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Abstract: Software testing represents activity in detecting software failures. Mutation testing represents a way to test a test. 
The basic idea of mutation testing is to seed lots of artifi cial defects into the program, test all defects individually, focus on 
those mutations that are not detected, and, fi nally, improve the test suite until it fi nds all mutations. Mutants can be created 
by mutating the grammar and then generating strings, or by mutating values during a production. Object-oriented (OO) 
programming features changed the requirements for mutation testing. Non object-oriented mutation systems make mutations 
of expressions, variables and statements, but do not mutate type and component declarations. OO programs are composed of 
user-defi ned data types (classes) and references to the user-defi ned types. It is very likely that user-defi ned components contain 
many defects such as mutual dependency between members/classes, inconsistencies or confl icts between the components 
developed by different programmers. Class Mutation is a mutation technique for OO programs which particularly targets 
plausible faults that are likely to occur due to features in OO programming. Mutation testing requires automated testing tools, 
which is not a trivial tool to make. Automated mutation tools must be able to parse the program and know its language. When 
the program is run, mutant can be killed by one of two possible scenarios: if a mutant crashes, or if the mutant goes into an 
infi nite loop. 
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INTRODUCTION

Software testing represents activity in detecting 
software failures. The scope of  software testing of-
ten includes examination of  code as well as execu-
tion of  that code in various environments and con-
ditions as well as examining the aspects of  code: 
does it do what it is supposed to do and do what 
it needs to do. Software testing is faced with sev-
eral problems. Bugs are not distributed uniformly 
across a program: “20% of  modules contain 80% 
of  the defects”. Second problem represents risk, 
which is unevenly distributed. In every project 
there are some modules in which defects have seri-
ous consequences because they are frequently used, 
or because entire functionality depends on them. 
Tester would want his test suite to be focused on 
the defect-prone modules, and to make his testing 

efforts based on the risk, rather than achieving a 
specifi c coverage.

Many systems are tested according to principle: 
“if  it does not crash, it is probably fi ne”. In this 
way, test does not check the result, and a tester can-
not determine how well a test does its job. This is 
an instance of  Plato’s old problem: “Who watches 
the watchmen”. Mutation testing represents a way 
to test a test. A common way to test the quality of  
quality assurance is to simulate a situation in which 
quality assurance should trigger an alarm. In 1971, 
Richard Lipton adapted this concept to testing. His 
idea, presented in a paper called “Fault diagnosis of  
computer programs,” was to seed artifi cial defects, 
called mutations, into the software under test, and to 
check whether the test suite would fi nd them. If  the 
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test suite fails to detect the mutation, it would likely 
miss real defects, too, and thus must be improved. 

MUTATION TESTING

The basic idea of  mutation testing is to: 
• seed lots of  artifi cial defects into the program, 
• test all defects individually, 
• focus on those mutations that are not detect-

ed, and, 
• improve the test suite until it fi nds all muta-

tions [1]. 

This approach has a few benefi ts. First benefi t is 
that tester can truly assess the quality of  tests, not 
just to measure features of  test execution. When 
modules with high risk are mutated, they can exhib-
it serious consequences. Third benefi t comes with 
choice of  good mutants. The more similar mutations 
are to real defects, the more likely you are to repli-
cate the defect distribution in your program. Muta-
tion is widely considered the strongest test criterion 
in terms of  fi nding the most faults, but is also the 
most expensive. 

Mutation testing is very time-consuming and as 
the number of  mutations can easily go into the thou-
sands, there can be several thousand build processes 
and test suite executions. Because of  this, mutation 
testing requires a fully automated test [7]. There are 
some techniques which can improve effi ciency of  
seeding mutants. First technique is to directly ma-
nipulate binary code. By mutating binary code rather 
than source code, you can eliminate the costly rebuild 
process after a mutation. The drawback is that binary 
code can be harder to analyze, in particular for com-
plicated mutation operators. Second technique is to 
use mutant schemata. A mutation-testing framework 
produces a new mutated program version for every 
single mutation. However, one can also create a sin-
gle version in which individual mutants are guarded 
by runtime conditions. Third technique is to ignore 
no covered code. A mutant can impact the program 
behavior only if  it is actually executed. Therefore, 
programmer should mutate only statements that are 
covered by the test suite and run only those tests that 
exercise the mutation.

MUTATION TESTING GRAMMAR

Mutants can be created by mutating the grammar 
and then generating strings, or by mutating values 
during a production. Mutation can be applied to var-
ious artifacts, but it is primarily used as a program-
based testing method. An input is valid if  it is in the 
language specifi ed by grammar, otherwise it is in-
valid. Any program should reject malformed inputs, 
which is a property that should be verifi ed by tests. 
Testing could be accomplished by producing invalid 
strings from grammar, or by producing strings that 
are valid but that follow different derivation from 
preexisting strings. Both of  these strings are called 
mutants. 

Mutation is always based on set of  mutation op-
erators which are applied to a “ground” string. The 
ground string is the sequence of  program statements 
in the program under test, and the mutants are slight 
syntactic variations of  those statements. During pro-
gram execution, the ground strings are valid inputs, 
and variations (mutants) are invalid inputs. For ex-
ample, a valid input might be a request from a cor-
rectly logged in user in some application. The invalid 
version might be the same request from a user that 
is not logged in. 

Mutation operator represents a rule that specifi es 
syntactic variations of  strings generated from gram-
mar. Mutant represents result of  one application of  
mutation operator over ground string. There are two 
issues in applying mutation operators. First is, should 
more than one mutation operator be applied at the 
same time to create one mutant? Strong empirical 
and theoretical evidence point that only one element 
should be mutated at a time. Second issue is, should 
every possible application of  a mutation operation 
to a ground string be considered? Reason for this 
is that mutation subsumes a number of  other test 
criteria, and if  some operators are not applied, then 
that subsumption is lost. 

When derivation is mutated to produce valid 
strings, the testing goal is to “kill” the mutants by 
causing the mutant to produce different output. Thus, 
mutation coverage (MC) equates to killing the mu-
tants. The amount of  coverage is usually written as 
percent of  mutants killed and is called mutation score. 
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Defi nition for MC is: For each mutant m ∈ M, test re-
quirement contains exactly one requirement, to kill m. 

When a grammar is mutated to produce invalid 
strings, the testing goal is to run the mutants to see 
if  the behavior is correct. The coverage criterion is 
therefore simpler, as the mutation operators are the 
test requirements. In this manner we have mutation 
operator coverage (MOC) and mutation production 
coverage (MPC). Defi nition for MOC is: For each 
mutation operator, test requirement contains exactly 
one requirement, to create a mutated string m that 
is derived using the mutation operator. Defi nition 
for MPC is: For each mutation operator, and each 
production that the operator can be applied to, test 
requirement contains the requirement to create a 
mutated string from that production

The number of  test requirements for mutation 
depends on the syntax as well as the mutation op-
erators. In most situations, mutation yields more test 
requirements than any other test criterion. 

OBJECT-ORIENTED MUTATION

Object-oriented (OO) programming features 
changed the requirements for mutation testing. Non 
object-oriented mutation systems make mutations 
of  expressions, variables and statements, but do 
not mutate type and component declarations. Tradi-
tional programming simply makes use of  the built-in 
types and entities of  a language which are unlikely to 
contain many errors. OO programs are composed 
of  user-defi ned data types (classes) and references 
to the user-defi ned types. It is very likely that user-
defi ned components contain many defects such as 
mutual dependency between members/classes, in-
consistencies or confl icts between the components 
developed by different programmers. 

The effectiveness of  mutation testing heavily de-
pends on the types of  faults the mutation system is 
intended to represent. Class Mutation is a mutation 
technique for OO programs which particularly tar-
gets plausible faults that are likely to occur due to 
features in OO programming [4][8]:

• polymorphism
• method overloading

• inheritance
• information hiding
• static/dynamic states of  objects
• exception handling

A. Polymorphism

In object-oriented systems, it is common for a 
variable to have polymorphic types. Polymorphism 
represents a property that a variable at runtime may 
refer to an object of  a different type. This raises the 
possibility that not all objects that become attached 
to the same variable correctly support the same set 
of  features. This may also cause runtime type errors 
which cannot always be detected at compile time [3]
[5]. Two mutation operators, CRT (Compatible Ref-
erence Type replacement) and ICE (class Instance 
Creation Expression changes), were designed to ad-
dress this feature

CRT operator replaces a reference type with 
compatible types. For instance, the class type S can 
be replaced with the class type T provided that S is a 
subclass of  T, or S can be replaced with the interface 
type K provided that S implements K. 

The original code: 
     S s = new S();

CRT mutants: 
     T s = new S();
     K s = new S();

ICE operator is designed to change the runtime 
type of  an object. This results in calling the con-
structors of  compatible types, which will create the 
objects of  the replaced types. 

The original code:
     S s = new S();

ICE mutant: 
     S s = new T();

B. Method Overloading

A class type may have more than one method 
with the same name as long as they have different 
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signatures. When several versions of  the same name 
method are available, there is a great possibility to 
an unintended method be called [6]. Method over-
loading feature can be handled by manipulating pa-
rameters in method declarations and arguments in 
method invocation expressions. Four mutation op-
erators, POC (method Parameter Order Change), 
VMR (oVerloading Method declaration Removal), 
AOC (Argument Order Change), and AND (Argu-
ment Number Decrease), were designed to address 
this feature.

The POC operator changes the order of  param-
eters in method declarations if  the method has more 
than one parameter. 

The original code:
     public LogMsg(int level, 
  String logKey, 
  Object [] inserts) {…}
     public LogMsg(int level, 
  String logKey, 
  Object insert)  {…}

POC mutant: 
     public LogMsg(String logKey, 
  int level, 
  Object []inserts) {…}

In the example, the POC operator creates a mu-
tant of  the fi rst constructor by swapping the fi rst 
and second parameters of  the constructor. This mu-
tant program is executed without compilation errors 
in spite of  the fact that the types of  the swapped 
parameters are totally different. The reason is that 
the instance creation expressions that call the fi rst 
constructor in the original code are directed to the 
second constructor when the mutant is executed, 
because the second constructor is now better fi tted. 
It is possible because arrays can be assigned to vari-
ables of  type Object in Java. This example shows 
that there is a possibility of  invoking a wrong con-
structor/method among the overloaded construc-
tors/methods due to an unintended parameter type 
conversion.

VMR operator removes a whole method decla-
ration of  overloading/overloaded methods. In this 

way, tester can check whether the right method is 
invoked for the right method invocation expres-
sions. The VMR operator can also provide coverage 
for the method overloading feature, i.e., checking if  
all the overloading/overloaded methods are invoked 
at least once – because test data must reference the 
method in order to notice that that method has been 
deleted. 

AOC operator changes the order of  arguments in 
method invocation expressions, if  there is more than 
one argument. For example, the following mutant 
produced by the AOC operator represents the error 
of  a wrong argument order and as both arguments 
have the same type (Java String), the order change in 
the mutant did not cause compilation problems. 

The original code:
     Trace.entry(“Logger”, “addLogCatalogue”);

AOC mutant:
     Trace.entry (“addLogCatalogue”, “Logger”);

AND operator reduces the number of  arguments 
one by one, if  there is more than one argument in 
method invocation expressions. The original code 
has two different trace methods:

public void trace(int level, Object obj, String text) 
{…}

public void trace(Object obj, String text) {…}

The original code: 
     Trace.trace(Trace.Event,this,sccsid);

AND mutant:
     Trace.trace(this,sccsid);

Although the mutant has two arguments instead 
of  three, it is successfully compiled because class 
Trace has two different trace methods. The original 
code calls the fi rst method while the mutant calls the 
second method.

C. Inheritance

A class type may contain a method with the 
same name and the same signatures as the method 
declared in superclasses or superinterfaces. In this 
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case, the method in a subclass overrides the method 
of  a superclass (method overriding/hiding). When 
there is more than one method of  the same name, 
it is important for testers to ensure that a method 
invocation expression actually invokes the intended 
method [2]. OMR (Overriding Method Removal) 
operator is designed to check that overriding/over-
ridden methods are invoked appropriately. 

OMR operator removes a declaration of  an over-
riding/hiding method in a subclass so that a refer-
ence to the overriding method goes to the overrid-
den/hidden method instead. If  a test set fails to see 
any difference whether the overriding method is 
called or the overridden method is called, it implies 
that the current test set is inadequate. The OMR op-
erator also checks coverage for the method overrid-
ing feature – i.e., overriding and overridden methods 
are invoked at least once. 

A Java class may have two or more fi elds with the 
same simple name if  they are declared in different in-
terfaces and/or in classes. In this case, the fi eld vari-
ables defi ned in a class hide the fi elds of  the same 
name declared in superclasses or superinterfaces. 
While this feature is powerful and convenient, it might 
cause an unintended fi eld being accessed, especially in 
a long and complex class hierarchy. The intent of  the 
HFR (Hiding Field variable Removal) and HFA (Hid-
ing Field variable Addition) operators is to check that 
hiding and hidden fi elds are accessed appropriately

HFR operator removes a declaration of  a hiding 
fi eld variable so the references to that fi eld actually 
access the fi eld in a superclass or a superinterface. 
This operator ensures that a test set is able to distin-
guish referencing a hidden fi eld from referencing a 
hiding fi eld. If  a test set produces the same output 
even if  a hiding fi eld is removed, it indicates the test 
set is inadequate. 

HFA operator adds fi eld variables that appear in 
superclasses/ superinterfaces into the class under 
mutation so that the added fi elds hide those in su-
perclasses/ superinterfaces. 

Both the HFR and HFA operators check the cov-
erage of  fi eld variables in the presence of  inheritance 

because test data must accesses the hiding/hidden 
and inherited fi elds at least once. The difference is 
that the HFA operator checks that inherited fi elds 
are accessed at least once whereas the HFR operator 
checks that hiding/hidden fi elds are accessed. 

D. Information Hiding

Object-oriented languages provide an access con-
trol mechanism that restricts the accessibility/visibil-
ity of  attribute variables and methods. It is an im-
portant testing role to make sure that a certain access 
mode provides and restricts its intended accessibil-
ity/visibility at all times. The intended access control 
can also be broken in connection with other OO fea-
tures such as inheritance. Java provides four possible 
access modes: public, private, protected, and default. 

AMC (Access Modifi er Changes) operator ma-
nipulates Java access specifi ers to address the infor-
mation hiding feature. This operator replaces a cer-
tain Java access mode with three other alternatives. 
The role of  the AMC operator is to guide testers to 
generate enough test cases for testing accessibility/
visibility. For example, a fi eld declaration with a pro-
tected access mode will have three mutants. 

The original code:
     protected Address address;

AMC Mutants:
     public Address address;
     private Address address;
     Address address; //default

E. Static/Dynamic States of  Objects

Java has two kinds of  variables – class and in-
stance variables. The Java runtime system creates 
one copy of  each instance variable whenever an in-
stance of  a class is created (dynamic). Class variables 
are allocated once per class, the fi rst time it encoun-
ters the class (static). 

SMC (Static Modifi er Changes) operator is used 
to examine possible fl aws in static/dynamic states. 
The SMC operator removes the “static” modifi er to 
change a class variable to an instance variable or adds 
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the modifi er to change an instance variable to a class 
variable. 

The original code:
     public static int VALUE = 100;
     private String s;

SMC Mutants:
     public int VALUE = 100; //static is removed
     private static String s; //static is added

F. Exception Handling

The most obvious mistake in exception handling 
is not specifying appropriate exception handlers in 
the required place. In Java, programmer either han-
dles an exception (i.e., catches the exception by de-
claring a try catches block) or propagates it (i.e., de-
clares it to throw in a throws statement of  a method 
declaration). EHR (Exception Handler Removal) 
and EHC (Exception Handling Change) operators 
are declared for the feature of  exception handling. 

EHR operator modifi es the declared exception 
handling statement (try-catch-fi nally) in two differ-
ent ways.

• it removes exception handlers (catch clause) one 
by one when there is more than one handler

• it removes the exception handler and fi nally 
clause in turn when there exist one handler and 
the fi nally clause

The EHR operator is not applied when there 
is only one handler without fi nally clause because 
it simply causes compilation errors. This operator 
gives coverage of  catch and fi nally clauses. 

EHC operator swaps the way of  handling an ex-
ception. It catches the exception that is supposed to 
be propagated by changing a throws declaration to a 
try-catch statement, or propagates the exception that 
is supposed be caught within the method by chang-
ing a try-catch statement to a throws declaration. 

TESTING PROGRAMS WITH MUTATION

Procedure of  testing programs with mutation is 
shown in fi gure 1. 

FIGURE 1 - TESTING PROGRAMS WITH MUTATION

The tester submits the program which should be 
tested. Automated system starts changing original 
statements by creating mutants. Optionally, those 
mutants are then analyzed by a heuristic that detects 
and eliminates as many equivalent mutants as pos-
sible. A set of  test cases is then generated automati-
cally and executed against the original program, and 
then against the program that contains mutants [9]. 
If  the output of  a mutant program differs from the 
original (correct) output, the mutant is marked as 
being dead and is considered to have been strongly 
killed by that test case. Dead mutants are not exe-
cuted against subsequent test cases. Test cases that 
do not strongly kill at least one mutant are consid-
ered to be “ineffective” and eliminated. Once all test 
cases have been executed, coverage is computed as a 
mutation score (ratio of  dead mutants over the total 
number of  non-equivalent mutants). Mutation score 
of  1.00 means that all mutants have been detected. 

A mutation score of  1.00 is usually impractical, so 
the tester defi nes a “threshold” value, which is a mini-
mum acceptable mutation score. If  the threshold has 
not been reached, then the process is repeated, each 
time generating test cases to target live mutants, until 
the threshold mutation score is reached. Up to this 
point, the process has been entirely automatic. To 
fi nish testing, the tester will examine expected out-
put of  the effective test cases, and fi x the program if  
any faults are found. This leads to the fundamental 
premise of  mutation testing: In practice, if  the soft-
ware contains a fault, there will usually be a set of  
mutants that can only be killed by a test case that also 
detects that fault.
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MUTATION TESTING TOOLS

Mutation testing requires automated testing tools, 
which is not a trivial tool to make. Automated mu-
tation tools must be able to parse the program and 
know its language. When the program is run, mutant 
can be killed by one of  two possible scenarios: 

• if  a mutant crashes
• if  the mutant goes into an infi nite loop

The runtime system must handle both of  these 
situations. 

There are four ways to build mutation tools: 
• interpretation approach
• separate compilation approach
• schema-based mutation
• refl ection

A. Interpretation approach

A program under test is fi rst parsed into an in-
termediate form. This is usually a special-purpose 
language designed specifi cally to support mutation. 
This language can easily handle the bookkeeping 
when mutants are killed as well as program failure. 
The usual way to handle infi nite loops is fi rst to run a 
test case on the original program, count the number 
of  intermediate instructions executed, then run the 
test case on a mutant. If  the mutant uses X times 
more intermediate instructions (X has usually been 
set at 10), then the mutant is assumed to be in an 
infi nite loop and marked dead. The mutation testing 
tool directly modifi es this intermediate form which 
represents a special purpose language. 

This approach has several advantages: 
• can easily handle the bookkeeping when mu-

tants are killed
• can respond to program failure and infi nite 

loops
• full control of  the execution
• parsing the program and creating mutants is 

effi cient
• creating mutants by making small changes to 

the intermediate form is simple
• only the rules for changing the intermediate 

form need to be stored on disk

Disadvantages of  this approach are: 
• mutation system must be a complete language 

system: parser, interpreter, and run-time ex-
ecution engine

• complicated to implement and represents a 
signifi cant investment

• slow execution (10 times slower than a com-
piled program). Researchers have found that 
it can take up to 30 minutes to run all mutants 
on a 30 line program.

B. Separate compilation approach

In this approach each mutant is created as a com-
plete program by modifying the source of  the origi-
nal program which is under test. Then each mutant 
is compiled, linked and run. 

Main advantage of  this approach is fast execu-
tion. 

However, there are several disadvantages: 
• diffi culties with bookkeeping when mutants 

are killed
• diffi culties with handling run-time failures 

and infi nite loops
• compilation bottleneck, particularly with large 

programs, but also with small programs that 
run very quickly, because the time to compile 
and link can be much greater than the time to 
execute

• diffi culties  with applying weak mutation

C. Schema-based approach

Schema-based approach consists of  following 
steps:

• MSG (Mutant Schema Generation) encodes 
all mutations into one source-level program, 
called a metamutant

• metamutant is compiled and executed in 
the same environment at compiled program 
speed

These mutation systems are less complex and eas-
ier to build then interpretive systems because they do 
not need to provide the entire run-time semantics and 
environment. A mutant schema has two components, 
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a metamutant and a metamethod set, both of  which 
are represented by syntactically valid constructs. 

In MSG, a program schema represents a template. 
A partially interpreted program schema syntactically re-
sembles a program, but contains free identifi ers that are 
called abstract entities. The abstract entities appear in 
place of  some program variables, data type identifi ers, 
constants, and program statements. A schema can be 
instantiated to form a complete program by providing 
appropriate substitutions for the abstract entities. 

D. Refl ection

Refl ection represents an approach that combines 
the interpretive and compiler-based approach. Re-
fl ection allows a program to access its internal struc-
ture and behavior, and manipulate that structure, 
thereby modifying its behavior based on rules sup-
plied by another program. 

Refl ection is possible only in languages that sup-
port it (Java and C#). Both support refl ection by al-
lowing access to the intermediate form (Java byte-
code). Refl ection can be achieved in three ways:

• Compile-time refl ection allows changes to be 
made when the program is compiled

• Load-time refl ection allows changes to be 
made when the program is loaded into the ex-
ecution system (JVM) 

• Run-time refl ection allows changes to be made 

when the program is executed

Refl ection has several advantages: 
• it allows programmers extract information 

about a class
• it provides an API to modify the behavior of  a 

program during execution
• it allows objects to be instantiated and meth-

ods to be invoked dynamically
• some of  the OO operators cannot be imple-

mented via MSG

CONCLUSION

First paper about mutation testing was published 
30 years ago. Only now mutation testing becomes 
widely implemented. The reason for this is that au-
tomated testing is much more widespread than it was 
10 years ago, and there is no mutation testing without 
it. Computing power keeps on increasing, and we can 
begin to afford the huge computing requirements im-
posed by mutation testing. Modern test case genera-
tors make it fairly easy to obtain a high coverage auto-
matically but still, the test cases are not good enough. 
There is a variety of  dynamic and static optimizations 
that make mutation testing reasonably effi cient and 
also highly effective when it comes to improving test 
suites. All this implies that mutation testing will be-
come much more commonplace in the future.
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