/spell/ispell/croatian.aff , last accesed 18.05.2014,

Lackovic, D. (2014), Croatian affi x fi le for International Ispell,
[3] http://www.postgresql.org/docs/9.3/interactive/, last accesed 18.05.2014.,

Th e PostgreSQL Global Development Group, PostgreSQL 9.3.4 Documentation
[4]

Submitted: May 17, 2014.
Accepted: May 21, 2014.

June 2014 Journal of Information Technology and Applications 45

