
SPACE COMPLEXITY ANALYSIS OF THE BINARY TREE ROLL ALGORITHM JITA 7(2017) 1:9-19

SPACE COMPLEXITY ANALYSIS OF THE BINARY TREE
ROLL ALGORITHM

Adrijan Božinovski1, George Tanev1, Biljana Stojčevska1, Veno Pačovski1,
Nevena Ackovska2

1School of Computer Science and Information Technology, University American College Skopje,
Macedonia

2Faculty of Computer Science and Engineering, University “Sv. Kiril i Metodij”, Skopje, Macedonia
1bozinovski@uacs.edu.mk, 1george.tanev@uacs.edu.mk, 1stojcevska@uacs.edu.mk,

1pachovski@uacs.edu.mk, 2nevena.ackovska@fi nki.ukim.mk

Contribution to the state of the art
DOI: 10.7251/JIT1701009B UDC: 004.42:510.5

Abstract: This paper presents the space complexity analysis of the Binary Tree Roll algorithm. The space complexity is analyzed
theoretically and the results are then confi rmed empirically. The theoretical analysis consists of determining the amount of
memory occupied during the execution of the algorithm and deriving functions of it, in terms of the number of nodes of the tree
n, for the worst - and best-case scenarios. The empirical analysis of the space complexity consists of measuring the maximum
and minimum amounts of memory occupied during the execution of the algorithm, for all binary tree topologies with the given
number of nodes. The space complexity is shown, both theoretically and empirically, to be logarithmic in the best case and
linear in the worst case, whereas its average case is shown to be dominantly logarithmic.

Keywords: Binary Tree Roll Algorithm, space complexity, theoretical analysis, empirical analysis.

INTRODUCTION

Trees are fundamental concepts in computer
science, and are frequently used to keep track of
ancestors or descendants, sports tournaments, or-
ganizational charts of large corporations and so on
[19]. Trees are one of the basic data structures used
in combinatorial algorithms [13], search techniques
(e.g., [8, 4]), and game playing [17]. This paper also
points out the use of binary trees for generating in-
teger sequences, which are important in informa-
tion forensics [20], cryptography [9], and security
[12]. Binary trees have been shown to be very useful
in mathematics and computer science and as such
have been extensively studied. Several variations
of the binary tree structure have been conceived,
such as binary search trees, red-black trees [10],

AVL trees [1], B-trees [3], and so on. Binary trees are
often used as auxiliary data structures in other re-
search endeavors, both practical (e.g., [18, 15]) and
theoretical (e.g., [16, 14]), but occasionally are the
subject of the research itself (e.g., [2]).

Binary Tree Roll is an operation by which all of
the nodes of a binary tree are rearranged in such a
way, so that two of the depth-ϐirst traversals of the
newly obtained binary tree yield the same results
as other two traversals of the original binary tree.
The graphical representation of the newly obtained
binary tree is that it appears to be rolled at a 90 de-
gree angle (either counterclockwise or clockwise,
depending on the direction of the applied roll opera-
tion) relative to the original binary tree; hence the
name “Binary Tree Roll”.

June 2017 Journal of Information Technology and Applications 9

JITA 7(2017) 1:9-19 ADRIJAN BOŽINOVSKI, ET AL.:

This operation was introduced and deϐined in [5]. There are two variants of the Binary Tree Roll Op-
eration: a counterclockwise (CCW) and a clockwise (CW) roll. The counterclockwise roll of a binary tree,
abbreviated as CCW(), is deϐined as follows. Given two binary trees T1 and T2, as well as their respective
preorder(), inorder() and postorder() traversal functions, operation CCW() is deϐined as in Deϐinition 1:

(1)

In other words, upon CCW(), the preorder traversal of the original tree is identical to the inorder travers-
al of the tree obtained by the counterclockwise roll, and the inorder traversal of the original tree is identical
to the postorder traversal of the tree obtained by the counterclockwise roll.

Likewise, the clockwise roll of a binary tree, abbreviated as CW(), is deϐined as in Deϐinition 2:

(2)

Similarly, upon CW(), the inorder traversal of the original tree is identical to the preorder traversal of the
tree obtained by the clockwise roll, and the postorder traversal of the original tree is identical to the inorder
traversal of the tree obtained by the clockwise roll.

A graphical explanation was given in [5], showing how the resulting binary tree is obtained visually, so as
to comply with deϐinition (1) or (2), depending on the direction of the roll. The downshift visual operation,
illustrated in Figure 1, was also presented. It was shown that CCW() and CW() are inverses of each other,
and algorithms for CCW() and CW() were given, which did not require obtaining the traversals of the input
tree in order to generate the rolled tree.

Figure 1. Graphical explanation of the CCW() algorithm, and an example of a downshift [5]

Structurally, the algorithm presented in [5] contains a trivial case, two basic cases, and a third, more com-
plex one. The pseudocode for both the CCW() and CW() variations of the algorithm are shown in Figure 2.

The algorithm takes two input parameters, which represent two binary tree nodes: the root of the tree to
be processed, and its predecessor. The predecessor’s initial value is always NULL, since the root of the input
tree never has a predecessor node. However, the value of the predecessor parameter changes as further re-
cursive calls to the algorithm are being invoked from inside the function itself. Moreover, the values of both
the root and the predecessor nodes are guaranteed to change within subsequent recursive function calls,
since the entire structure of the binary tree is rearranged after the roll operation executes fully.

The motivation for this paper was the fact that the binary tree roll algorithm, in either its CCW() or CW()
variant, has so far been analyzed for time complexity [7] but not for space complexity. The latter is the goal
of this paper and it will be done as follows, focusing on the CCW() variant. First, a theoretical analysis of the
space complexity will be given, treating all cases of the algorithm execution. The principle of space com-

10 Journal of Information Technology and Applications www.jita-au.com

SPACE COMPLEXITY ANALYSIS OF THE BINARY TREE ROLL ALGORITHM JITA 7(2017) 1:9-19

plexity analysis will be outlined, resulting in the worst- and best-case scenarios for the algorithm, stated in
the form of presenting them as functions of the number of nodes in the tree n. Afterwards, it will be shown
how those results are tested empirically, addressing the analytical results for the space complexities of the
worst case, best case and average case of the algorithm. The paper will end with a conclusion about the
material presented herein.

1. CCW(&root, &predecessor)
2. {
3. if(root != NULL)
4. {
5. if(root.rSn == NULL)
6. {
7. root.rSn = root.lSn;
8. root.lSn = NULL;
9. CCW(root.rSn, root);
10. }
11. else
12. {
13. if(root.rSn.rSn == NULL)
14. {
15. root.rSn.rSn = root.rSn.lSn;
16. root.rSn.lSn = root;
17. root = root.rSn;
18. root.lSn.rSn = root.lSn.lSn;
19. root.lSn.lSn = NULL;
20. if(predecessor != NULL)
21. predecessor.rSn = root;
22. CCW(root.lSn.rSn, root.lSn);
23. CCW(root.rSn, root);
24. }
25. else
26. {
27. CCW(root.rSn, root);
28. deϔine leftmost = root.rSn;
29. while(leftmost.lSn != NULL)
30. leftmost = leftmost.lSn;
31. leftmost.lSn = root;
32. deϔine newroot = root.rSn;
33. root.rSn = NULL;
34. root = newroot;
35. if(predecessor != NULL)
36. predecessor.rSn = root;
37. CCW(leftmost.lSn, leftmost);
38. }
39. }
40. }
41. }

1. CW(&root, &predecessor)
2. {
3. if(root != NULL)
4. {
5. if(root.lSn == NULL)
6. {
7. root.lSn = root.rSn;
8. root.rSn = NULL;
9. CW(root.lSn, root);
10. }
11. else
12. {
13. if(root.lSn.lSn == NULL)
14. {
15. root.lSn.lSn = root.lSn.rSn;
16. root.lSn.rSn = root;
17. root = root.lSn;
18. root.rSn.lSn = root.rSn.rSn;
19. root.rSn.rSn = NULL;
20. if(predecessor != NULL)
21. predecessor.lSn = root;
22. CW(root.rSn.lSn, root.rSn);
23. CW(root.lSn, root);
24. }
25. else
26. {
27. CW(root.lSn, root);
28. deϔine rightmost = root.lSn;
29. while(rightmost.rSn != NULL)
30. rightmost = rightmost.rSn;
31. rightmost.rSn = root;
32. deϔine newroot = root.lSn;
33. root.lSn = NULL;
34. root = newroot;
35. if(predecessor != NULL)
36. predecessor.lSn = root;
37. CW(rightmost.rSn, rightmost);
38. }
39. }
40. }
41. }

a) b)

Figure 2. The algorithms for a) CCW() and b) CW()[5]

June 2017 Journal of Information Technology and Applications 11

JITA 7(2017) 1:9-19 ADRIJAN BOŽINOVSKI, ET AL.:

Space Complexity – Analytical Approach
The analysis will be done upon the CCW() ver-

sion of the algorithm, i.e. it will concern Figure 2a.
As stated in [1], the CW() algorithm is an inverse of
CCW()― substituting “left” for “right” and vice versa,
as well as CCW() for CW() (for the recursive calls)
will transform the CCW() algorithm into the CW()
algorithm, so the following analysis can thus be used
for the CW() algorithm as well. The number of nodes
of the tree will be denoted by n. The line numbers
will refer to the algorithm in Figure 2.

The space complexity is concerned with the
memory which gets occupied during the execution
of the algorithm. The occupied memory consists
of the memory of the system stack given to every
recursive call and to auxiliary variables which are
needed for certain cases of the algorithm.

Let S(n) denote the space complexity function of
the binary tree roll. The trivial and the non-trivial
cases of the CCW() algorithm will be analyzed for
space complexity, since they all cause that a memo-
ry stack frame be used and placed on the call stack.
In this analysis, the size of the stack frame reserved
by the (recursive) function calls will be denoted by
s (s > 0), whereas the size of the auxiliary variables
introduced by a certain invocation case (more spe-
ciϐically, the third case of the algorithm, speciϐied by
lines 25-38 in Figure 2) will be denoted as a (a > 0).

The space complexity analysis cannot be per-
formed using simple addition of function calls on
the call stack, since, during the execution of the algo-
rithm, some function calls get completed and leave
the call stack, whereas others take their place. There-
fore, it is the depth of active function calls on the call
stack which is the measure of the space complexity
[11], and a way to determine it needs to be devised.
An example of such an approach is by drawing a call
stack tree of the recursive function calls placed on
the stack, which will be used in this paper. In the fol-
lowing analysis, such trees will be displayed for both
the trivial and the non-trivial cases of the algorithm.

As will be shown in the following sections, the
topology of the tree is a determining factor in the
space complexity analysis of the algorithm. Since
any topology of a tree with a given number of nodes
n is equally likely to be passed to the roll algorithm,
it is unfeasible to derive an equation S(n) as a func-
tion solely of the number of nodes n. However, it is

possible to derive the worst- and best-case scenar-
ios for the space complexity which are dependent
on n and such approach will be shown for the space
complexity analysis. To do so, the concept of a ter-
minal situation will be introduced, which is a situa-
tion in which a case of the algorithm is invoked after
which there are no more recursive calls, except to
the trivial case only. This approach will be used to
determine the space efϐiciency of the binary tree roll
algorithm and thus express the space complexity as
a function of the number of nodes in the binary tree.

The trivial case - line 3
The trivial case gets invoked every time an empty

tree is given to the CCW() algorithm for processing,
i.e., when the test in line 3 of Figure 1 yields false.
This case simply generates a function call in the call
stack, which momentarily occupies space s and then
leaves the stack. It can be displayed as in Figure 3.

Since the CCW(0) case equals to a constant space
complexity, its conversion to the constant s will not
be displayed in subsequent ϐigures and will be as-
sumed to happen instantaneously. Therefore, the
trivial case will be assumed to be a part of the termi-
nal situations of the other, non-trivial, cases.

Figure 3. A call stack tree for the trivial case

First case - lines 5-10
This case is invoked when the root has no right

sub-tree (line 5 in Figure 2). The root’s left sub-tree
will be placed as its right sub-tree and a recursive
call will be made upon the new right sub-tree. Fig-
ure 4 presents this case visually.

Figure 4. The fi rst basic case in the CCW() algorithm [1]

In the ϐirst case, there are no auxiliary variables;
just a function call to the sub-tree which is rolled
from left to right (as shown in Figure 4). The sub-
tree has one node less than the initial tree, so this
can be represented as in Figure 5.

12 Journal of Information Technology and Applications www.jita-au.com

SPACE COMPLEXITY ANALYSIS OF THE BINARY TREE ROLL ALGORITHM JITA 7(2017) 1:9-19

Figure 5. A call stack tree for the fi rst case

Note that the function call was denoted as
CCW(n1). This is to stress that it is not only the
amount of nodes in the tree that makes the differ-
ence, but also its topology. In other words, the ϐirst
case will be invoked upon a tree with n nodes (which
may also be a sub-tree of the original tree) only if its
topology is such that the root of that tree does not
have a right sub-tree. If the topology is such that the
root has a right sub-tree having no right sub-tree of
its own, the second case will be invoked, whereas if
the root has a right sub-tree having a right sub-tree
of its own, the third case will be invoked.

A terminal situation in the ϐirst case happens
when CCW() is invoked on a (sub-)tree with just a
single node (i.e., a leaf of the tree). This situation
shows when the ϐirst case will no longer be invoked
and it can be represented as in Figure 6.

Figure 6. A call stack tree for the terminal situation of the fi rst case (a tree

with just one node)

Second case - lines 11-24
This case is activated when the root of the tree

has a right sub-tree, which in turn does not have a
right sub-tree of its own (line 13 in Figure 2). It is
shown visually in Figure 7.

Figure 7. The second basic case in the CCW() algorithm [1]

This case of the algorithm also does not intro-
duce auxiliary variables, whereas it produces two
recursive function calls on sub-trees which have a
total of nodes. In other words, two of the nodes get
handled by the second case, whereas the remainder
of the nodes is processed by the subsequent recur-

sive calls. This can be represented as in Figure 8:

Figure 8. A call stack tree for the second case

where t1 + t2 = n – 2.
A terminal situation in the second case happens

when CCW() is invoked on a (sub-)tree containing
two nodes, arranged as a topology of a root and
its right child node. In such a situation, both of the
nodes are handled by the second case and the two
recursive calls are made on empty trees. This can be
shown as in Figure 9.

Figure 9. A call stack tree for the terminal situation of the second case (a

tree containing just a root and its right child node)

Third case - lines 25-38
This case gets invoked when there is a stem of

two or more right child nodes to the root (i.e., when
the root has a right sub-tree, which has a right sub-
tree of its own and so on; line 25 in Figure 2). As
stated in [1], this case deals with the downshift of
stems of right child nodes and transforming them
into stems of left child nodes, according to the prin-
ciple of CCW binary tree roll. The algorithm ϐirst cre-
ates a recursive call upon the right child node of the
root and it continues to do so until a basic case is
reached (i.e., until a sub-tree with at most one right
child node is reached, following the stem of right
child nodes from the root towards its rightmost
child node). When such case is handled by the algo-
rithm, the remainder of the third case relocates the
former root of the tree to be the leftmost child node
in the newly rolled tree, and the procedure is then
recursively invoked again on the former root (and
its entire left sub-tree), now placed as the leftmost
node in the sub-tree handled by the third case. Fig-
ures 10 and 11 show the third case visually.

June 2017 Journal of Information Technology and Applications 13

JITA 7(2017) 1:9-19 ADRIJAN BOŽINOVSKI, ET AL.:

Figure 10. The third and most complex case in the CCW() algorithm [1]

Figure 11. The third case of the CCW() algorithm: a) the head recursion

(ellipse) of the third case deals with the stem of right child nodes () and

transforms it into a stem of left child nodes via downshift; b) the root () is

linked as the leftmost in the stem of left child nodes and the tail recursion

(ellipse) of the third case is invoked upon it; c) since the former root does not

have a right child node of its own, the tail recursion will invoke the fi rst case,

and the left sub-tree of the former root () will become its right sub-tree

Concerning the space complexity, the third case
of the algorithm includes a head recursion on the
nodes not containing the root and its left sub-tree,
two auxiliary variables and a tail recursion on the
root and its left sub-tree. This can be displayed as
in Figure 12, from where it can be seen that the
third case does not perform the actual roll, but only
the downshift of the tree (since the amount of pro-
cessed nodes does not decrease in the subsequent
recursive calls).

Figure 12. A call stack tree for the third case; is the number of nodes in

the left sub-tree of the root

A terminal situation for the third case is when
CCW() is invoked on a (sub-)tree with three nodes
which form a stem of right child nodes. In such a
situation, the head recursion is invoked upon the
bottom two nodes, which are handled by the second
case, and the tail recursion is invoked upon the root,
which is handled by the ϐirst case. This is graphically
represented in Figure 13.

Figure 13. A terminal situation for the third case. The head recursion is

invoked on the bottom two nodes of the stem (left-hand side) which get

CCW rolled and induce two recursive calls on empty sub-trees (small circles

to the lower right of each node). The tail recursion gets invoked on the root

of the stem, after the downshift process (right-hand side), which fi nishes

with a recursive call on an empty sub-tree (small circle)

The call stack tree of the terminal situation can
therefore be shown as in Figure 14.

Figure 14. A call stack tree for the terminal situation of the third case

The space complexity analysis: the space efϔiciency
parameter

As initially assumed in the space complexity anal-
ysis, every recursive call (CCW (nI), (CCW (nII), (CCW
(nIII), (CCW (n – 1) etc.) occupies the same amount of
memory space. The maximum depth of the call stack
tree for a given roll operation therefore shows the
maximum amount of memory space occupied by the
recursive calls during the algorithm execution, i.e.,
represents the upper bound of the space complexity
of the algorithm for a given tree with nodes. This
can be used to determine the extreme scenarios, i.e.,
the worst- and best-case scenarios, for the space
complexity of the CCW() algorithm.

To better quantify this, it is useful to introduce the
space efϔiciency of the algorithm, as in Equation 3:

14 Journal of Information Technology and Applications www.jita-au.com

SPACE COMPLEXITY ANALYSIS OF THE BINARY TREE ROLL ALGORITHM JITA 7(2017) 1:9-19

Figure 15. Trees with which, when rolled with the CCW() algorithm, will exhibit a) worst-case time complexity; and b) best-case time

complexity

June 2017 Journal of Information Technology and Applications 15

JITA 7(2017) 1:9-19 ADRIJAN BOŽINOVSKI, ET AL.:

Figure 16. Tree with which, when rolled with the CCW() algorithm, will exhibit the best-case time complexity. It is obtained by linking every node, which

does not have a left sub-node, from the previous such tree (shown in Figure 15b), with a sub-tree consisting of a root and its right sub-node. Such sub-

trees are indicated by ellipses around them

not

Space Complexity – Empirical Approach
In order to be certain about how much space is

needed to perform CCW roll on a tree with nodes,
an exhaustive analysis needs to be performed. This
includes obtaining all topologies of binary trees with
nodes and performing CCW roll on them, while ob-
taining the stack depth for each tree while it is being
CCW rolled. For this, it is necessary to ϐirst generate
all topologies of binary trees for a given and then ex-
ecute CCW roll on all of them, while measuring the
stack depths during the executions of the CCW roll.
The smallest value of the stack depth while CCW roll-
ing a tree with nodes will represent the best case for
that , whereas the largest value of such a stack depth

will represent the worst case for that . As following
from the theoretical analysis, the best cases for in-
creasing values of are expected to grow logarithmi-
cally, and the worst cases are expected to grow lin-
early. It is also appealing to know whether the space
complexity of the algorithm would be more domi-
nantly logarithmic or linear, which is why an average
time complexity would also need to be extracted, as
an average of the space complexities for all topologies
of binary trees for a given number of nodes.

In order to obtain all topologies of binary trees
with a given number of nodes, the Catalan Cipher
Vector approach is used in this paper. A Catalan Ci-
pher Vector [6] is a vector which uniquely determines

16 Journal of Information Technology and Applications www.jita-au.com

SPACE COMPLEXITY ANALYSIS OF THE BINARY TREE ROLL ALGORITHM JITA 7(2017) 1:9-19

a binary tree’s topology. For a tree with nodes, there
will be (n-th Catalan number) topologies of binary
trees and thus Catalan Cipher Vectors. Table 1 shows
all the ranks, their corresponding Catalan Cipher Vec-
tors, and the appropriate binary trees, for n = 4 nodes.

Table 1. Ranks and enumerations of the binary trees with nodes using the

Catalan Cipher Vector approach

Rank Catalan Cipher Vector Binary Tree

0 [0 1 2 3]

1 [0 1 2 4]

2 [0 1 2 5]

3 [0 1 2 6]

4 [0 1 3 4]

5 [0 1 3 5]

6 [0 1 3 6]

7 [0 1 4 5]

8 [0 1 4 6]

9 [0 2 3 4]

10 [0 2 3 5]

11 [0 2 3 6]

12 [0 2 4 5]

13 [0 2 4 6]

Since the initial Catalan Cipher Vector for a tree
with nodes is always [6], it is possible to generate
the corresponding binary tree for it, and determine
the stack depth occupied during the execution of
CCW() on it. Then, the subsequent Catalan Cipher
Vector can be obtained, the corresponding binary
tree can be generated from it, have CCW() executed
on it and determine the stack depth needed and so
on, until all binary tree topologies get processed
this way. The obtained minimum depth represents
the best case, the maximum depth represents the
worst case, whereas the average case is calculated
as the sum of all depths divided by the number of
possible trees with nodes.

The results for such an analysis have been per-
formed and the results are given in Table 2.

Table 2. Stack depths necessary to perform CCW() on all topologies of

binary trees with given numbers of nodes

n C(n) Min Max Avg Total

2 2 2 3 3 5

3 5 3 4 3 16

4 14 3 5 4 54

5 42 3 6 4 187

6 132 3 7 5 664

7 429 4 8 6 2.393

8 1.430 4 9 6 8.719

9 4.862 4 10 7 32.073

10 16.796 4 11 7 118.848

11 58.786 4 12 8 443.081

12 208.012 4 13 8 1.660.503

13 742.900 4 14 8 6.250.670

14 2.674.440 4 15 9 23.620.379

15 9.694.845 5 16 9 89.560.477

16 35.357.670 5 17 10 340.599.877

17 129.644.790 5 18 10 1.298.763.168

18 477.638.700 5 19 10 4.964.255.082

The results are interpreted as follows. In the ϐirst
data row, for a tree with = 2 nodes (ϐirst column),
there are = 2 (second column) total topologies of
binary trees. Executing CCW() on all of them yields
a (sixth, i.e. last column) of 5 levels of stack depth,
leading to an (average – ϐifth column) of 3 levels of

June 2017 Journal of Information Technology and Applications 17

JITA 7(2017) 1:9-19 ADRIJAN BOŽINOVSKI, ET AL.:

stack depth per binary tree topology. Of all topolo-
gies, the (minimum – third column) levels of stack
depth necessary to complete CCW() on a binary tree
topology with 2 nodes is 2, and the (maximum –
fourth column) number of such levels is 3. This in-
terpretation follows all rows of the table, up to and
including binary tree topologies for = 18 nodes.

Plotting the results obtained from Table 3 results
in a chart like in Figure 17.

 Figure 17. A plot of the results given in Table 3

Interpolating the equations for the worst and
best cases yields the equations and respectively,
conϐirming the conclusions obtained in the analysis
of the space complexity that the worst-case space
complexity of the CCW() algorithm is linear, and its
best-case space complexity is logarithmic. Interpo-
lating for the average case results in the equation ,
meaning that the average space complexity of the
CCW() roll algorithm is dominantly logarithmic.
Therefore, it can be stated that, on average, the space
complexity of the CCW() algorithm is logarithmic.

CONCLUSION

This paper presented an analysis of the space
complexity of the binary tree roll algorithm, speciϐi-
cally its counterclockwise (CCW()) variant, with the
note that the analysis for its clockwise (CW()) vari-
ant is analogous. For it, the theoretical analysis was
derived in such way as to show the amount of mem-
ory occupied during the execution of the algorithm,
shown primarily through the number of frames oc-
cupied in the call stack by the recursive function
calls. The analysis of the space efϐiciency of each of
the three cases of the algorithm, as well as the trivial
case, showed that trees which are processed solely
by the ϐirst case of the algorithm (invoked upon a
node which has no right sub-tree) yield the worst
space complexity, whereas trees which are pro-
cessed solely by the second case of the algorithm
(invoked upon a node which has a right sub-tree,
which in turn has no right sub-tree of its own) yield
the best space complexity. The equations were de-
rived to be linear for the worst case and logarithmic
for the best case. An exhaustive empirical analysis
was performed, counting the minimum and maxi-
mum stack depths for all trees with given numbers
of nodes . The equations in the theoretical analysis
were conϐirmed by the empirical results, that the
CCW() algorithm has linear space complexity for
the worst case and logarithmic space complexity for
the best case. Moreover, the average case analysis
showed that the CCW() algorithm has a dominantly
logarithmic space complexity, so it can be stated that
its average space complexity is logarithmic.

REFERENCES

[1] Adel’son-Vel’skii G. M. and Landis E. M. (1962) “An algorithm for the оrganization of information,” Soviet Math. Dokla-
dy, 3: 1259-1263

[2] Amani M., Lai K. A. and Tarjan R. E. (2016) “Amortized rotation cost in AVL trees,” Information Processing Letters,
98(5): 327-330

[3] Bayer R. and McCreight E. (1972) “Organization and Maintenance or Large Oriented Indexes,” Acta Informatica, 3(3):
173-189

[4] Bozinovski A. and Bozinovski S. (2004) N-queens Pattern Generation: An Insight Into Space Complexity of a Backtrack-
ing Algorithm, Proceedings of the Third International Symposium on Information and Communication Technologies,
Las Vegas, NV, USA (pp. 281-286). ACM

[5] Božinovski, A. and Ackovska, N. (2012) The Binary Tree Roll Operation: Defi nition, Explanation and Algorithm, Inter-
national Journal of Computer Applications, 46(8):40-47

[6] Božinovski, A., Stojčevska, B. and Pačovski, V. (2013) Enumeration, Ranking and Generation of Binary Trees Based on
Level-Order Traversal Using Catalan Cipher Vectors, Journal of Information Technology and Applications, 3(2):78-86

[7] Božinovski, A., Tanev, G., Stojčevska, B., Pačovski, V. and Ackovska, N. (2016) Time Complexity Analysis of the Binary
Tree Roll Algorithm, International Journal of Computer Applications, 6(2):53-62

18 Journal of Information Technology and Applications www.jita-au.com

SPACE COMPLEXITY ANALYSIS OF THE BINARY TREE ROLL ALGORITHM JITA 7(2017) 1:9-19

[8] Brassard G. and Bratley P. (2002) Fundamentals of Algorithmics. Prentice Hall of India
[9] Buchmann J., Dahmen E., Klintsevich E., Okeya K. and Vuillaume C. (2007) “Merkle signatures with virtually unlimited

signature capacity,” In Proc. 5th Int. Conf. Applied Cryptography and Network Security, Zhuhai, China (pp. 31-45).
LCNS Springer

[10] Cormen T. H., Leiserson C. E., Rivest R. L. and Stein C. (2009) Introduction to Algorithms, 3rd ed., The MIT Press
[11] Goodrich, M. T. and Tamassia, R. (2008) Data Structures and Algorithms in Java, Third Edition, Wiley India Pvt.
[12] Katz J. (2003) “Binary Tree Encryption: Constructions and Applications,” In Information Security and Cryptology

(ICISC 2003), 2971: 1-11, LCNS Springer
[13] Kreher D. L. and Stinson D. R. (1998) Combinatorial Algorithms: Generation, Enumeration, and Search. Discrete

Mathematics and its Applications (Book 7), CRC Press, 1st Edition
[14] Lee Y. and Lee J. (2015) “Binary tree optimization using genetic algorithm for multiclass support vector machine,” Ex-

pert Systems with Applications, 42(8): 3843-3851
[15] Li Y., Xu M., Zhao H. and Huang W. (2016) “Hierarchical fuzzy entropy and improved support vector machine based

binary tree approach for rolling bearing fault diagnosis,” Mechanism and Machine Theory, 98: 114-132
[16] Liu B., Shen Y., Chen X., Chen Y. and Wang X. (2014) “A partial binary tree DEA-DA cyclic classifi cation model for de-

cision makers in complex multi-attribute large-group interval-valued intuitionistic fuzzy decision-making problems,”
Information Fusion, 18: 119-130

[17] Rich E. (1983) Artifi cial Intelligence. McGraw-Hill series in artifi cial intellilgence, McGraw-Hill Inc.
[18] Roch S. and Steel M. (2014) “Likelihood-based tree reconstruction on a concatenation of alignments can be statistically

inconsistent, “ Theoretical Population Biology, 100: 56-62
[19] Sedgewick R. (1998) Algorithms in C++, Parts 1-4: Fundamentals, Data Structures, Sorting, Searching, 3rd ed, Addi-

son-Wesley
[20] Suh I. and Headrick T. C. (2010) “A comparative analysis of the bootstrap versus traditional statistical procedures ap-

plied to digital analysis based on Benford’s Law,” Journal of Forensic and Investigative Accounting, 2(2): 144-175.

Submitted: December 1, 2016.
Accepted: December 5, 2016.

ABOUT THE AUTHORS

Adrijan Božinovski works as an Associate Professor at the School of Computer Science and Information Technology at Uni-
versity American College Skopje, where he is currently the Dean. He obtained his BSc from University “St. Cyril and Metho-
dius” in Skopje, Macedonia, and his MSc and PhD from University of Zagreb, Croatia.
Biljana Stojčevska works as an Associate Professor at the UACS School of Computer Science and Information Technology.
She received her BSc, MSc and PhD degrees in Computer Science at the Institute of Informatics, Faculty of Natural Sciences
and Mathematics, at “Sts. Cyril and Methodius University” in Skopje, Macedonia.
Veno Pachovski (1965) graduated, completed MSc and got his PhD from Faculty of Natural Sciences and Mathematics, Uni-
versity “Sts. Cyril And Methodius”, Skopje, Macedonia. Since 2009, he teaches a variety of courses at the University American
College – Skopje, mainly within the School of Computer Sciences and Information technology (SCSIT).
George Tanev is an MSc graduate student of the School of Computer Science and Information Technology at University
American College Skopje, Macedonia, where he acquired his BSc in Computer Science. Also works as a software developer in
Skopje, Macedonia.
Nevena Ackovska is Associate Professor at the Faculty of Computer Science and Engineering at “St. Cyril and Methodius”
University in Skopje, Macedonia. She holds B.Sc. in Computer Engineering, Informatics and Automation from Electrical Engi-
neering Faculty (2000), M.Sc. in Bioinformatics (2003) and a Ph.D. in Bioinformatics (2008) from Faculty of Natural Sciences
and Mathematics at “St. Cyril and Methodius University” in Skopje, Macedonia.

June 2017 Journal of Information Technology and Applications 19

