
MUTATION TESTING: OBJECT-ORIENTED MUTATION AND TESTING TOOLS JITA 1(2011) 2:105-112

MUTATION TESTING: OBJECT-ORIENTED MUTATION
AND TESTING TOOLS

Z. Ivanković, B. Markoski, D. Radosav
University of Novi Sad, Technical Faculty “Mihajlo Pupin”, Zrenjanin, Serbia

zdravko@tfzr.uns.ac.rs

Contribution to the State of the Art

UDC 004.7:006

Abstract: Software testing represents activity in detecting software failures. Mutation testing represents a way to test a test.
The basic idea of mutation testing is to seed lots of artifi cial defects into the program, test all defects individually, focus on
those mutations that are not detected, and, fi nally, improve the test suite until it fi nds all mutations. Mutants can be created
by mutating the grammar and then generating strings, or by mutating values during a production. Object-oriented (OO)
programming features changed the requirements for mutation testing. Non object-oriented mutation systems make mutations
of expressions, variables and statements, but do not mutate type and component declarations. OO programs are composed of
user-defi ned data types (classes) and references to the user-defi ned types. It is very likely that user-defi ned components contain
many defects such as mutual dependency between members/classes, inconsistencies or confl icts between the components
developed by different programmers. Class Mutation is a mutation technique for OO programs which particularly targets
plausible faults that are likely to occur due to features in OO programming. Mutation testing requires automated testing tools,
which is not a trivial tool to make. Automated mutation tools must be able to parse the program and know its language. When
the program is run, mutant can be killed by one of two possible scenarios: if a mutant crashes, or if the mutant goes into an
infi nite loop.

Key words: Mutation testing, Object-oriented mutation, schema-based mutation, refl ection

INTRODUCTION

Software testing represents activity in detecting
software failures. The scope of software testing of-
ten includes examination of code as well as execu-
tion of that code in various environments and con-
ditions as well as examining the aspects of code:
does it do what it is supposed to do and do what
it needs to do. Software testing is faced with sev-
eral problems. Bugs are not distributed uniformly
across a program: “20% of modules contain 80%
of the defects”. Second problem represents risk,
which is unevenly distributed. In every project
there are some modules in which defects have seri-
ous consequences because they are frequently used,
or because entire functionality depends on them.
Tester would want his test suite to be focused on
the defect-prone modules, and to make his testing

efforts based on the risk, rather than achieving a
specifi c coverage.

Many systems are tested according to principle:
“if it does not crash, it is probably fi ne”. In this
way, test does not check the result, and a tester can-
not determine how well a test does its job. This is
an instance of Plato’s old problem: “Who watches
the watchmen”. Mutation testing represents a way
to test a test. A common way to test the quality of
quality assurance is to simulate a situation in which
quality assurance should trigger an alarm. In 1971,
Richard Lipton adapted this concept to testing. His
idea, presented in a paper called “Fault diagnosis of
computer programs,” was to seed artifi cial defects,
called mutations, into the software under test, and to
check whether the test suite would fi nd them. If the

December 2011 Journal of Information Technology and Applications 105

DOI: 10.7251/JIT1102105I

JITA 1(2011) 2:105-112 IVANKOVIĆ Z., MARKOSKI B., RADOSAV D.:

test suite fails to detect the mutation, it would likely
miss real defects, too, and thus must be improved.

MUTATION TESTING

The basic idea of mutation testing is to:
• seed lots of artifi cial defects into the program,
• test all defects individually,
• focus on those mutations that are not detect-

ed, and,
• improve the test suite until it fi nds all muta-

tions [1].

This approach has a few benefi ts. First benefi t is
that tester can truly assess the quality of tests, not
just to measure features of test execution. When
modules with high risk are mutated, they can exhib-
it serious consequences. Third benefi t comes with
choice of good mutants. The more similar mutations
are to real defects, the more likely you are to repli-
cate the defect distribution in your program. Muta-
tion is widely considered the strongest test criterion
in terms of fi nding the most faults, but is also the
most expensive.

Mutation testing is very time-consuming and as
the number of mutations can easily go into the thou-
sands, there can be several thousand build processes
and test suite executions. Because of this, mutation
testing requires a fully automated test [7]. There are
some techniques which can improve effi ciency of
seeding mutants. First technique is to directly ma-
nipulate binary code. By mutating binary code rather
than source code, you can eliminate the costly rebuild
process after a mutation. The drawback is that binary
code can be harder to analyze, in particular for com-
plicated mutation operators. Second technique is to
use mutant schemata. A mutation-testing framework
produces a new mutated program version for every
single mutation. However, one can also create a sin-
gle version in which individual mutants are guarded
by runtime conditions. Third technique is to ignore
no covered code. A mutant can impact the program
behavior only if it is actually executed. Therefore,
programmer should mutate only statements that are
covered by the test suite and run only those tests that
exercise the mutation.

MUTATION TESTING GRAMMAR

Mutants can be created by mutating the grammar
and then generating strings, or by mutating values
during a production. Mutation can be applied to var-
ious artifacts, but it is primarily used as a program-
based testing method. An input is valid if it is in the
language specifi ed by grammar, otherwise it is in-
valid. Any program should reject malformed inputs,
which is a property that should be verifi ed by tests.
Testing could be accomplished by producing invalid
strings from grammar, or by producing strings that
are valid but that follow different derivation from
preexisting strings. Both of these strings are called
mutants.

Mutation is always based on set of mutation op-
erators which are applied to a “ground” string. The
ground string is the sequence of program statements
in the program under test, and the mutants are slight
syntactic variations of those statements. During pro-
gram execution, the ground strings are valid inputs,
and variations (mutants) are invalid inputs. For ex-
ample, a valid input might be a request from a cor-
rectly logged in user in some application. The invalid
version might be the same request from a user that
is not logged in.

Mutation operator represents a rule that specifi es
syntactic variations of strings generated from gram-
mar. Mutant represents result of one application of
mutation operator over ground string. There are two
issues in applying mutation operators. First is, should
more than one mutation operator be applied at the
same time to create one mutant? Strong empirical
and theoretical evidence point that only one element
should be mutated at a time. Second issue is, should
every possible application of a mutation operation
to a ground string be considered? Reason for this
is that mutation subsumes a number of other test
criteria, and if some operators are not applied, then
that subsumption is lost.

When derivation is mutated to produce valid
strings, the testing goal is to “kill” the mutants by
causing the mutant to produce different output. Thus,
mutation coverage (MC) equates to killing the mu-
tants. The amount of coverage is usually written as
percent of mutants killed and is called mutation score.

106 Journal of Information Technology and Applications www.jita-au.com

MUTATION TESTING: OBJECT-ORIENTED MUTATION AND TESTING TOOLS JITA 1(2011) 2:105-112

Defi nition for MC is: For each mutant m ∈ M, test re-
quirement contains exactly one requirement, to kill m.

When a grammar is mutated to produce invalid
strings, the testing goal is to run the mutants to see
if the behavior is correct. The coverage criterion is
therefore simpler, as the mutation operators are the
test requirements. In this manner we have mutation
operator coverage (MOC) and mutation production
coverage (MPC). Defi nition for MOC is: For each
mutation operator, test requirement contains exactly
one requirement, to create a mutated string m that
is derived using the mutation operator. Defi nition
for MPC is: For each mutation operator, and each
production that the operator can be applied to, test
requirement contains the requirement to create a
mutated string from that production

The number of test requirements for mutation
depends on the syntax as well as the mutation op-
erators. In most situations, mutation yields more test
requirements than any other test criterion.

OBJECT-ORIENTED MUTATION

Object-oriented (OO) programming features
changed the requirements for mutation testing. Non
object-oriented mutation systems make mutations
of expressions, variables and statements, but do
not mutate type and component declarations. Tradi-
tional programming simply makes use of the built-in
types and entities of a language which are unlikely to
contain many errors. OO programs are composed
of user-defi ned data types (classes) and references
to the user-defi ned types. It is very likely that user-
defi ned components contain many defects such as
mutual dependency between members/classes, in-
consistencies or confl icts between the components
developed by different programmers.

The effectiveness of mutation testing heavily de-
pends on the types of faults the mutation system is
intended to represent. Class Mutation is a mutation
technique for OO programs which particularly tar-
gets plausible faults that are likely to occur due to
features in OO programming [4][8]:

• polymorphism
• method overloading

• inheritance
• information hiding
• static/dynamic states of objects
• exception handling

A. Polymorphism

In object-oriented systems, it is common for a
variable to have polymorphic types. Polymorphism
represents a property that a variable at runtime may
refer to an object of a different type. This raises the
possibility that not all objects that become attached
to the same variable correctly support the same set
of features. This may also cause runtime type errors
which cannot always be detected at compile time [3]
[5]. Two mutation operators, CRT (Compatible Ref-
erence Type replacement) and ICE (class Instance
Creation Expression changes), were designed to ad-
dress this feature

CRT operator replaces a reference type with
compatible types. For instance, the class type S can
be replaced with the class type T provided that S is a
subclass of T, or S can be replaced with the interface
type K provided that S implements K.

The original code:
 S s = new S();

CRT mutants:
 T s = new S();
 K s = new S();

ICE operator is designed to change the runtime
type of an object. This results in calling the con-
structors of compatible types, which will create the
objects of the replaced types.

The original code:
 S s = new S();

ICE mutant:
 S s = new T();

B. Method Overloading

A class type may have more than one method
with the same name as long as they have different

December 2011 Journal of Information Technology and Applications 107

JITA 1(2011) 2:105-112 IVANKOVIĆ Z., MARKOSKI B., RADOSAV D.:

signatures. When several versions of the same name
method are available, there is a great possibility to
an unintended method be called [6]. Method over-
loading feature can be handled by manipulating pa-
rameters in method declarations and arguments in
method invocation expressions. Four mutation op-
erators, POC (method Parameter Order Change),
VMR (oVerloading Method declaration Removal),
AOC (Argument Order Change), and AND (Argu-
ment Number Decrease), were designed to address
this feature.

The POC operator changes the order of param-
eters in method declarations if the method has more
than one parameter.

The original code:
 public LogMsg(int level,
 String logKey,
 Object [] inserts) {…}
 public LogMsg(int level,
 String logKey,
 Object insert) {…}

POC mutant:
 public LogMsg(String logKey,
 int level,
 Object []inserts) {…}

In the example, the POC operator creates a mu-
tant of the fi rst constructor by swapping the fi rst
and second parameters of the constructor. This mu-
tant program is executed without compilation errors
in spite of the fact that the types of the swapped
parameters are totally different. The reason is that
the instance creation expressions that call the fi rst
constructor in the original code are directed to the
second constructor when the mutant is executed,
because the second constructor is now better fi tted.
It is possible because arrays can be assigned to vari-
ables of type Object in Java. This example shows
that there is a possibility of invoking a wrong con-
structor/method among the overloaded construc-
tors/methods due to an unintended parameter type
conversion.

VMR operator removes a whole method decla-
ration of overloading/overloaded methods. In this

way, tester can check whether the right method is
invoked for the right method invocation expres-
sions. The VMR operator can also provide coverage
for the method overloading feature, i.e., checking if
all the overloading/overloaded methods are invoked
at least once – because test data must reference the
method in order to notice that that method has been
deleted.

AOC operator changes the order of arguments in
method invocation expressions, if there is more than
one argument. For example, the following mutant
produced by the AOC operator represents the error
of a wrong argument order and as both arguments
have the same type (Java String), the order change in
the mutant did not cause compilation problems.

The original code:
 Trace.entry(“Logger”, “addLogCatalogue”);

AOC mutant:
 Trace.entry (“addLogCatalogue”, “Logger”);

AND operator reduces the number of arguments
one by one, if there is more than one argument in
method invocation expressions. The original code
has two different trace methods:

public void trace(int level, Object obj, String text)
{…}

public void trace(Object obj, String text) {…}

The original code:
 Trace.trace(Trace.Event,this,sccsid);

AND mutant:
 Trace.trace(this,sccsid);

Although the mutant has two arguments instead
of three, it is successfully compiled because class
Trace has two different trace methods. The original
code calls the fi rst method while the mutant calls the
second method.

C. Inheritance

A class type may contain a method with the
same name and the same signatures as the method
declared in superclasses or superinterfaces. In this

108 Journal of Information Technology and Applications www.jita-au.com

MUTATION TESTING: OBJECT-ORIENTED MUTATION AND TESTING TOOLS JITA 1(2011) 2:105-112

case, the method in a subclass overrides the method
of a superclass (method overriding/hiding). When
there is more than one method of the same name,
it is important for testers to ensure that a method
invocation expression actually invokes the intended
method [2]. OMR (Overriding Method Removal)
operator is designed to check that overriding/over-
ridden methods are invoked appropriately.

OMR operator removes a declaration of an over-
riding/hiding method in a subclass so that a refer-
ence to the overriding method goes to the overrid-
den/hidden method instead. If a test set fails to see
any difference whether the overriding method is
called or the overridden method is called, it implies
that the current test set is inadequate. The OMR op-
erator also checks coverage for the method overrid-
ing feature – i.e., overriding and overridden methods
are invoked at least once.

A Java class may have two or more fi elds with the
same simple name if they are declared in different in-
terfaces and/or in classes. In this case, the fi eld vari-
ables defi ned in a class hide the fi elds of the same
name declared in superclasses or superinterfaces.
While this feature is powerful and convenient, it might
cause an unintended fi eld being accessed, especially in
a long and complex class hierarchy. The intent of the
HFR (Hiding Field variable Removal) and HFA (Hid-
ing Field variable Addition) operators is to check that
hiding and hidden fi elds are accessed appropriately

HFR operator removes a declaration of a hiding
fi eld variable so the references to that fi eld actually
access the fi eld in a superclass or a superinterface.
This operator ensures that a test set is able to distin-
guish referencing a hidden fi eld from referencing a
hiding fi eld. If a test set produces the same output
even if a hiding fi eld is removed, it indicates the test
set is inadequate.

HFA operator adds fi eld variables that appear in
superclasses/ superinterfaces into the class under
mutation so that the added fi elds hide those in su-
perclasses/ superinterfaces.

Both the HFR and HFA operators check the cov-
erage of fi eld variables in the presence of inheritance

because test data must accesses the hiding/hidden
and inherited fi elds at least once. The difference is
that the HFA operator checks that inherited fi elds
are accessed at least once whereas the HFR operator
checks that hiding/hidden fi elds are accessed.

D. Information Hiding

Object-oriented languages provide an access con-
trol mechanism that restricts the accessibility/visibil-
ity of attribute variables and methods. It is an im-
portant testing role to make sure that a certain access
mode provides and restricts its intended accessibil-
ity/visibility at all times. The intended access control
can also be broken in connection with other OO fea-
tures such as inheritance. Java provides four possible
access modes: public, private, protected, and default.

AMC (Access Modifi er Changes) operator ma-
nipulates Java access specifi ers to address the infor-
mation hiding feature. This operator replaces a cer-
tain Java access mode with three other alternatives.
The role of the AMC operator is to guide testers to
generate enough test cases for testing accessibility/
visibility. For example, a fi eld declaration with a pro-
tected access mode will have three mutants.

The original code:
 protected Address address;

AMC Mutants:
 public Address address;
 private Address address;
 Address address; //default

E. Static/Dynamic States of Objects

Java has two kinds of variables – class and in-
stance variables. The Java runtime system creates
one copy of each instance variable whenever an in-
stance of a class is created (dynamic). Class variables
are allocated once per class, the fi rst time it encoun-
ters the class (static).

SMC (Static Modifi er Changes) operator is used
to examine possible fl aws in static/dynamic states.
The SMC operator removes the “static” modifi er to
change a class variable to an instance variable or adds

December 2011 Journal of Information Technology and Applications 109

JITA 1(2011) 2:105-112 IVANKOVIĆ Z., MARKOSKI B., RADOSAV D.:

the modifi er to change an instance variable to a class
variable.

The original code:
 public static int VALUE = 100;
 private String s;

SMC Mutants:
 public int VALUE = 100; //static is removed
 private static String s; //static is added

F. Exception Handling

The most obvious mistake in exception handling
is not specifying appropriate exception handlers in
the required place. In Java, programmer either han-
dles an exception (i.e., catches the exception by de-
claring a try catches block) or propagates it (i.e., de-
clares it to throw in a throws statement of a method
declaration). EHR (Exception Handler Removal)
and EHC (Exception Handling Change) operators
are declared for the feature of exception handling.

EHR operator modifi es the declared exception
handling statement (try-catch-fi nally) in two differ-
ent ways.

• it removes exception handlers (catch clause) one
by one when there is more than one handler

• it removes the exception handler and fi nally
clause in turn when there exist one handler and
the fi nally clause

The EHR operator is not applied when there
is only one handler without fi nally clause because
it simply causes compilation errors. This operator
gives coverage of catch and fi nally clauses.

EHC operator swaps the way of handling an ex-
ception. It catches the exception that is supposed to
be propagated by changing a throws declaration to a
try-catch statement, or propagates the exception that
is supposed be caught within the method by chang-
ing a try-catch statement to a throws declaration.

TESTING PROGRAMS WITH MUTATION

Procedure of testing programs with mutation is
shown in fi gure 1.

FIGURE 1 - TESTING PROGRAMS WITH MUTATION

The tester submits the program which should be
tested. Automated system starts changing original
statements by creating mutants. Optionally, those
mutants are then analyzed by a heuristic that detects
and eliminates as many equivalent mutants as pos-
sible. A set of test cases is then generated automati-
cally and executed against the original program, and
then against the program that contains mutants [9].
If the output of a mutant program differs from the
original (correct) output, the mutant is marked as
being dead and is considered to have been strongly
killed by that test case. Dead mutants are not exe-
cuted against subsequent test cases. Test cases that
do not strongly kill at least one mutant are consid-
ered to be “ineffective” and eliminated. Once all test
cases have been executed, coverage is computed as a
mutation score (ratio of dead mutants over the total
number of non-equivalent mutants). Mutation score
of 1.00 means that all mutants have been detected.

A mutation score of 1.00 is usually impractical, so
the tester defi nes a “threshold” value, which is a mini-
mum acceptable mutation score. If the threshold has
not been reached, then the process is repeated, each
time generating test cases to target live mutants, until
the threshold mutation score is reached. Up to this
point, the process has been entirely automatic. To
fi nish testing, the tester will examine expected out-
put of the effective test cases, and fi x the program if
any faults are found. This leads to the fundamental
premise of mutation testing: In practice, if the soft-
ware contains a fault, there will usually be a set of
mutants that can only be killed by a test case that also
detects that fault.

110 Journal of Information Technology and Applications www.jita-au.com

MUTATION TESTING: OBJECT-ORIENTED MUTATION AND TESTING TOOLS JITA 1(2011) 2:105-112

MUTATION TESTING TOOLS

Mutation testing requires automated testing tools,
which is not a trivial tool to make. Automated mu-
tation tools must be able to parse the program and
know its language. When the program is run, mutant
can be killed by one of two possible scenarios:

• if a mutant crashes
• if the mutant goes into an infi nite loop

The runtime system must handle both of these
situations.

There are four ways to build mutation tools:
• interpretation approach
• separate compilation approach
• schema-based mutation
• refl ection

A. Interpretation approach

A program under test is fi rst parsed into an in-
termediate form. This is usually a special-purpose
language designed specifi cally to support mutation.
This language can easily handle the bookkeeping
when mutants are killed as well as program failure.
The usual way to handle infi nite loops is fi rst to run a
test case on the original program, count the number
of intermediate instructions executed, then run the
test case on a mutant. If the mutant uses X times
more intermediate instructions (X has usually been
set at 10), then the mutant is assumed to be in an
infi nite loop and marked dead. The mutation testing
tool directly modifi es this intermediate form which
represents a special purpose language.

This approach has several advantages:
• can easily handle the bookkeeping when mu-

tants are killed
• can respond to program failure and infi nite

loops
• full control of the execution
• parsing the program and creating mutants is

effi cient
• creating mutants by making small changes to

the intermediate form is simple
• only the rules for changing the intermediate

form need to be stored on disk

Disadvantages of this approach are:
• mutation system must be a complete language

system: parser, interpreter, and run-time ex-
ecution engine

• complicated to implement and represents a
signifi cant investment

• slow execution (10 times slower than a com-
piled program). Researchers have found that
it can take up to 30 minutes to run all mutants
on a 30 line program.

B. Separate compilation approach

In this approach each mutant is created as a com-
plete program by modifying the source of the origi-
nal program which is under test. Then each mutant
is compiled, linked and run.

Main advantage of this approach is fast execu-
tion.

However, there are several disadvantages:
• diffi culties with bookkeeping when mutants

are killed
• diffi culties with handling run-time failures

and infi nite loops
• compilation bottleneck, particularly with large

programs, but also with small programs that
run very quickly, because the time to compile
and link can be much greater than the time to
execute

• diffi culties with applying weak mutation

C. Schema-based approach

Schema-based approach consists of following
steps:

• MSG (Mutant Schema Generation) encodes
all mutations into one source-level program,
called a metamutant

• metamutant is compiled and executed in
the same environment at compiled program
speed

These mutation systems are less complex and eas-
ier to build then interpretive systems because they do
not need to provide the entire run-time semantics and
environment. A mutant schema has two components,

December 2011 Journal of Information Technology and Applications 111

JITA 1(2011) 2:105-112 IVANKOVIĆ Z., MARKOSKI B., RADOSAV D.:

a metamutant and a metamethod set, both of which
are represented by syntactically valid constructs.

In MSG, a program schema represents a template.
A partially interpreted program schema syntactically re-
sembles a program, but contains free identifi ers that are
called abstract entities. The abstract entities appear in
place of some program variables, data type identifi ers,
constants, and program statements. A schema can be
instantiated to form a complete program by providing
appropriate substitutions for the abstract entities.

D. Refl ection

Refl ection represents an approach that combines
the interpretive and compiler-based approach. Re-
fl ection allows a program to access its internal struc-
ture and behavior, and manipulate that structure,
thereby modifying its behavior based on rules sup-
plied by another program.

Refl ection is possible only in languages that sup-
port it (Java and C#). Both support refl ection by al-
lowing access to the intermediate form (Java byte-
code). Refl ection can be achieved in three ways:

• Compile-time refl ection allows changes to be
made when the program is compiled

• Load-time refl ection allows changes to be
made when the program is loaded into the ex-
ecution system (JVM)

• Run-time refl ection allows changes to be made

when the program is executed

Refl ection has several advantages:
• it allows programmers extract information

about a class
• it provides an API to modify the behavior of a

program during execution
• it allows objects to be instantiated and meth-

ods to be invoked dynamically
• some of the OO operators cannot be imple-

mented via MSG

CONCLUSION

First paper about mutation testing was published
30 years ago. Only now mutation testing becomes
widely implemented. The reason for this is that au-
tomated testing is much more widespread than it was
10 years ago, and there is no mutation testing without
it. Computing power keeps on increasing, and we can
begin to afford the huge computing requirements im-
posed by mutation testing. Modern test case genera-
tors make it fairly easy to obtain a high coverage auto-
matically but still, the test cases are not good enough.
There is a variety of dynamic and static optimizations
that make mutation testing reasonably effi cient and
also highly effective when it comes to improving test
suites. All this implies that mutation testing will be-
come much more commonplace in the future.

REFERENCES
[1] Ammann P. and Offutt J., (2008) “Introduction to Software Testing”, Cambridge University Press
[2] Brahma S. Punganti A., Pattanaik P.K., Prasad S. and Mall R., (2010) “Model-Based Mutation Testing of Object-Oriented

Programs”, Proceedings of 2nd international Conference on IT & Business Intelligence, India
[3] Finkbine R., (2003) “Usage of Mutation Testing as a Measure of Test Suite Robustness”, Digital Avionics Systems Conference
[4] Ma Y.S., Harrold M.J. and Kwon Y.R., (2006) “Evaluation of Mutation Testing for Object-Oriented Programs”, 28th Inter-

national Conference on Software Engineering, China
[5] Ma Y.S., Offutt J., (2005) “Description of Class Mutation Operators for Java”
[6] Ma Y.S., Offutt J., (2005) “Description of Method-level Mutation Operators for Java”
[7] Riley T. and Goucher A., (2009) “Beautiful Testing – Leading Professionals Reveal How They Improve Software”, O’Reilly
[8] Sunwoo K., Clark J. , McDermid J., (2000) “Class Mutation: Mutation Testing for Object-Oriented Programs”, OOSS:

Object-Oriented Software Systems
[9] Umar M., (2006) “An Evaluation of Mutation Operators for Equivalent Mutants”, Department of Computer Science

King’s College, London

Submitted: November 07, 2011
Accepted: December 31, 2011

112 Journal of Information Technology and Applications www.jita-au.com

