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Abstract: This paper presents the space complexity analysis of the Binary Tree Roll algorithm. The space complexity is analyzed 
theoretically and the results are then confi rmed empirically. The theoretical analysis consists of determining the amount of 
memory occupied during the execution of the algorithm and deriving functions of it, in terms of the number of nodes of the tree 
n, for the worst - and best-case scenarios. The empirical analysis of the space complexity consists of measuring the maximum 
and minimum amounts of memory occupied during the execution of the algorithm, for all binary tree topologies with the given 
number of nodes. The space complexity is shown, both theoretically and empirically, to be logarithmic in the best case and 
linear in the worst case, whereas its average case is shown to be dominantly logarithmic.
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INTRODUCTION

Trees are fundamental concepts in computer 
science, and are frequently used to keep track of 
ancestors or descendants, sports tournaments, or-
ganizational charts of large corporations and so on 
[19]. Trees are one of the basic data structures used 
in combinatorial algorithms [13], search techniques 
(e.g., [8, 4]), and game playing [17]. This paper also 
points out the use of binary trees for generating in-
teger sequences, which are important in informa-
tion forensics [20], cryptography [9], and security 
[12]. Binary trees have been shown to be very useful 
in mathematics and computer science and as such 
have been extensively studied. Several variations 
of the binary tree structure have been conceived, 
such as binary search trees, red-black trees [10], 

AVL trees [1], B-trees [3], and so on. Binary trees are 
often used as auxiliary data structures in other re-
search endeavors, both practical (e.g., [18, 15]) and 
theoretical (e.g., [16, 14]), but occasionally are the 
subject of the research itself (e.g., [2]). 

Binary Tree Roll is an operation by which all of 
the nodes of a binary tree are rearranged in such a 
way, so that two of the depth-ϐirst traversals of the 
newly obtained binary tree yield the same results 
as other two traversals of the original binary tree. 
The graphical representation of the newly obtained 
binary tree is that it appears to be rolled at a 90 de-
gree angle (either counterclockwise or clockwise, 
depending on the direction of the applied roll opera-
tion) relative to the original binary tree; hence the 
name “Binary Tree Roll”.
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This operation was introduced and deϐined in [5]. There are two variants of the Binary Tree Roll Op-
eration: a counterclockwise (CCW) and a clockwise (CW) roll. The counterclockwise roll of a binary tree, 
abbreviated as CCW(), is deϐined as follows. Given two binary trees T1 and T2, as well as their respective 
preorder(), inorder() and postorder() traversal functions, operation CCW() is deϐined as in Deϐinition 1:

(1)

In other words, upon CCW(), the preorder traversal of the original tree is identical to the inorder travers-
al of the tree obtained by the counterclockwise roll, and the inorder traversal of the original tree is identical 
to the postorder traversal of the tree obtained by the counterclockwise roll. 

Likewise, the clockwise roll of a binary tree, abbreviated as CW(), is deϐined as in Deϐinition 2:

(2)

Similarly, upon CW(), the inorder traversal of the original tree is identical to the preorder traversal of the 
tree obtained by the clockwise roll, and the postorder traversal of the original tree is identical to the inorder 
traversal of the tree obtained by the clockwise roll.

A graphical explanation was given in [5], showing how the resulting binary tree is obtained visually, so as 
to comply with deϐinition (1) or (2), depending on the direction of the roll. The downshift visual operation, 
illustrated in Figure 1, was also presented. It was shown that CCW() and CW() are inverses of each other, 
and algorithms for CCW() and CW() were given, which did not require obtaining the traversals of the input 
tree in order to generate the rolled tree.

Figure 1. Graphical explanation of the CCW() algorithm, and an example of a downshift [5]

Structurally, the algorithm presented in [5] contains a trivial case, two basic cases, and a third, more com-
plex one. The pseudocode for both the CCW() and CW() variations of the algorithm are shown in Figure 2.

The algorithm takes two input parameters, which represent two binary tree nodes: the root of the tree to 
be processed, and its predecessor. The predecessor’s initial value is always NULL, since the root of the input 
tree never has a predecessor node. However, the value of the predecessor parameter changes as further re-
cursive calls to the algorithm are being invoked from inside the function itself. Moreover, the values of both 
the root and the predecessor nodes are guaranteed to change within subsequent recursive function calls, 
since the entire structure of the binary tree is rearranged after the roll operation executes fully.

The motivation for this paper was the fact that the binary tree roll algorithm, in either its CCW() or CW() 
variant, has so far been analyzed for time complexity [7] but not for space complexity. The latter is the goal 
of this paper and it will be done as follows, focusing on the CCW() variant. First, a theoretical analysis of the 
space complexity will be given, treating all cases of the algorithm execution. The principle of space com-
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plexity analysis will be outlined, resulting in the worst- and best-case scenarios for the algorithm, stated in 
the form of presenting them as functions of the number of nodes in the tree n. Afterwards, it will be shown 
how those results are tested empirically, addressing the analytical results for the space complexities of the 
worst case, best case and average case of the algorithm. The paper will end with a conclusion about the 
material presented herein.

1. CCW(&root, &predecessor)
2. {
3.   if(root != NULL)
4.   {
5.     if(root.rSn == NULL)
6.     {
7.       root.rSn = root.lSn;
8.       root.lSn = NULL;
9.       CCW(root.rSn, root);
10.     }
11.     else
12.     {
13.     if(root.rSn.rSn == NULL)
14.     {
15.       root.rSn.rSn = root.rSn.lSn;
16.       root.rSn.lSn = root;
17.       root = root.rSn;
18.       root.lSn.rSn = root.lSn.lSn;
19.       root.lSn.lSn = NULL;
20.       if(predecessor != NULL)
21.                predecessor.rSn = root;
22.       CCW(root.lSn.rSn, root.lSn);
23.       CCW(root.rSn, root);
24.     }
25.     else
26.     {
27.       CCW(root.rSn, root);
28.       deϔine leftmost = root.rSn;
29.       while(leftmost.lSn != NULL)
30.                leftmost = leftmost.lSn;
31.       leftmost.lSn = root;
32.       deϔine newroot = root.rSn;
33.       root.rSn = NULL;
34.       root = newroot;
35.       if(predecessor != NULL)
36.               predecessor.rSn = root;
37.       CCW(leftmost.lSn, leftmost);
38.     }
39.    }
40.   }
41. }

1. CW(&root, &predecessor)
2. {
3.   if(root != NULL)
4.   {
5.     if(root.lSn == NULL)
6.     {
7.       root.lSn = root.rSn;
8.       root.rSn = NULL;
9.       CW(root.lSn, root);
10.     }
11.     else
12.     {
13.      if(root.lSn.lSn == NULL)
14.     {
15.       root.lSn.lSn = root.lSn.rSn;
16.       root.lSn.rSn = root;
17.       root = root.lSn;
18.       root.rSn.lSn = root.rSn.rSn;
19.       root.rSn.rSn = NULL;
20.       if(predecessor != NULL)
21.                predecessor.lSn = root;
22.       CW(root.rSn.lSn, root.rSn);
23.       CW(root.lSn, root);
24.     }
25.     else
26.     {
27.       CW(root.lSn, root);
28.       deϔine rightmost = root.lSn;
29.       while(rightmost.rSn != NULL)
30.                rightmost = rightmost.rSn;
31.       rightmost.rSn = root;
32.       deϔine newroot = root.lSn;
33.       root.lSn = NULL;
34.       root = newroot;
35.       if(predecessor != NULL)
36.                predecessor.lSn = root;
37.       CW(rightmost.rSn, rightmost);
38.     }
39.    }
40.   }
41. }

a) b)

Figure 2. The algorithms for a) CCW() and b) CW()[5]
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Space Complexity – Analytical Approach
The analysis will be done upon the CCW() ver-

sion of the algorithm, i.e. it will concern Figure 2a. 
As stated in [1], the CW() algorithm is an inverse of 
CCW()― substituting “left” for “right” and vice versa, 
as well as CCW() for CW() (for the recursive calls) 
will transform the CCW() algorithm into the CW() 
algorithm, so the following analysis can thus be used 
for the CW() algorithm as well. The number of nodes 
of the tree will be denoted by n. The line numbers 
will refer to the algorithm in Figure 2. 

The space complexity is concerned with the 
memory which gets occupied during the execution 
of the algorithm. The occupied memory consists 
of the memory of the system stack given to every 
recursive call and to auxiliary variables which are 
needed for certain cases of the algorithm. 

Let S(n) denote the space complexity function of 
the binary tree roll. The trivial and the non-trivial 
cases of the CCW() algorithm will be analyzed for 
space complexity, since they all cause that a memo-
ry stack frame be used and placed on the call stack. 
In this analysis, the size of the stack frame reserved 
by the (recursive) function calls will be denoted by 
s (s > 0), whereas the size of the auxiliary variables 
introduced by a certain invocation case (more spe-
ciϐically, the third case of the algorithm, speciϐied by 
lines 25-38 in Figure 2) will be denoted as a (a > 0). 

The space complexity analysis cannot be per-
formed using simple addition of function calls on 
the call stack, since, during the execution of the algo-
rithm, some function calls get completed and leave 
the call stack, whereas others take their place. There-
fore, it is the depth of active function calls on the call 
stack which is the measure of the space complexity 
[11], and a way to determine it needs to be devised. 
An example of such an approach is by drawing a call 
stack tree of the recursive function calls placed on 
the stack, which will be used in this paper. In the fol-
lowing analysis, such trees will be displayed for both 
the trivial and the non-trivial cases of the algorithm. 

As will be shown in the following sections, the 
topology of the tree is a determining factor in the 
space complexity analysis of the algorithm. Since 
any topology of a tree with a given number of nodes 
n is equally likely to be passed to the roll algorithm, 
it is unfeasible to derive an equation S(n) as a func-
tion solely of the number of nodes n. However, it is 

possible to derive the worst- and best-case scenar-
ios for the space complexity which are dependent 
on n and such approach will be shown for the space 
complexity analysis. To do so, the concept of a ter-
minal situation will be introduced, which is a situa-
tion in which a case of the algorithm is invoked after 
which there are no more recursive calls, except to 
the trivial case only. This approach will be used to 
determine the space efϐiciency of the binary tree roll 
algorithm and thus express the space complexity as 
a function of the number of nodes in the binary tree.

The trivial case - line 3
The trivial case gets invoked every time an empty 

tree is given to the CCW() algorithm for processing, 
i.e., when the test in line 3 of Figure 1 yields false. 
This case simply generates a function call in the call 
stack, which momentarily occupies space s  and then 
leaves the stack. It can be displayed as in Figure 3.

Since the CCW(0) case equals to a constant space 
complexity, its conversion to the constant s  will not 
be displayed in subsequent ϐigures and will be as-
sumed to happen instantaneously. Therefore, the 
trivial case will be assumed to be a part of the termi-
nal situations of the other, non-trivial, cases.

Figure 3. A call stack tree for the trivial case

First case - lines 5-10
This case is invoked when the root has no right 

sub-tree (line 5 in Figure 2). The root’s left sub-tree 
will be placed as its right sub-tree and a recursive 
call will be made upon the new right sub-tree. Fig-
ure 4 presents this case visually.

Figure 4. The fi rst basic case in the CCW() algorithm [1]

In the ϐirst case, there are no auxiliary variables; 
just a function call to the sub-tree which is rolled 
from left to right (as shown in Figure 4). The sub-
tree has one node less than the initial tree, so this 
can be represented as in Figure 5.
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Figure 5. A call stack tree for the fi rst case

Note that the function call was denoted as 
CCW(n1). This is to stress that it is not only the 
amount of nodes in the tree that makes the differ-
ence, but also its topology. In other words, the ϐirst 
case will be invoked upon a tree with n  nodes (which 
may also be a sub-tree of the original tree) only if its 
topology is such that the root of that tree does not 
have a right sub-tree. If the topology is such that the 
root has a right sub-tree having no right sub-tree of 
its own, the second case will be invoked, whereas if 
the root has a right sub-tree having a right sub-tree 
of its own, the third case will be invoked. 

A terminal situation in the ϐirst case happens 
when CCW() is invoked on a (sub-)tree with just a 
single node (i.e., a leaf of the tree). This situation 
shows when the ϐirst case will no longer be invoked 
and it can be represented as in Figure 6.

Figure 6. A call stack tree for the terminal situation of the fi rst case (a tree 

with just one node)

Second case  - lines 11-24
This case is activated when the root of the tree 

has a right sub-tree, which in turn does not have a 
right sub-tree of its own (line 13 in Figure 2). It is 
shown visually in Figure 7.

Figure 7. The second basic case in the CCW() algorithm [1]

This case of the algorithm also does not intro-
duce auxiliary variables, whereas it produces two 
recursive function calls on sub-trees which have a 
total of  nodes. In other words, two of the nodes get 
handled by the second case, whereas the remainder 
of the nodes is processed by the subsequent recur-

sive calls. This can be represented as in Figure 8:

Figure 8. A call stack tree for the second case

where t1 + t2 = n – 2.
A terminal situation in the second case happens 

when CCW() is invoked on a (sub-)tree containing 
two nodes, arranged as a topology of a root and 
its right child node. In such a situation, both of the 
nodes are handled by the second case and the two 
recursive calls are made on empty trees. This can be 
shown as in Figure 9.

Figure 9. A call stack tree for the terminal situation of the second case (a 

tree containing just a root and its right child node)

Third case - lines 25-38
This case gets invoked when there is a stem of 

two or more right child nodes to the root (i.e., when 
the root has a right sub-tree, which has a right sub-
tree of its own and so on; line 25 in Figure 2). As 
stated in [1], this case deals with the downshift of 
stems of right child nodes and transforming them 
into stems of left child nodes, according to the prin-
ciple of CCW binary tree roll. The algorithm ϐirst cre-
ates a recursive call upon the right child node of the 
root and it continues to do so until a basic case is 
reached (i.e., until a sub-tree with at most one right 
child node is reached, following the stem of right 
child nodes from the root towards its rightmost 
child node). When such case is handled by the algo-
rithm, the remainder of the third case relocates the 
former root of the tree to be the leftmost child node 
in the newly rolled tree, and the procedure is then 
recursively invoked again on the former root (and 
its entire left sub-tree), now placed as the leftmost 
node in the sub-tree handled by the third case. Fig-
ures 10 and 11 show the third case visually.

June 2017        Journal of Information Technology and Applications        13



JITA 7(2017) 1:9-19 ADRIJAN BOŽINOVSKI, ET AL.:  

Figure 10. The third and most complex case in the CCW() algorithm [1]

Figure 11. The third case of the CCW() algorithm: a) the head recursion 

(ellipse) of the third case deals with the stem of right child nodes () and 

transforms it into a stem of left child nodes via downshift; b) the root () is 

linked as the leftmost in the stem of left child nodes and the tail recursion 

(ellipse) of the third case is invoked upon it; c) since the former root does not 

have a right child node of its own, the tail recursion will invoke the fi rst case, 

and the left sub-tree of the former root () will become its right sub-tree

Concerning the space complexity, the third case 
of the algorithm includes a head recursion on the 
nodes not containing the root and its left sub-tree, 
two auxiliary variables and a tail recursion on the 
root and its left sub-tree. This can be displayed as 
in Figure 12, from where it can be seen that the 
third case does not perform the actual roll, but only 
the downshift of the tree (since the amount of pro-
cessed nodes does not decrease in the subsequent 
recursive calls).

Figure 12. A call stack tree for the third case;  is the number of nodes in 

the left sub-tree of the root

A terminal situation for the third case is when 
CCW() is invoked on a (sub-)tree with three nodes 
which form a stem of right child nodes. In such a 
situation, the head recursion is invoked upon the 
bottom two nodes, which are handled by the second 
case, and the tail recursion is invoked upon the root, 
which is handled by the ϐirst case. This is graphically 
represented in Figure 13.

Figure 13. A terminal situation for the third case. The head recursion is 

invoked on the bottom two nodes of the stem (left-hand side) which get 

CCW rolled and induce two recursive calls on empty sub-trees (small circles 

to the lower right of each node). The tail recursion gets invoked on the root 

of the stem, after the downshift process (right-hand side), which fi nishes 

with a recursive call on an empty sub-tree (small circle)

The call stack tree of the terminal situation can 
therefore be shown as in Figure 14.

Figure 14. A call stack tree for the terminal situation of the third case

The space complexity analysis: the space efϔiciency 
parameter

As initially assumed in the space complexity anal-
ysis, every recursive call (CCW (nI), (CCW (nII), (CCW 
(nIII), (CCW (n – 1) etc.) occupies the same amount of 
memory space. The maximum depth of the call stack 
tree for a given roll operation therefore shows the 
maximum amount of memory space occupied by the 
recursive calls during the algorithm execution, i.e., 
represents the upper bound of the space complexity 
of the algorithm for a given tree with  nodes. This 
can be used to determine the extreme scenarios, i.e., 
the worst- and best-case scenarios, for the space 
complexity of the CCW() algorithm.

To better quantify this, it is useful to introduce the 
space efϔiciency  of the algorithm, as in Equation 3:
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Figure 15. Trees with  which, when rolled with the CCW() algorithm, will exhibit a) worst-case time complexity; and b) best-case time 

complexity
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Figure 16. Tree with  which, when rolled with the CCW() algorithm, will exhibit the best-case time complexity. It is obtained by linking every node, which 

does not have a left sub-node, from the previous such tree (shown in Figure 15b), with a sub-tree consisting of a root and its right sub-node. Such sub-

trees are indicated by ellipses around them  

not

Space Complexity – Empirical Approach
In order to be certain about how much space is 

needed to perform CCW roll on a tree with  nodes, 
an exhaustive analysis needs to be performed. This 
includes obtaining all topologies of binary trees with  
nodes and performing CCW roll on them, while ob-
taining the stack depth for each tree while it is being 
CCW rolled. For this, it is necessary to ϐirst generate 
all topologies of binary trees for a given  and then ex-
ecute CCW roll on all of them, while measuring the 
stack depths during the executions of the CCW roll. 
The smallest value of the stack depth while CCW roll-
ing a tree with  nodes will represent the best case for 
that , whereas the largest value of such a stack depth 

will represent the worst case for that . As following 
from the theoretical analysis, the best cases for in-
creasing values of  are expected to grow logarithmi-
cally, and the worst cases are expected to grow lin-
early. It is also appealing to know whether the space 
complexity of the algorithm would be more domi-
nantly logarithmic or linear, which is why an average 
time complexity would also need to be extracted, as 
an average of the space complexities for all topologies 
of binary trees for a given number of nodes.

In order to obtain all topologies of binary trees 
with a given number of nodes, the Catalan Cipher 
Vector approach is used in this paper. A Catalan Ci-
pher Vector [6] is a vector which uniquely determines 
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a binary tree’s topology. For a tree with  nodes, there 
will be  (n-th Catalan number) topologies of binary 
trees and thus  Catalan Cipher Vectors. Table 1 shows 
all the ranks, their corresponding Catalan Cipher Vec-
tors, and the appropriate binary trees, for n = 4 nodes.

Table 1. Ranks and enumerations of the binary trees with  nodes using the 

Catalan Cipher Vector approach

Rank Catalan Cipher Vector Binary Tree

0 [0 1 2 3]

1 [0 1 2 4]

2 [0 1 2 5]

3 [0 1 2 6]

4 [0 1 3 4]

5 [0 1 3 5]

6 [0 1 3 6]

7 [0 1 4 5]

8 [0 1 4 6]

9 [0 2 3 4]

10 [0 2 3 5]

11 [0 2 3 6]

12 [0 2 4 5]

13 [0 2 4 6]

Since the initial Catalan Cipher Vector for a tree 
with  nodes is always  [6], it is possible to generate 
the corresponding binary tree for it, and determine 
the stack depth occupied during the execution of 
CCW() on it. Then, the subsequent Catalan Cipher 
Vector can be obtained, the corresponding binary 
tree can be generated from it, have CCW() executed 
on it and determine the stack depth needed and so 
on, until all  binary tree topologies get processed 
this way. The obtained minimum depth represents 
the best case, the maximum depth represents the 
worst case, whereas the average case is calculated 
as the sum of all depths divided by the number of 
possible trees with  nodes.

The results for such an analysis have been per-
formed and the results are given in Table 2.

Table 2. Stack depths necessary to perform CCW() on all topologies of 

binary trees with given numbers of nodes

n C(n) Min Max Avg Total

2 2 2 3 3 5

3 5 3 4 3 16

4 14 3 5 4 54

5 42 3 6 4 187

6 132 3 7 5 664

7 429 4 8 6 2.393

8 1.430 4 9 6 8.719

9 4.862 4 10 7 32.073

10 16.796 4 11 7 118.848

11 58.786 4 12 8 443.081

12 208.012 4 13 8 1.660.503

13 742.900 4 14 8 6.250.670

14 2.674.440 4 15 9 23.620.379

15 9.694.845 5 16 9 89.560.477

16 35.357.670 5 17 10 340.599.877

17 129.644.790 5 18 10 1.298.763.168

18 477.638.700 5 19 10 4.964.255.082

The results are interpreted as follows. In the ϐirst 
data row, for a tree with  = 2 nodes (ϐirst column), 
there are  = 2 (second column) total topologies of 
binary trees. Executing CCW() on all of them yields 
a  (sixth, i.e. last column) of 5 levels of stack depth, 
leading to an  (average – ϐifth column) of 3 levels of 
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stack depth per binary tree topology. Of all topolo-
gies, the  (minimum – third column) levels of stack 
depth necessary to complete CCW() on a binary tree 
topology with 2 nodes is 2, and the  (maximum – 
fourth column) number of such levels is 3. This in-
terpretation follows all rows of the table, up to and 
including binary tree topologies for  = 18 nodes. 

Plotting the results obtained from Table 3 results 
in a chart like in Figure 17.

 Figure 17. A plot of the results given in Table 3

Interpolating the equations for the worst and 
best cases yields the equations  and  respectively, 
conϐirming the conclusions obtained in the analysis 
of the space complexity that the worst-case space 
complexity of the CCW() algorithm is linear, and its 
best-case space complexity is logarithmic. Interpo-
lating for the average case results in the equation , 
meaning that the average space complexity of the 
CCW() roll algorithm is dominantly logarithmic. 
Therefore, it can be stated that, on average, the space 
complexity of the CCW() algorithm is logarithmic.

CONCLUSION

This paper presented an analysis of the space 
complexity of the binary tree roll algorithm, speciϐi-
cally its counterclockwise (CCW()) variant, with the 
note that the analysis for its clockwise (CW()) vari-
ant is analogous. For it, the theoretical analysis was 
derived in such way as to show the amount of mem-
ory occupied during the execution of the algorithm, 
shown primarily through the number of frames oc-
cupied in the call stack by the recursive function 
calls. The analysis of the space efϐiciency of each of 
the three cases of the algorithm, as well as the trivial 
case, showed that trees which are processed solely 
by the ϐirst case of the algorithm (invoked upon a 
node which has no right sub-tree) yield the worst 
space complexity, whereas trees which are pro-
cessed solely by the second case of the algorithm 
(invoked upon a node which has a right sub-tree, 
which in turn has no right sub-tree of its own) yield 
the best space complexity. The equations were de-
rived to be linear for the worst case and logarithmic 
for the best case. An exhaustive empirical analysis 
was performed, counting the minimum and maxi-
mum stack depths for all trees with given numbers 
of nodes . The equations in the theoretical analysis 
were conϐirmed by the empirical results, that the 
CCW() algorithm has linear space complexity for 
the worst case and logarithmic space complexity for 
the best case. Moreover, the average case analysis 
showed that the CCW() algorithm has a dominantly 
logarithmic space complexity, so it can be stated that 
its average space complexity is logarithmic.

REFERENCES

[1] Adel’son-Vel’skii G. M.  and Landis E. M. (1962) “An algorithm for the оrganization of information,” Soviet Math. Dokla-
dy, 3: 1259-1263

[2] Amani M., Lai K. A. and Tarjan R. E. (2016) “Amortized rotation cost in AVL trees,” Information Processing Letters, 
98(5): 327-330

[3] Bayer R. and McCreight E. (1972) “Organization and Maintenance or Large Oriented Indexes,” Acta Informatica, 3(3): 
173-189

[4] Bozinovski A. and Bozinovski S. (2004) N-queens Pattern Generation: An Insight Into Space Complexity of a Backtrack-
ing Algorithm, Proceedings of the Third International Symposium on Information and Communication Technologies, 
Las Vegas, NV, USA (pp. 281-286). ACM

[5] Božinovski, A. and Ackovska, N. (2012) The Binary Tree Roll Operation: Defi nition, Explanation and Algorithm, Inter-
national Journal of Computer Applications, 46(8):40-47

[6] Božinovski, A., Stojčevska, B. and Pačovski, V. (2013) Enumeration, Ranking and Generation of Binary Trees Based on 
Level-Order Traversal Using Catalan Cipher Vectors, Journal of Information Technology and Applications, 3(2):78-86

[7] Božinovski, A., Tanev, G., Stojčevska, B., Pačovski, V. and Ackovska, N. (2016) Time Complexity Analysis of the Binary 
Tree Roll Algorithm, International Journal of Computer Applications, 6(2):53-62

18        Journal of Information Technology and Applications        www.jita-au.com



SPACE COMPLEXITY ANALYSIS OF THE BINARY TREE ROLL ALGORITHM JITA 7(2017) 1:9-19 

[8] Brassard G. and Bratley P. (2002) Fundamentals of Algorithmics. Prentice Hall of India
[9] Buchmann J., Dahmen E., Klintsevich E., Okeya K. and Vuillaume C. (2007) “Merkle signatures with virtually unlimited 

signature capacity,” In Proc. 5th Int. Conf. Applied Cryptography and Network Security, Zhuhai, China (pp. 31-45). 
LCNS Springer

[10] Cormen T. H., Leiserson C. E., Rivest R. L. and Stein C. (2009) Introduction to Algorithms, 3rd ed., The MIT Press
[11] Goodrich, M. T. and Tamassia, R. (2008) Data Structures and Algorithms in Java, Third Edition, Wiley India Pvt.
[12] Katz J. (2003) “Binary Tree Encryption: Constructions and Applications,” In Information Security and Cryptology 

(ICISC 2003), 2971: 1-11, LCNS Springer
[13] Kreher D. L. and Stinson D. R. (1998) Combinatorial Algorithms: Generation, Enumeration, and Search. Discrete 

Mathematics and its Applications (Book 7), CRC Press, 1st Edition
[14] Lee Y. and Lee J. (2015) “Binary tree optimization using genetic algorithm for multiclass support vector machine,” Ex-

pert Systems with Applications, 42(8): 3843-3851
[15] Li Y., Xu M., Zhao H. and Huang W. (2016) “Hierarchical fuzzy entropy and improved support vector machine based 

binary tree approach for rolling bearing fault diagnosis,” Mechanism and Machine Theory, 98: 114-132
[16] Liu B., Shen Y., Chen X., Chen Y. and Wang X. (2014) “A partial binary tree DEA-DA cyclic classifi cation model for de-

cision makers in complex multi-attribute large-group interval-valued intuitionistic fuzzy decision-making problems,” 
Information Fusion, 18: 119-130

[17] Rich E. (1983) Artifi cial Intelligence. McGraw-Hill series in artifi cial intellilgence, McGraw-Hill Inc.
[18] Roch S. and Steel M. (2014)  “Likelihood-based tree reconstruction on a concatenation of alignments can be statistically 

inconsistent, “ Theoretical Population Biology, 100: 56-62
[19] Sedgewick R. (1998) Algorithms in C++, Parts 1-4: Fundamentals, Data Structures, Sorting, Searching, 3rd ed, Addi-

son-Wesley
[20] Suh I. and Headrick T. C. (2010) “A comparative analysis of the bootstrap versus traditional statistical procedures ap-

plied to digital analysis based on Benford’s Law,”  Journal of Forensic and Investigative Accounting, 2(2): 144-175.

Submitted: December 1, 2016.
Accepted: December 5, 2016.

ABOUT THE AUTHORS

Adrijan Božinovski works as an Associate Professor at the School of Computer Science and Information Technology at Uni-
versity American College Skopje, where he is currently the Dean. He obtained his BSc from University “St. Cyril and Metho-
dius” in Skopje, Macedonia, and his MSc and PhD from University of Zagreb, Croatia.
Biljana Stojčevska works as an Associate Professor at the UACS School of Computer Science and Information Technology. 
She received her BSc, MSc and PhD degrees in Computer Science at the Institute of Informatics, Faculty of Natural Sciences 
and Mathematics, at “Sts. Cyril and Methodius University” in Skopje, Macedonia.
Veno Pachovski (1965) graduated, completed MSc and got his PhD from Faculty of Natural Sciences and Mathematics, Uni-
versity “Sts. Cyril And Methodius”, Skopje, Macedonia. Since 2009, he teaches a variety of courses at the University American 
College – Skopje, mainly within the School of Computer Sciences and Information technology (SCSIT).
George Tanev is an MSc graduate student of the School of Computer Science and Information Technology at University 
American College Skopje, Macedonia, where he acquired his BSc in Computer Science. Also works as a software developer in 
Skopje, Macedonia.
Nevena Ackovska is Associate Professor at the Faculty of Computer Science and Engineering at “St. Cyril and Methodius” 
University in Skopje, Macedonia. She holds B.Sc. in Computer Engineering, Informatics and Automation from Electrical Engi-
neering Faculty (2000), M.Sc. in Bioinformatics (2003) and a Ph.D. in Bioinformatics (2008) from Faculty of Natural Sciences 
and Mathematics at “St. Cyril and Methodius University” in Skopje, Macedonia.

June 2017        Journal of Information Technology and Applications        19


