
COMPARATIVE IMPLEMENTATION ANALYSIS OF AES ALGORITHM JITA 1(2011) 2:119-126

COMPARATIVE IMPLEMENTATION ANALYSIS OF AES
ALGORITHM

Boris Damjanović1, Dejan Simić2

1dboris0206@gmail.com, 2dsimic@fon.bg.ac.rs
Faculty of Organizational Sciences, 11000 Belgrade, Serbia

Case study

UDC 659.2:004.651

Abstract: Advanced Encryption Standard (AES) is the fi rst cryptographic standard aroused as a result of public competition
that was established by U.S. National Institute of Standards and Technology. Standard can theoretically be divided into three
cryptographic algorithms: AES-128, AES-192 and AES-256. This paper represents a study which compares performance of well
known cryptographic packages - Oracle/Sun and Bouncy Castle implementations in relation to our own small and specialized
implementations of AES algorithm. The paper aims to determine advantages between the two well known implementations,
if any, as well as to ascertain what benefi ts we could derive if our own implementation was developed. Having compared the
well known implementations, our evaluation results show that Bouncy Castle and Oracle/SUN gave pretty equal performance
results - Bouncy Castle has produced slightly better results than Oracle/Sun during encryption, while in decryption, the results
prove that Oracle/Sun implementation has been slightly faster. It should be noted that the results presented in this study will
show some advantages of our own specialized implementations related not only to algorithm speed, but also to possibilities
for further analysis of the algorithm.

Keywords: computer security, cryptography, algorithms, standards, AES, performance.

INTRODUCTION

In the literature, there is a certain number of Java
cryptographic APIs [10][16] (Application Program-
ming Interfaces). Most of these implementations are
constructed with an intention to, as much as possible
simplify usage of various cryptographic algorithms
and techniques. However, much smaller number of
people is engaged in research and implementation of
individual algorithms and cryptographic techniques.

Constructing small, specialized implementations
of some algorithm which function is devoted to the
specifi c task gives us multiple benefi ts. Such imple-
mentations generally achieve better results accom-
plishing the mission for which they are made for. In
addition, the writing of these programs allows the
author to be well acquainted with the ways of func-
tioning of the individual algorithms and to come up
with new discoveries related to the different points
of view.

This paper represents an empirical study which
compares performance of massive and well known
cryptographic packages in relation to our own imple-
mentations [4] of AES [6][5][3][2][14] algorithm in
Java programming language. In the article, we will
further compare these results with speed measure-
ments of an experiment with AES algorithm exten-
sions below the key size of 128 bits. As a reference
for measuring, we will use two AES implementa-
tions, which are parts of the large cryptographic
packages - Bouncy Castle [11] and Oracle (former
Sun), which both use the Java Cryptography Exten-
sion (JCE) [10][16]. Cryptographic implementations
in the Sun JDK are distributed through several dif-
ferent providers still using name Sun (“Sun”, “Sun-
JSSE”, “SunJCE”, “SunRsaSign”).

Known cryptographic packages and the length of
the keys used in the experiments are:

December 2011 Journal of Information Technology and Applications 119

DOI: 10.7251/JIT1102119D

JITA 1(2011) 2:119-126 DAMJANOVIĆ B., SIMIĆ D.:

1. Oracle/Sun JCE [13] version 1.7 with 128,
192 and 256 bit encryption;

2. Bouncy Castle [11] version 1.46 with 128, 192
and 256 bit encryption.

Comprised in our evaluation, we had four of our
own implementations as well:

1. Implementation of AES standard algorithm
(with 128, 192 and 256 bit key length), each
based on Dr. Gladman’s [9][12] and Bertoni’s
[1] ideas;

2. Implementation of the expanded AES algo-
rithm (with key lengths of 32 and 64 bits), based
on Dr. Gladman’s and Bertoni’s ideas each.

TEST PLATFORM

As a test platform was used an Asus notebook
computer with Intel (R) Core (TM) i5 450M proces-
sor at 2.40 GHz, (without new AES set of instruc-
tions - AES-NI) with 4GB RAM and Seagate@Mo-
mentus@ ST9500325AS hard disk and with the MS
Windows 7 operating system.

As a development environment we used Eclipse
Java EE IDE for Web Developers, Build id:
20110916-0149, Java SE Development Kit 7u1 for
Windows and Java Cryptography Extension (JCE)
for Java SE Development Kit 7u1 for Windows.

IMPLEMENTATION DETAILS

In our own implementation of the AES algo-
rithm we used POJOs (Plain Old Java Objects). In
this implementation we experiment with possible
extensions of this algorithm according to the simple
rules that we will introduce later in the text. Because
of these extensions, our own implementation will
hereinafter be referred to as EAES (Expanded AES).

To determine how fast our implementation is, we
will compare it with implementations of well known
manufacturers that use Java Cryptography Extension
(JCE) [10][16] – Oracle/SUN and Bouncy Castle
[11]. Both implementations are using provider-based
architecture. For more details on the implementation
of various cryptographic algorithms in Java, readers
are referred to [10], [11], [16].

AES algorithm described in FIPS-197 document
[6] transforms 128 bit block of data during 10, 12
or 14 rounds using the initial key lengths of 128,
192 and 256 bit. The initial key is then enlarged to
(10+1)*16, (12+1)*16 or (14+1)*16 bytes in the key
expansion routine. Each round repeats the SubBy-
tes(), MixColumns(), ShiftRows() and AddRound-
Key() transformations. AES authors redefi ne both
addition operation within the GF(28), which is then
conducted by XOR operation at the byte level and
multiplication operation which is thus conducted
as polynomial multiplication with the conditional
modulo polynomial 0x11B. The mentioned multi-
plication is the most time consuming in the aspect
of optimization, because it is intensively used during
the MixColumns() transformation.

The most known software implementations of
AES algorithm are based on Dr. Gladman’s ideas.
These implementations use four lookup tables of
4kB each for encryption, commonly referred to us
as T tables, and four additional tables of same size
for decryption. These tables contain the intermedi-
ate results calculated in advance for several transfor-
mations at once.

Beside the aforementioned eight large tables, we
must point out two smaller tables of 256 bytes in
size each, for SBox and inverse SBox, as well as a
table with calculated values of RCon operation for
which it is usually suffi cient to allocate eleven bytes.
In those implementations the 128 bit block (State) is
represented as a 4x4 byte matrix, and it is processed
on column by column basis.

According to Bertoni’s idea, State matrix is to be
fi rstly transposed then processed on row-by-row ba-
sis. This approach uses only three smaller tables -
SBox, inverse SBox and RCon, therefore consumes
signifi cantly less memory [1], but uses multiplication
more intensively.

HYPOTHESES

As mentioned fastest software implementations of
AES algorithm today are based on ideas of Dr. Brian
Gladman [9][12]. These implementations are charac-
terized by the high processing speed, which is based

120 Journal of Information Technology and Applications www.jita-au.com

COMPARATIVE IMPLEMENTATION ANALYSIS OF AES ALGORITHM JITA 1(2011) 2:119-126

on pre-calculated tables, due to which a great deal of
memory is used. On the other side, there is a very in-
teresting idea of Bertoni that achieves very good per-
formance with signifi cant decrease in memory usage
[1], because the idea is based on a signifi cantly smaller
utilization of pre-calculated tables with interim results.

To conduct the necessary experiments with
higher quality, we implemented both ideas in Java
programming language, so that the implementation
by Dr. Brian Gladman is marked by EaesG, while
slightly changed implementation of Bertoni’s ideas
is marked by EaesB. You may have already assumed
that the letter E in the mark refers to our implemen-
tations that reduce the standard to 32 and 64 bit en-
cryption/decryption.

Experiments to be carried out will serve to test
the following hypotheses:

• Specialized implementation of AES algorithm
shows equally good or better results compared
to the well known cryptographic packages,

• Large cryptographic suites lose a lot of the
time for the fi rst initialization at engine startup,

• Experimental extensions of AES algorithm
for 32 and 64 bit encryption and decryption
are achieving even greater differences in pro-
cessing speed compared to the large crypto-
graphic packages.

TESTING METHODOLOGY

To achieve the highest test results precision, we
implemented four applications named SunAes,
BcAes, EaesB and EaesG. Each individual imple-
mentation was given the same conditions in regard
to processor, memory and hard disk usage. Each
particular implementation was evaluated using the
same test platform as described in section 2. All tests
were conducted by consecutive repetition of mea-
surements on fi les in 512KB-32MB size.

The fi rst series of tests was conducted in such
manner that we measured the time required for ini-
tialization of particular class, loading data from disk,
its processing and saving to disk. Then, to avoid any
caching by operating system and hardware, we ini-
tiated the subsequent application in another folder,

and then the following application in the third fold-
er, etc. After that we computed the arithmetic mean
of the achieved results. This way of testing showed
that large cryptographic packages (such as Oracle/
SUN JCE and Bouncy Castle) consume a lot of time
(from 200 to even 700 ms) for initialization, while
our implementation was signifi cantly faster due to
short initialization time. When we put the same code
in the loop, we got signifi cantly different results, as
you can see from the following example:
infi le_16_bytes.txt, aes128, pass: 1
 Time : 641 ms
infi le_16_bytes.txt, aes128, pass: 2
 Time : 0 ms
infi le_16_bytes.txt, aes128, pass: 3
 Time : 0 ms

CODE 1: TOTAL TIME RESULTS IN LOOP

This way of testing can give us a twisted picture
of large cryptographic packages speed – those are
ultimately optimized and extraordinary fast imple-
mentations. However, in some applications, the ex-
tended time needed for initialization can present a
problem which must be taken into account.

That is why we applied a slightly different solution
in the following testing series. Firstly we slightly al-
tered the source code, to be able to measure only the
time needed for data processing. In accordance with
[7][8] and [15] we conducted additional two measur-
ing series. In the fi rst series we measured the time by
alternate starting of each application individually, to
avoid the infl uence of caching by the operating system
and hardware as much as possible. Achieved results
in this step represent the arithmetical mean of fi ve
conducted measuring sessions, in which we rejected
the highest and lowest result to avoid the infl uence
of other processes in the system. In the second test-
ing series, we put the measurement code in the loop
and executed it for six times within one VM call, after
which we rejected the fi rst result, which, according to
[8] is considered to be the time required for compiling.
We took into account only the time required for ex-
ecution. In the end, we combined two described test-
ing methodologies as to compute the arithmetic mean
of the achieved results from the last two test series.
Finally, the results are presented as the mean number
of milliseconds per megabyte.

December 2011 Journal of Information Technology and Applications 121

JITA 1(2011) 2:119-126 DAMJANOVIĆ B., SIMIĆ D.:

Measurement Results– Standard-Defi ned
AES Algorithm

Hereby we set out the measurement results, with
the aim to rank our implementations – EaesG and
EaesB in comparison to large cryptographic packages.

TABLE 1: 128 BIT ENCRYPTION RESULTS

128-bit
encryption

Sun
(ms)

EaesG
(ms)

BC
(ms)

EaesB
(ms)

512 KB 4 15 11 14

4096 KB 73 84 69 93

8192 KB 144 140 158 175

16384 KB 290 312 293 365

32768 KB 591 577 593 702

ms/MB 18 18 18 22

FIGURE 1: 128 BIT ENCRYPTION RESULTS

TABLE 2: 128 BIT DECRYPTION RESULTS

128-bit
decryption

Sun
(ms)

EaesG
(ms)

BC
(ms)

EaesB
(ms)

512 KB 8 15 13 18

4096 KB 79 82 70 111

8192 KB 152 162 161 214

16384 KB 278 311 292 458

32768 KB 600 614 594 902

ms/MB 18 19 18 27

Although all tested implementations showed im-
pressive speed, generally speaking, our implementa-
tion based on Dr. Gladman’s ideas, Bouncy Castle and
Oracle/SUN implementations provided slightly better
results in the described measuring conditions. Those
implementations gave pretty equal results in measur-
ing of 192 bit and 256 bit encryption and decryption:

 TABLE 3: 192 BIT ENCRYPTION RESULTS

192-bit
encryption

Sun
(ms)

EaesG
(ms)

BC
(ms)

EaesB
(ms)

512 KB 11 16 10 15

4096 KB 94 88 89 105

8192 KB 193 182 166 210

16384 KB 375 364 351 403

32768 KB 721 671 688 846

ms/MB 22 21 21 25

FIGURE 3: 192 BIT ENCRYPTION RESULTS

TABLE 4: 192 BIT DECRYPTION RESULTS

192-bit
decryption

Sun
(ms)

EaesG
(ms)

BC
(ms)

EaesB
(ms)

512 KB 16 14 11 21

4096 KB 88 94 93 139

8192 KB 188 186 171 262

16384 KB 325 354 364 534

32768 KB 653 714 698 1060

ms/MB 21 22 22 33

1
1

1

1

1

2
2

2

2

2

3
3

3

3

3

4
4

4

4

4

0

200

400

600

800

512 4096 8192 16384 32768

Tim
e (

ms
)

File size (KB)

128-bit encryption

(1)Sun (2)EaesG (3)BC (4)EaesB

1
1

1

1

1

2
2

2

2

2

3
3

3

3

3

4
4

4

4

4

0

200

400

600

800

1000

512 4096 8192 16384 32768

Ti
m

e (
m

s)

File size (KB)

128-bit decryption

(1)Sun (2)EaesG (3)BC (4)EaesB

FIGURE 2: 128 BIT DECRYPTION RESULTS
FIGURE 4: 192 BIT DECRYPTION RESULTS

1
1

1

1

1

2
2

2

2

2

3
3

3

3

3

4
4

4

4

4

0

200

400

600

800

1000

512 4096 8192 16384 32768

Tim
e (

ms
)

File size (KB)

192-bit encryption

(1)Sun (2)EaesG (3)BC (4)EaesB

1
1

1
1

1

2
2

2

2

2

3
3

3

3

3

4
4

4

4

4

0

200

400

600

800

1000

1200

512 4096 8192 16384 32768

Tim
e (

ms
)

File size (KB)

192-bit decryption

(1)Sun (2)EaesG (3)BC (4)EaesB

122 Journal of Information Technology and Applications www.jita-au.com

COMPARATIVE IMPLEMENTATION ANALYSIS OF AES ALGORITHM JITA 1(2011) 2:119-126

Once again, our EaesG and Bouncy Castle imple-
mentations encrypt data slightly faster than imple-
mentation based on Bertoni’s idea. We had the least
available information on Bertoni’s idea, according
to [1] probably for Bertoni’s work had been under
patenting process. We therefore gave up making
any attempts to optimize implementation based on
his idea. Yet, it was included in our test, because we
believe that it was an awesome idea with enormous
potential for experiments on standard-defi ned AES
algorithm expansion.

TABLE 5: 256 BIT ENCRYPTION RESULTS

256-bit
encryption

Sun
(ms)

EaesG
(ms)

BC
(ms)

EaesB
(ms)

512 KB 9 15 15 18

4096 KB 110 114 107 136

8192 KB 186 197 209 241

16384 KB 436 394 414 504

32768 KB 835 852 789 998

ms/MB 25 25 25 31

FIGURE 5: 256 BIT ENCRYPTION RESULTS

TABLE 6: 256 BIT DECRYPTION RESULTS

256-bit
decryption

Sun
(ms)

EaesG
(ms)

BC
(ms)

EaesB
(ms)

512 KB 23 17 21 22

4096 KB 91 103 108 149

8192 KB 187 193 214 306

16384 KB 393 405 409 621

32768 KB 770 805 826 1234

ms/MB 24 25 25 38

FIGURE 6: 192 BIT DECRYPTION RESULTS

As we come to 256-bit encryption, all three im-
plementations showed equally good results, but for
the 256-bit decryption, SUN’s implementation has
produced slightly better outcomes, to EaesG and
BC implementations respectively. Hereby we must
stress out that the purpose of the described tests
was not to run a dispute over the speeds of large
cryptographic packages. If we exclude time needed
for initialization, for the shown differences in speed
are still insignifi cant. The complete initial test phase
was conducted in order to create a solid ground for
determining the real gains in speed expected to at-
tain in our subsequent experimental implementation
of 32 and 64 bit expansion of AES algorithm.

EXPERIMENT - DETAILS OF EXPANDED ALGORITHM
IMPLEMENTATION

The development of one’s own implementation
of some cryptographic algorithm makes the essential
advantage as a possibility for further specialization
in certain applications. It is noticeable that a short
and specialized implementation of AES algorithm
produces equally satisfactory results and even faster
than the ones in large multipurpose implementations.
Tested Oracle/SUN JCE and Bouncy Castle imple-
mentations use “provider based” architecture, as it is
shown in Figure 6a. Objects that provide functional-
ity in the Java Cryptography Architecture (JCA) and
its successor Java Cryptography Extension (JCE) are
not visible to those who develop an application. De-
veloper in the case of JCA and JCE address to col-
lections of classes that serve as links that provide
some cryptographic service. Therefore, the men-
tioned multifunctional implementations need more
time for initialization of proper algorithm, and thus
for the execution.

1
1

1

1

1

2
2

2

2

2

3
3

3

3

3

4
4

4

4

4

0

200

400

600

800

1000

1200

512 4096 8192 16384 32768

Ti
m

e (
m

s)

File size (KB)

256-bit encryption

(1)Sun (2)EaesG (3)BC (4)EaesB

256-bit decryption

1
1

1
1

1

2
2

2

2

2

3
3

3

3

3

4
4

4

4

4

0

200

400

600

800

1000

1200

512 4096 8192 16384 32768

File size (KB)

Tim
e (

ms
)

(1)Sun (2)EaesG (3)BC (4)EaesB

December 2011 Journal of Information Technology and Applications 123

JITA 1(2011) 2:119-126 DAMJANOVIĆ B., SIMIĆ D.:

FIGURE 6A: PROVIDER BASED ARCHITECTURE

However, performance gain is not the only bene-
fi t of writing your own implementation of a particu-
lar algorithm. A lot more than mere speed is gained
by acquiring the knowledge needed for mastering the
certain algorithm – knowledge that can be used for
certain improvements of this algorithm. In further
text we will present two experiments that explore the
possible ways for expansion of AES algorithm, re-
lated to 64-bit and 32-bit encryption.

We have already mentioned that the standard-
defi ned AES algorithm transforms the data during
10, 12 or 14 rounds and that the initial key in the
key expansion routine is developed at (10+1)*16,
(12+1)*16 or (14+1)*16 bytes. Hence, AES uses 10
rounds for the 128-bit encryption, and the initial key
is expanded to (10+1)*16=176 bytes. If we continue
to follow this logic, for the 64-bit encryption we can
use 8 rounds, due to which we will expand the initial
key to (8+1)*16=144 bytes, while for the 32-bit en-
cryption we will use 7 rounds, and the initial key will
be expanded to (7+1)*16=128 bytes.

This reduction in the number of operations (via
the reduction in the number of rounds) should result

in certain accelerations, which we must determine by
new series of tests.

Measuring Results – Expanded AES
Algorithm

Based on the previously conducted measuring
sessions we have ranked our implementations in
comparison to well known cryptographic packages.
The purpose of conducting the following series of
tests was to determine the time spared by apply-
ing 64-bit and 32 bit encryption in relation to 256,
192 and 128-bit encryption and decryption. For this
measuring series we also used the formerly described
combination of two testing methodologies to get
more precise results, and all the measurements were
conducted on both of our implementations (EaesG
and EaesB).

The above diagrams show the results of measure-
ments the EaesG algorithm based on Dr. Gladman’s
ideas, which are marked 1 to 5, while the results of
measuring the EaesB algorithm, based on Bertoni’s
ideas are presented with bars 6 to 10. If we observe
each implementation individually, the achieved re-

Application code JCE/JCA API JCE/JCA SPI
clases in Provider

Invocation

Response

Provide internal
clasess

TABLE 8: 256, 192, 128 BIT VS. 64/32 BIT DECRYPTION RESULTS

Decryption EaesG
256

EaesG
192

EaesG
128

EaesG
64

EaesG
32

EaesB
256

EaesB
192

EaesB
128 EaesB 64 EaesB 32

512 KB 17 14 15 12 7 22 21 18 14 11

4096 KB 103 94 82 63 64 149 139 111 94 81

8192 KB 193 186 162 120 107 306 262 214 187 169

16384 KB 405 354 311 246 203 621 534 458 386 325

32768 KB 805 714 614 632 469 1234 1060 902 755 667

TABLE 7: 256, 192. 128 BIT VS. 64/32 BIT ENCRYPTION RESULTS

Encryption EaesG
256

EaesG
192

EaesG
128

EaesG
64

EaesG
32

EaesB
256

EaesB
192

EaesB
128 EaesB 64 EaesB 32

512 KB 15 16 15 16 16 18 15 14 12 16

4096 KB 114 88 84 63 63 136 105 93 79 55

8192 KB 197 182 140 103 94 241 210 175 158 139

16384 KB 394 364 312 270 224 504 403 365 308 271

32768 KB 852 671 577 484 442 998 846 702 608 529

124 Journal of Information Technology and Applications www.jita-au.com

COMPARATIVE IMPLEMENTATION ANALYSIS OF AES ALGORITHM JITA 1(2011) 2:119-126

sults show that the time necessary for data process-
ing is almost proportionally reduced as the number
of algorithm rounds goes down.

CONCLUSION

Tested Oracle/SUN JCE and Bouncy Castle
implementations use “provider based” architec-
ture. According to our experimental results small,
specialized implementations of the AES algorithm
can be eqauly good or even faster than its large and
multi-function counterparts. The multifunctional
implementations take more time for initialization
of proper algorithm or cryptographic tool, thus the
data processing becomes longer.

Our tests have shown that when comparing well-
known implementations, Bouncy Castle produces
slightly preferable performances related to encryp-
tion time, while Oracle/Sun implementation is bet-
ter when the criteria is decryption time. If we com-
pare all implementations, EaesG brings equally good
results as Bouncy Castle and Oracle/Sun when con-
sidering 128-bit encryption but slightly worse results
when it comes to decryption. Both EaesG and BC
appear to have equally preferable outcomes in the

192-bit encryption. However, taking into consider-
ation the process of decryption, it is shown that Or-
acle/Sun implementation runs a bit faster. Finally, as
we come to 256-bit encryption, all three implemen-
tations showed equally good results, while Oracle/
Sun gets a better score in decryption.

Also, it should be mentioned that EaesG imple-
mentation based on Dr. Gladman’s ideas shows sig-
nifi cant improvements to EaesB implementation
founded on Bertoni’s idea no matter if it is related
to encryption or decryption. On the other hand, it
should be noted that EaesB implementation con-
sumes signifi cantly less memory, while still achieving
satisfactory results.

We can point out that the conducted experiments
have proven that AES algorithm can be expanded
to 64 and 32 bit encryption given its high fl exibility.
This can lead to signifi cant accelerations in its opera-
tion. Displayed results show that, depending on the
number of both rounds and implementations, we
can gain as much as 20-30% higher speed compared
to 128 bit encryption and decryption.

From the presented experimental results it is clear
that a certain acceleration can be achieved by con-
structing small and specialized implementation of
AES algorithm instead of the use of the large imple-
mentations of the well-known software manufactur-
ers. But the greatest advantage of constructing our
own implementations is the possibility of further
experimentation with a given algorithm for the pur-
pose of research and comprehensive analysis.

ACKNOWLEDGMENTS

The work presented here was partially supported
by the Serbian Ministry of Science and Technologi-
cal development (project Multimodal biometry in
identity management, contract no TR-32013).

256, 192, 128 vs 64/32 bit encryption

1
1

1

1

1

2
2

2

2

2

3
3

3

3

3

4 4 4

4

4

5 5 5
5

5

6
6

6

6

6

7
7

7

7

7

8
8

8

8

8

9
9

9

9

9

10 10
10

10

10

0

200

400

600

800

1000

1200

512 4096 8192 16384 32768

File size (KB)

Ti
m

e
(m

s)

(1)G256 (2)G192 (3)G128 (4)G64 (5)G32 (6)B256 (7)B192 (8)B128 (9)B64 (10)B32

256, 192, 128 vs 64/32 bit decryption

1
1

1

1

1

2
2

2

2

2

3
3

3
3

3

4 4 4
4

4

5 5 5
5

5

6
6

6

6

6

7
7

7

7

7

8
8

8

8

8

9
9

9

9

9

10
10

10
10

10

0

200

400

600

800

1000

1200

1400

512 4096 8192 16384 32768

File size (KB)

Ti
m

e
(m

s)

(1)G256 (2)G192 (3)G128 (4)G64 (5)G32 (6)B256 (7)B192 (8)B128 (9)B64 (10)B32

FIGURE 7: 256, 192, 128 BIT VS. 64/32 BIT ENCRYPTION RESULTS

FIGURE 8: 128 BIT VS. 64/32 BIT DECRYPTION RESULTS

December 2011 Journal of Information Technology and Applications 125

JITA 1(2011) 2:119-126 DAMJANOVIĆ B., SIMIĆ D.:

REFERENCES

[1] Bertoni, G., et al. (2002). Effi cient Software Implementation of AES on 32-Bit Platforms. CHES 2002: 159-171
[2] Carlos, C., et al. (2006). Algebraic Aspects of the Advanced Encryption Standard, Springer Science-Business Media, LLC.
[3] Daemen J., Rijmen V., (2002). The Design of Rijndael, Springer-Verlag, Inc.
[4] Damjanović, B. (2008), Implementation and extension of AES algorithm, Master’s thesis, Faculty of Organizational Sci-

ences, University of Belgrade,
[5] Dobbertin, H., et al. (2005). Advanced Encryption Standard AES, 4th International Conference, Bonn, Germany, 2004,

Springer-Verlag
[6] Federal Information Processing Standards Publication 197, (2001). Specifi cation for the ADVANCED ENCRYPTION

STANDARD (AES), Available at: http://csrc.nist.gov/publications/fi ps/fi ps197/fi ps-197.pdf (Accessed: December 2011)
[7] Francia, G., et al. (2007). An Empirical Study on the Performance of Java/.Net Cryptographic APIs, Information Security

Journal: A Global Perspective, 16: 6, 344 - 354
[8] Georges, A., et al., (2007). Statistically Rigorous Java Performance Evaluation, Department of Electronics and Information

Systems, Ghent University, Belgium
[9] Gladman, B. (2007). A Specifi cation for Rijndael, the AES Algorithm, Available at: http://gladman.plushost.co.uk/oldsite/

cryptography_technology/rijndael/aes.spec.v316.pdf (Accessed: December 2011)
[10] Hook D., (2005). Beginning Cryptography with Java, Wrox Press
[11] http://www.bouncycastle.org/ (Accessed: December 2011)
[12] http://www.gladman.me.uk/ (Accessed: December 2011)
[13] Java SE security, http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html (Accessed: December

2011)
[14] Konheim, A. (2007). Computer security and cryptography, John Wiley & Sons
[15] Van Etten, D., (2009). Why Many Java Performance Tests are Wrong, Available at: http://java.dzone.com/articles/why-

many-java-performance-test/ (Accessed: December 2011)
[16] Weiss, J., (2004). Java cryptography extensions: practical guide for programmers, Morgan Kaufmann

Submitted: December 13, 2011
Accepted: December 31, 2011

126 Journal of Information Technology and Applications www.jita-au.com

