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INTRODUCTION 
Any data processing in modern information systems is ultimately based on the use of one or another 

numeration system. A numeration system is a symbolic method of representing numbers using signs. 
Modern numeration systems are usually divided into three classes: positional (Place-value), non-
positional and mixed. Despite a significant variety of works in the field of positional numeration systems 
[1-3], we can say that the overwhelming majority of them do not go beyond the traditionally linear 
representation of numbers. 

“Place-value” is a representation of an abstract number by a system of characters (digits) - the 
contents of places - which are named in a certain way (by numbers, symbols or words). The semantics of 
the traditional place-value representation can be expressed as follows: n units of some abstract entity i 
are given the meaning () of a unit of another abstract entity j: n  1i = ni 1j, and further, recursively: 
m  1j = mj 1k. Such representation, in which a certain amount of one entity is associated with a unit of 
another entity, can be called a linear or (1-1)-representation. 

Assume that there are such abstract entities i, whose n units ni are given the meaning of both the unit 
of an abstract entity j (1j) and the unit of an abstract entity k (1k) simultaneously: ni 1j, 1k). Consider 
another situation: to form a unit of an abstract entity k, exactly n units of an abstract entity i and m units 
of an abstract entity j are required: (ni, mj) 1k.  

Aren’t linear numeration systems the methods of constraining efficient data/information processing 
by reducing the semantic content of the data to its numerical value? 

The author's previous works [4, 5] were an attempt to construct semantic numeration systems 
without cardinal semantic operators, but only on the basis of cardinal abstract entities connected in 
some topology. Abstract entities were given an active role both in the formation of the carry and in the 
formation of a structure of connectivity (entanglement) with other abstract entities. 
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PRELIMINARIES [6, 7] 
Understanding the entity as something distinguished in being and having some meaning, we will 

introduce several definitions that concretize the application of this concept in the area covered. 
An abstract entity (Æ) is an entity of arbitrary nature, provided with an identifier name that allows it 

to be distinguished from other entities. For example, a number, a car, a galaxy. Name as entity identifier 
can be either elementary (i) - one-element (letter, digit, word, symbol), or complex (composite, multi-
element), corresponding to abstract coordinates (<i |) of the entity Æ<i | in some semantic variety. For 
example, "the zero bit of a number in binary notation." 

Manifold (Multeity) is the next concept that is important for further presentation. From the many 
different definitions of this concept, we synthesize the following. Multeity - a manifestation of something 
uniform in essence in various kinds and forms, as well as a quality or condition of being multiple or 
consisting of many parts.  

Since in what follows we will deal with the transformation of meanings, we will define the 
corresponding specific type of multeity as semantic. Semantic multeity is an abstract space with no more 
than a countable set of abstract entities, semantically united by the unity of the goal description 
(context). A semantic multeity will be called open if the number of abstract entities in it is countable (at 
least potentially), closed if it contains a finite number of abstract entities and bounded if the number of 
abstract entities in it is finite and unchanged. 

Differences between semantic multeities and manifolds in mathematics are: 
- semantic heterogeneity of entities that make up semantic diversity; 
- goal-setting: a semantic multeity initially includes only those abstract entities that are used 

(potentially can be used) to solve a specific problem; 
- openness: the possibility of new abstract entities generation as a result of transformations. In the 

end, a semantic multeity can form a semantic universe that includes any conceivable abstract entity. 
Cardinal Semantic Multeity (CSM) is a semantic multeity, each element of which is equipped with a 

cardinal characteristic - the multiplicity of a given abstract entity is represented in multeity. From a set-
theoretic point of view, a cardinal semantic multeity is a multiset, the carrier of which is contextually 
conditioned. The elements of cardinal semantic multeity will be called cardinal abstract entities. 

Cardinal Abstract Entity (CÆ) is an abstract entity with a cardinal characteristic CÆi = (i; Ni), where i 
is the name of the cardinal abstract entity, Ni = Card (CÆi) = # (1i,... ,1i), Ni  N. We will assume that the 
named unit 1i is a quantum of the meaning for the abstract entity Æi. 

 
THE CONCEPT OF A CARDINAL SEMANTIC OPERATOR  
This paper can serve as a certain theoretical supplement advantage to the work [8], in which the 

concept of an operator is given the status of conceptual in theory and practice. 
It seems that there is no strict uniform definition of a semantic operator yet. Each application area - 

logic, linguistics, and programming - interprets this concept in its own way. However, it is possible to 
single out a certain semantic invariant that allows you to define the action of the semantic operator (SO) 
as a change/transformation of the meaning of a certain entity (Æi) or a set of entities (Æi, ..., Æk) into 
another meaning (Æj):  Æj = SO(Æi)  or  

Æj = SO(Æi, …, Æk). 
Let us introduce the following basic concept - the concept of a cardinal semantic operator. In essence, 

the action of the cardinal semantic operator is to give a certain number of units ni of the cardinal 
abstract entity CÆi the meaning of unit 1j of the cardinal abstract entity CÆj, (ij): ni  1j. In principle, 
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single out a certain semantic invariant that allows you to define the action of the semantic operator (SO) 
as a change/transformation of the meaning of a certain entity (Æi) or a set of entities (Æi, ..., Æk) into 
another meaning (Æj):  Æj = SO(Æi)  or  

Æj = SO(Æi, …, Æk). 
Let us introduce the following basic concept - the concept of a cardinal semantic operator. In essence, 

the action of the cardinal semantic operator is to give a certain number of units ni of the cardinal 
abstract entity CÆi the meaning of unit 1j of the cardinal abstract entity CÆj, (ij): ni  1j. In principle, 
other options are also possible, for example, when the ni of an abstract entity CÆi is assigned not one, 
but simultaneously several different semantic units of respectively different CÆs: ni (1j,..., 1k). Or, for 
the generation of the unit of meaning 1j of the abstract entity CÆj, the corresponding n-s of several other 
CÆs are simultaneously needed: (ni,…, nk) 1j. 

A Cardinal Semantic Operator is a multivalued mapping of the cardinal semantic multeity on itself, 
which associates a set of entity operands from the multeity with a set of entity images from the same 
multeity, transforming their cardinals using the operations defined by the operator signature: 
Signt(CSO) = (K, Form, |n >w , |r >v ), where K is a kind of operator, Form is a type of operator, |n> is a 
radix vector, and |r> is a conversion vector. The pair (W, V) is a valence of the Cardinal Semantic 
Operator. 

Depending on whether the cardinal value of CÆ-operands changes under the action of the cardinal 
semantic operator, the latter can be representatives of one of three families - transforming operators (.), 
which change the value of the cardinals of both CÆ-operands and CÆ-images; preserving operators [.], 
changing the value of cardinals of CÆ-images and not affecting the value of cardinals of CÆ-operands; 
and complex operators (.], acting on some CÆ-operands as transforming, and on others - as preserving. 
This approach determines the possibility of the existence of three classes of semantic numeration 
systems - transforming, preserving and complex. 

The kind of the cardinal semantic operator indicates the content of the transformations (definition of 
carry and remainder), which are performed both with the cardinals of CÆ-operands and with the 
cardinals of CÆ-images. 

For example, the following kinds of CSOs are possible: 
- radix-multiplicity (: carry pi = Ni/ni remainder  rem Ni = Ni – pini; 
- radix excess value (): pi = Ni - ni; rem Ni = 0; 
- radix excess fact ():  pi = 1  Ni > ni; rem Ni = f(Ni, ni); 
- arbitrary function (f): pi = f(Ni, ni), rem Ni = g(Ni, pi, ni). 
In this paper, we consider the transforming cardinal semantic operators of the radix-multiplicity 

kind. 
We will call the number of CÆ-operands of a cardinal semantic operator its input valence (W), W = 

CÆi,…, CÆj) = dim(|n>), and the number of CÆ-images - its output valence (V), V = CÆk,…, CÆl) = 
dim(|q>). 

Strictly speaking, the output valence of the transforming CSO is determined by the sum of the actual 
output valence and the valence of "feedbacks", returning remainders to CÆ-operands. Then the full 
valence (–arity) of the transforming CSO will be (W, V + W). However, doubling the output valence in 
practice can lead to confusion, so we will usually neglect the valence of the return of reminders and 
write the (full) valence of the transforming CSO as (W, V). 

Radix-vector |n>w = (ni,…, nj)т consists of the particular radices (bases) ni,…, nj, relative to which the 
particular i,…, j-carries pi,…, pj are formed. They further participate in the formation of the common carry 
p (if it's necessary). 

The conversion vector |r>v = (r.k,…, r.l)т consists of the components that determine the "scale factors" 
of the transformation of the common carry into the components of the transformant qk,…, ql, which 
change the values of the cardinals of the CÆ-images. This means that, for example, the carry p formed 
according to a given rule will be associated not with 1j of the cardinal abstract entity CÆj, but with r.j of 
such units. We will call r.j the rate of conversion (j-conversion) of the carry. The introduction of 
conversion rates allows you to create numeration systems with rational bases. 
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The transformant |q>v = (qk,…, ql)т is a direct result of the action of the CSO on the CÆ-operands. 
However, we will consider the transformation complete only after the “recalculation” of the cardinals of 
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The case when the sets of CÆ-operands and CÆ-images of an operator are singleton corresponds to 
the generally accepted positional numeration systems. 

 
FORMS OF CARDINAL SEMANTIC OPERATORS 
Let us define the main forms of cardinal semantic operators of the radix-multiplicity kind. 
L-operator (Line-operator): (, L, ni, rij) – a cardinal semantic operator of valency (W, V) = (1, 1), 

which assigns (gives the meaning of) rij units of the transformant qj, added to the cardinal Nj of the 
abstract entity CÆj, to each ni of the cardinal abstract entity CÆi. 

A schematic representation of the L-operator is shown in Fig.1. 
 

 
 

Figure 1. 
 
When an L-operator acts on a CÆi-operand, the following operations are performed: 
(i)   pi = Ni/ni – calculation of radix-multiplicity, that is, i-carry value;
(ii)  Rem: Ni`= rem Ni = Ni – pini = Ni mod ni – finding the remainder in CÆi; 
(iii) qjpi  rij – calculation of the j-transformant value; 
(iv)  Nj`= Nj + qj – finding the change of the CÆj-image cardinal. 
 
The L-operator of signature ( L, ni, 1j) is basic for many traditional positional numeration systems. 

In particular, for the decimal numeration system: ( L, 10, 1). 
 
D-operator (Distribution operator): (, D, ni, (rij, …, rik)) – a cardinal semantic operator of valency (1, 

v), which assigns the following units to each ni of the cardinal abstract entity CÆi v transformants: rij 
units of j-transformants qj for a cardinal abstract entity CÆj,…, and rik units of k-transformants qk for the 
cardinal abstract entity CÆk. 

A schematic representation of the D-operators D2 is shown in Fig.2. 
 

 
 

Figure 2. 
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When a D-operator acts on a CÆi-operand, the following operations are performed: 
(i)    pi = Ni/ni – determining radix-multiplicity (i-carry value); 
(ii)   Ni`= rem Ni = Ni – pi ni = Ni mod ni – finding the remainder in CÆi; 
(iii)  qj = pi  rij, qk = pi  rik – calculation of partial transformants; 
(iv)  Nj`= Nj + qj, Nk`= Nk + qk – finding the change of the CÆ-images (CÆj, CÆk) cardinals. 
 
Note that the L-operator is a variant of the degenerate D-operator in which all rij, except one, are 

equal to zero. 

F-operator (Fusion operator): (, F, (ni, …, nj), r.k) - a cardinal semantic operator of valency (W, V) = 
(w, 1), which assigns r.k units of the transformant qk to each w-tuple (ni,… ,nj) of CÆ-operands for the 
cardinal abstract entity CÆk. 

A schematic representation of the F-operators 2F and wF is shown in Fig.3. 
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When a 2F-operator acts on CÆi,j-operands, the following operations are performed: 
(i)    pi = Ni/ni, pjNj/nj – calculation of partial carries; 
(ii)   p = min{pi, pj} – calculation of common carry; 
(iii)  Ni`= Ni – pni, Nj`= Nj – pnj – calculation of the remainders in CÆi, CÆj; 
(iv)  qk = pr.k – calculation of the transformant; 
(v)   Nk`= Nk + qk – finding the change of the CÆk-image cardinal. 
 
Since the partial carries pi, ..., pj  will be different, in the general case, the common carry must be 

determined from the condition of the existence of non-negative remainders in all CÆ-operands. This 
condition will be satisfied if we choose the minimal partial carry as the common carry p: p. = min {pi, ..., 
pj}. 

M-operator (Multi-operator): (, M, (ni,… ,nj), (r.k,…, r.l)) - a cardinal semantic operator of valency 
(W, V) = (w, v), which assigns v-tuple conversion coefficients (r.k,…, r.l) of transformants to the w-tuple 
(ni,… ,nj) for CÆ-operands: r.k units of k-transformant qk for the cardinal abstract entity CÆk,…, and r.l 
units of l-transformant ql for the cardinal abstract entity CÆl. 

A schematic representation of the M-operator 2M2 is shown in Fig. 4. 
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When the 2M2-operator acts on CÆi,j-operands, the following operations are performed: 
(i)    pi = Ni/ni,  pjNj/nj – calculation of partial carries; 
(ii)   p = min{pi, pj} – calculation of common carry; 
(iii)  Ni`= Ni – pni, Nj`= Nj – pnj – calculation of the remainders in CÆi, CÆj; 
(iv)  qk = pr.k , ql = pr.l – calculation of the partial transformants; 
(v)   Nk`= Nk + qk, Nl`= Nl + ql – finding the changes of the CÆk,l-image cardinals. 
Examples of cardinal semantic operators execution. 
 

AL(0) AL(1) 
 

AM(0) AM(1) 
 
 
It is easy to see that any of the cardinal semantic operators considered above is a special case of the 

M-operator: L ~ 1M1, Dv ~ 1Mv, wF ~ wM1. However, for the construction of specific numeration systems 
and the analysis of cardinal semantic transforms in them, it is often more convenient to use such 
reduced forms of the M-operator. 

These four cardinal semantic operators form the operator basis of any semantic numeration system. 
 
NUMERATION SPACE. CARDINAL ABSTRACT OBJECT 
To represent complex multistage semantic transformations, mono-operator transformations, as usual, 

are not enough. Let us introduce the concept of a numeration space, the elements of which are the 
numeration methods. By the method of numeration we mean a contextually conditioned method of 
transforming semantic units from a cardinal semantic multeity using cardinal semantic operators. Let us 
formalize the last statement with the concept of a cardinal abstract object. 

Cardinal Abstract Object (CAO) is a collection of cardinal abstract entities connected in a certain 
topology by cardinal semantic operators. The signature of CАОI: 

 
Signt(CAO) = (I; CSM; CSO; STop), 
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where  I is the set of names denoting (naming) methods of numeration, CSM is the cardinal semantic 
multeity, CSO is the set of cardinal semantic operators, STop are the possible topologies of the semantic 
connectivity of cardinal abstract entities by cardinal semantic operators. 

Numeration Space (NS) is an abstract space, the elements of which are cardinal abstract objects. A 
concrete CAOI implements a specific method of numeration I in a numeration space. 

The cardinal abstract entities included in the CAO that have an output, but do not have an input will 
be called initial, with input and output - intermediate, only with input - final, without input and output - 
detached. The main accepted assumption for the numeration methods (i.e. CAO) considered in this work 
is that any initial or intermediate cardinal abstract entity has a single output (associated with only one 
“perceiving” semantic operator) for an arbitrary (finite) number of inputs (transformants of other 
semantically consistent operators). 

The concretizations of the CAO name, the composition of the cardinal semantic multeity, the type of 
operators and the topology of connectivity are determined by the specification of the cardinal abstract 
object. 

 
TOPOLOGY OF SEMANTIC CONNECTIVITY  
The topology of semantic connectivity (STop) is determined by a given semantics of cardinal 

transformations and consists in connecting cardinal abstract entities from a cardinal semantic multeity 
by cardinal semantic operators of a given form. 

The topology of semantic connectivity can be specified: 
- descriptive/textually. For example, "serial connection of L-operators". Suitable for simple topology; 
- in diagram form. For example:     
- analytically: in the form of operator formulas of various types. For example, for 

the above graphical representation from left to right, top to bottom: (2M2|L, D2|2F); 
- in tabular form. 
The topology of semantic connectivity can be both "one operator"-type and "many operators"-type, 

both regular (for example, a 2-lattice, tree), and irregular, periodic or non-periodic, as well as cyclic. 
Linear topology can be specified recursively. For example, (L)m = L(L)m-1.  

Thus, we can say that the positional numeration system in the traditional sense is a set of linearly 
connected cardinal abstract entities with bit semantics. 

 
CARDINAL SEMANTIC TRANSFORMATION. MULTINUMBERS AND MULTICARDINALS 
Let us agree to call a CSO "allowed" if the values of the cardinals of all its operands ensure the 

execution of the given operator. 
Cardinal Semantic Transformation (CST) consists in executing, for a given CAOI, all “allowed” cardinal 

semantic operators. A CST’ step will mean a single execution for a given CAOI of all "allowed" cardinal 
semantic operators. The minimal sequence of CST’ steps, leading to steady values of all cardinals in CAOI, 
will be called a complete CST, and the number of such steps will be called the length of CST. 

A single implementation of the transformation will be called its step. Cardinal-semantic 
transformations can be both mono-operator and multi-operator. A mono-operator transformation is 
always one-step. Multi-operator transformations are usually multi-step. 

The multiset of cardinals of all CÆs from CAOI after an arbitrary step  of a cardinal semantic 
transformations will be called the multicardinal of CAOI of the step  and denoted <AI()> (<AI()> = 
[Ni(), Nj(), …, Nk()]). 
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The multicardinal meaningfully characterizes only the “card-fullness” of CAOI after each step of the 
cardinal semantic transformation, but in no way reflects the semantic aspect of the CST. The 
multicardinal of CAOI before the first step of the transformation (CST) will be called the initial 
multicardinal <AI(0)>, after a certain transformation step  - the intermediate multicardinal <AI()>, 
upon completion of transformations – the final multicardinal <AI()>.  

The holistic structural-cardinal representation of CAOI after the -th step of the cardinal semantic 
transformation will be called the I-multinumber of the step  (multinumber) and denoted by AI(). By 
analogy with the multicardinal, before the first step of CST we will call a multinumber the initial 
multinumber AI(0), after a certain step () of the transformation – the intermediate AI(), upon 
completion of CST – the final multinumber AI(). 

We will assume that the multicardinal determines precisely the meaning of the CAO after the -th step 
of the cardinal semantic transformation, and the multinumber is its sense. Informally, a multinumber is a 
structured multicardinal, and a multicardinal is a de-structured multinumber. 

Thus, a certain I-method of numeration (CAOI) is a contextually determined complete cardinal 
semantic transformation of both multinumbers in the numeration space (NS) and the corresponding 
multicardinals in the cardinal semantic multeity (CSM). 

Any number represented in one or another traditional positional numeration system is a 
multinumber, despite the absence of cardinal semantic operators in the numbers. This is due to both the 
linearity of the traditionally used CSOs, and the insignificant radix variability (negotiated separately), 
which allows you to write numbers into a string without distorting the meaning of the representation. 

 
SEMANTIC NUMERATION SYSTEMS 
Informally, the semantic numeration system (SNS) can be defined as a collection of homogeneous 

numeration methods. 
By the semantic numeration system in the numeration space NS we mean its subspace SNS with the 

given properties determined by the classification features. Here  is the name-identifier of the semantic 
numeration system, due to a set of classification features. 

We propose the following classification of Semantic Numeration Systems: 
(1) by influence on the operand cardinal: transforming or preserving; 
(2) by type of uncertainty: deterministic, stochastic and fuzzy; 
(3) by kind of transformation: radix-multiplicity, radix-excess value; radix-excess fact; 
arbitrary function; 
(4) by kinds of number systems used in the numeration system: natural, integer or 
rational numbers; 
(5) by controllability: autonomous or controlled; 
(6) by variability of the operator parameters (radices and conversion rates): homogeneous (the same 

for all operators) or heterogeneous (different for different operators); 
(7) by topology of operators’ connectivity: linear (with not only L-operators), tree-like, 
lattice, cyclic, amorphous or of a special form. Regular structures can be either isotropic or 

anisotropic, and the latter can be homogeneous or heterogeneous. 
 
Thus, most of the generally accepted "numeration systems", for example, binary or decimal, will 

hardly need to be renamed. Within the framework of the above classification, they are particular (with 
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n=2 and n=10, respectively) methods of numeration of the transforming, deterministic, radix-multiplicity, 
natural, autonomous, linear, homogeneous semantic numeration system. 

 
FUZZY CARDINAL SEMANTIC TRANSFORMATIONS 
In practice, one of the most crucial and common aspects of numerical data is its uncertainty. At 

present, mathematical theories that are considered to treat uncertainty are interval analysis [9], 
probability theory and the theory of fuzzy sets [10]. 

This state of affairs necessitates the development of tools for representing and processing uncertainty 
numerical information, in particular, in the field of semantic numeration systems. Since cardinal 
semantic transformations in semantic operators are basic for any SNS, we will focus on one-step 
transformations. 

In principle, the following variances of the initial fuzziness are possible: 
(i) "Fuzzy input, crisp operator". In this case, at least, one CÆ-operand has a fuzzy cardinal: card(CÆi) 

= 𝑁̃𝑁𝑖𝑖 . 
(ii) "Crisp input, fuzzy operator". All the input cardinals card(Ni), …, card(Nj) are crisp. Some of the 

parameters (n, r) of CSO, or all of them, are fuzzy. 
(iii) "Fuzzy input, fuzzy operator". 
 
If a cardinal semantic operator is fuzzy, there are three possible ways of its performance: 1) when 

some radices are fuzzy with crisp conversion rates; 2) when radices are crisp with some fuzzy 
conversion rates; 3) when both the radices and the conversion rates are fuzzy. 

Let 𝐴̃𝐴 be a continuous triangular fuzzy number and its membership function µ𝐴̃𝐴(x) is defined as [10]: 
 
            0,   x  a, 
µ𝐴̃𝐴(𝑥𝑥)  =   (𝑥𝑥 –  𝑎𝑎)/(𝑎𝑎 –  𝑎𝑎), 𝑎𝑎   𝑥𝑥  𝑎𝑎, 

     (𝑎̅𝑎 –  𝑥𝑥)/(𝑎̅𝑎 –  𝑎𝑎), 𝑎𝑎   𝑥𝑥  𝑎̅𝑎, 
     0,   x  𝑎̅𝑎, 

where x is an element of a support X, (x  X). 
 
So each triangular fuzzy number 𝐴̃𝐴 may be defined as a triple 𝐴̃𝐴  =

 (𝑎𝑎, 𝑎𝑎, 𝑎̅𝑎), where 𝑎𝑎 is a lower bound, 𝑎𝑎 is a mode, and 𝑎̅𝑎 is an upper bound of the fuzzy number 𝐴̃𝐴. 
All arithmetic operations on triangular fuzzy numbers are performed according to the rules of 

interval arithmetic [9, 10]. A feature of the cardinal semantic transformation in the radix-multiplicity 
kind of operators is the presence of the floor function *So, we must introduce a rule for finding the 
floor function of both a fuzzy argument and a complex argument-operation on fuzzy numbers. 

We assume that the floor function of a triangular fuzzy number is a triangular fuzzy number, each 
component of which is the floor function of the corresponding component of the original number. 

Then,  
𝐴̃𝐴(a, 𝑎𝑎, 𝑎̅𝑎)a 𝑎𝑎  𝑎̅𝑎 𝐴̃𝐴  =  (𝑎𝑎, 𝑎𝑎, 𝑎̅𝑎). 

 
Respectively, for the floor function of the complex argument-operation on fuzzy numbers, for 

example, 𝐴̃𝐴  =  (𝑎𝑎, 𝑎𝑎, 𝑎̅𝑎), 𝑛̃𝑛  =  (𝑛𝑛, 𝑛𝑛, 𝑛̅𝑛) we can get the following expression: 
 

𝐴̃𝐴/𝑛̃𝑛(a, 𝑎𝑎, 𝑎̅𝑎)/ (𝑛𝑛, 𝑛𝑛, 𝑛̅𝑛)a/𝑛̅𝑛𝑎𝑎/𝑛𝑛𝑎̅𝑎/n
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
Similarly, expressions for more a complex argument-operation on fuzzy numbers can be obtained. 
Thus, fuzzy cardinal semantic transformation is a cardinal semantic transformation performed 

according to the rules of fuzzy set arithmetic, fuzzy floor function and fuzzy common carry formation. 
 
THE PRINCIPLE OF FUZZY COMMON CARRY FORMATION IN WF AND WMV OPERATORS 
Unlike the comparison of two fuzzy numbers and selection of a fuzzy number that is less than the 

other, in cardinal semantic operators WF and WMV the fuzzy common carry has to be ’synthesized’ based 
on a set of fuzzy partial carries (𝑝̃𝑝𝑖𝑖 , . . . , 𝑝̃𝑝𝑗𝑗). Forming, but not choosing! 

The concept of common carry calculation lies in its formation from the partial carries of each CÆ-
operand of CSO, with guarantee that the cardinals of the remainders are zeroes or natural numbers in 
each CÆ of operands. In case that partial carries are represented as triangular fuzzy numbers, the 
following "min-method" of forming the fuzzy common carry is proposed. 

The fuzzy common carry 𝑝̃𝑝.  =  (𝑝𝑝. , 𝑝𝑝. , 𝑝̅𝑝.) is formed from fuzzy partial carries (𝑝̃𝑝𝑖𝑖, . . . , 𝑝̃𝑝𝑗𝑗) so that its 
lower bound, mode and upper bound are defined as the minimum value of the corresponding bounds 
and the modes of the fuzzy partial carries: 

 
p. = min (pi, ..., pj), 
p. = min (pi, ..., pj), 
𝑝̅𝑝.  =  min (𝑝̅𝑝𝑖𝑖, . . . , 𝑝̅𝑝𝑗𝑗). 

 
Linear ordering of the components: 𝑎𝑎  𝑎𝑎   𝑎̅𝑎 for any 𝐴̃𝐴  =  (𝑎𝑎, 𝑎𝑎,  𝑎̅𝑎) ensures the uniqueness of the 

solution. 
An example of cardinal semantic transformation of fuzzy initial data by crisp 3F-operator is shown in 

fig. 5-7.  
Let the initial cardinals be represented as triangular fuzzy numbers 𝑁̃𝑁𝑖𝑖  =  (9, 31, 45), 𝑁̃𝑁𝑗𝑗  =

 (38, 73, 80), 𝑁̃𝑁𝑘𝑘 = (29, 50, 101). The crisp 3F-operator has radices ni = 5, nj = 10, nk = 10 and the 
conversion rate r.l = 2 (fig.5). 

 

 
Figure 5. 

 
Fuzzy partial carries obtained by the method 𝑝̃𝑝𝑖𝑖 = 𝑁̃𝑁𝑖𝑖ni…, and the fuzzy common carry 𝑝̃𝑝. = (1, 5, 

8) formed by the "min-method" are shown in fig.6. 
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Figure 6. 

 
 
The result of the fuzzy cardinal semantic transformation (fig.7) consists of CÆl-image fuzzy cardinal 

𝑁̃𝑁𝑙𝑙 and the corresponding fuzzy remainders. 
 

 

 
 

Figure 7. 
 
Conclusion 
The undoubted advantages of semantic numeration systems in comparison with existing positional 

ones are: 
- a broader view on numeration systems as a way of representing not only numbers, but also sets, 

multisets, etc.; 
- a variety of structures for representing numerical data within the framework of a single numeration 

method from positional to position-structured; 
- an emphasis on the difference between meaning and sense in numeration systems. Sense as the 

entanglement of meanings and structure. 
The extension of SNS to fuzzy semantic numeration systems makes it possible to take into account in 

the representation of numerical data such types of uncertainty as interval and fuzzy. This makes fuzzy 
semantic numeration systems indispensable in applied artificial intelligence systems. 

It seems important to research the possibility of creating semantic numeration systems with a 
probabilistic type of uncertainty. For applications, it is necessary to explore a number of “mix directions” 
such as combination of different types of uncertainty in one CSO (CAO), for example, fuzzy and 

Conclusion
The undoubted advantages of semantic numera-

tion systems in comparison with existing positional 
ones are:

 - a broader view on numeration systems as a 
way of representing not only numbers, but 
also sets, multisets, etc.;

 - a variety of structures for representing nu-
merical data within the framework of a single 
numeration method from positional to posi-
tion-structured;

 - an emphasis on the difference between mean-
ing and sense in numeration systems. Sense as 
the entanglement of meanings and structure.

The extension of SNS to fuzzy semantic numera-
tion systems makes it possible to take into account 

in the representation of numerical data such types 
of uncertainty as interval and fuzzy. This makes 
fuzzy semantic numeration systems indispensable 
in applied artificial intelligence systems.

It seems important to research the possibility of 
creating semantic numeration systems with a prob-
abilistic type of uncertainty. For applications, it is 
necessary to explore a number of “mix directions” 
such as combination of different types of uncertain-
ty in one CSO (CAO), for example, fuzzy and probabi-
listic, as well as the possibility of combining discrete 
and continuous fuzzy numbers in one cardinal se-
mantic operator.
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