
JITA 3(2013) 2:78-86 A. Božinovski, B. Stojčevska, V. Pačovski:

 ENUMERATION, RANKING AND GENERATION OF
BINARY TREES BASED ON LEVEL-ORDER TRAVERSAL

USING CATALAN CIPHER VECTORS

Adrijan Božinovski , Biljana Stojčevska , Veno Pačovski1 2 3

1bozinovski@uacs.edu.mk, 2stojcevska@uacs.edu.mk, 3pachovski@uacs.edu.mk

Critical review

DOI: 10.7251/JIT1302078B UDC: 579.253:577.2

Abstract: In this paper, a new representation of a binary tree is introduced, called the Catalan Cipher Vector, which is a vector
of elements with certain properties. It can be ranked using a special form of the Catalan Triangle designed for this purpose.
It is shown that the vector coincides with the level-order traversal of the binary tree and how it can be used to generate a binary
tree from it. Streamlined algorithms for directly obtaining the rank from a binary tree and vice versa, using the Catalan Cipher
Vector during the processes, are given. The algorithms are analyzed for time and space complexity and shown to be linear for
both.

The Catalan Cipher Vector enables a straightforward determination of the position and linking for every node of the binary
tree, since it contains information for both every node’s ancestor and the direction of linking from the ancestor to that node.
Thus, it is especially well suited for binary tree generation. Using another structure, called a canonical state-space tableau, the
relationship between the Catalan Cipher Vector and the level-order traversal of the binary tree is explained.

Keywords: Enumeration, Rank, Generation, Binary tree, Level-order traversal, Catalan Cipher Vector, Canonical State-
Space Tableau

INTRODUCTION

Enumeration of binary trees means that every bi-
nary tree is linked to a unique linear representation,
usually in a form of a sequence of integers or char-
acters. Since there are Cn diff erent binary trees of n
nodes, with Cn being the n -th Catalan number, there
should be Cn diff erent representations to uniquely
identify the trees. Every representation can be given
a rank, usually a single integer, which establishes a
relation of strict order between the binary trees. Th e
conversion from a representation to a rank is usually
done by using a Catalan Triangle, in a form that best
suits the given representation.

Th e research in enumeration of binary trees has
produced results including enumeration using bit
strings [4, 8, 13] and integer sequences [5, 10, 11,

12]. Enumeration using integer sequences has been
further subdivided into enumeration by Codewords
[9, 14], weights [7] and distance [6]. More recently,
enumeration using Catalan combinations [3] has
been introduced.

Th e ranking of a binary tree is done by obtaining
a unique value from the binary tree or its enumera-
tion, which gives it a certain rank (i.e. number in a
sequence) among other binary trees of a given size.
Th e generation of a binary tree from its enumera-
tion or rank represents the actual formation of the
binary tree from its representation, whether it is the
enumeration or the rank.

Th is paper introduces a new way of enumeration
of a binary tree, called a Catalan Cipher Vector, and
a way to transform that enumeration into previous

78 Journal of Information Technology and Applications www.jita-au.com

Enumeration, Ranking and Generation of Binary Trees Based
on Level-Order Traversal Using Catalan Cipher Vectors JITA 3(2013) 2:78-86

forms and vice versa. In particular, it will be shown
how this enumeration relates to the level-order tra-
versal of the binary tree. Streamlined algorithms will
be presented, by which the rank of a binary tree is
obtained from the generated binary tree and vice
versa, during which the corresponding Catalan Ci-
pher Vector elements will be obtained and directly
utilized. Th e algorithms will be analyzed for time and
space complexity.

INTRODUCING THE CATALAN CIPHER VECTOR

A Catalan Cipher Vector is the vector v = [v0 v1 v2
... vn-1] which satisfi es the following properties:

1) v0 = 0;

2) vi-1 + 1 ≤ vi ≤ 2i, for i = 1,2,3, ... , n - 1 and vi N.

Listing all distinct Catalan Cipher Vectors with
lengths n shows that there are Cn such vectors. In Ta-
ble 1, all Catalan Cipher Vectors are listed for n = 4,
alongside the corresponding Codewords and Catalan
combinations (the index of the fi rst element in every
representation is 0, and that element’s value is also al-
ways 0). Th e relationships among the representations
are also given at the bottom of the table. Unlike in
the Codewords and the Catalan combinations, the el-
ements in the Catalan Cipher Vectors are never equal
to one another.

THE CANONICAL STATE-SPACE TABLEAU AND ITS
CONNECTION TO THE CATALAN CIPHER VECTOR

Th e usefulness of the Catalan Cipher Vector can
be demonstrated by using a special structure, a state-
space tableau. In it, the binary tree is represented by
using a tableau with dimensions n 3, where the fi rst

Rank Codeword d Catalan combination c Catalan Cipher Vector v

0

1

2

3

4

5

6

7

8

9

10

11

12

13

TABLE 1. List of Codewords, Catalan combinations and
Catalan Cipher Vectors for n = 4

December 2013 Journal of Information Technology and Applications 79

JITA 3(2013) 2:78-86 A. Božinovski, B. Stojčevska, V. Pačovski:

(left-hand) column contains the symbols represent-
ing the values of the nodes of the tree, the second
(middle) one contains the symbols rep, resenting
the values of the nodes that the elements in the fi rst
column of the corresponding rows have as their left
sub-nodes, and the third (right-hand) one contains
the symbols representing the values of the nodes that
the elements in the fi rst column of the corresponding
rows have as their right sub-nodes. In other words,
the fi rst column contains a node of the binary tree,
the second column of that row contains that node’s
left sub-node (if the fi eld is non-empty) and the third
column of that row contains that node’s right sub-
node (if the fi eld is non-empty). Th e root of the tree
is the node of which the value is not found in the
second or third column of the tableau (since the root
does not have an ancestor node). Because a tree has
at least one leaf, at least one of the rows in the tableau
will have no values in the second and third column
(since a leaf does not have any other nodes as sub-
nodes). Th is is because a tree with n nodes has n – 1
edges: in a tableau of 3n fi elds, n are occupied in
the fi rst column and n – 1 in the second and third
column, which leaves n + 1 empty fi elds; of those, at
least two will be in the same row.

In the state-space tableau, it is irrelevant wheth-
er the rows are shuffl ed, since the structure of the
binary tree is uniquely determined by the position
relative to the columns, especially the second and
third column, and not the rows. Th e row that has the
elements in the second and third column as empty
will be a leaf, and the element that is not found in
the second and third column, but is present in the
fi rst one, will be the root. Th is is shown in Figure
1, where in all tableaux A is the root (it is present in
the fi rst, column, but not in the second and third
column), while C and D are leaves (they have blank
fi elds in the second and third column of their respec-
tive rows).

Since all state-space tableaux for a given binary
tree are equivalent, it is necessary to choose one of
them, to be worked with. Th e best choice is to select
the tableau where the fi rst row is the one that repre-
sents the root, and all other nodes are ordered in such
a way that their vertical sequence in the fi rst column
follows the horizontal sequence in the second and

third column. Such a state-space tableau is called the
canonical state-space tableau. For example, Figure 1b
is the canonical state-space tableau for the binary tree
in Figure 1a.

a) b) c) d)

FIGURE 1. a) A binary tree; b) Its canonical state-space tableau;
c), d) Other equivalent state-space tableaux

Table 2 contains all binary trees for n = 4 and
their corresponding canonical state-space tableaux
and Catalan Cipher Vectors. For clarity, the elements
in the canonical state-space tableaux are indexed,
both with subscript and superscript indices. Th e sub-
scripted indices, in the fi rst column, represent the
indices of the values stored in the nodes of the tree,
obtained by following some traversal of the binary
tree. Th e superscripted indices, in the second and
third column, are sequential, starting with 1 at the
top row in the second column and moving to the
right and down, and enumerating only the elements
in those two columns. If the fi eld with a given index
in the second or third column is non-empty, it rep-
resents the value stored in the node, which the node
in the given row has as a left sub-node (if the fi eld is
in the second column, i.e. has an odd index) or right
sub-node (if the fi eld is in the third column, i.e. has
an even index). An index of 0 denotes the root, and
v0 = 0 for every Catalan Cipher Vector, since the root
does not have an ancestor. Th e elements of the Cata-
lan Cipher Vector are also indexed with subscripted
indices, to demonstrate the connection with the in-
dices of the corresponding elements of the fi rst col-
umn of the canonical state-space tableau.

80 Journal of Information Technology and Applications www.jita-au.com

Enumeration, Ranking and Generation of Binary Trees Based
on Level-Order Traversal Using Catalan Cipher Vectors JITA 3(2013) 2:78-86

Rank Binary tree Canonical state-space tableau Catalan Cipher Vector v

0

1

2

3

4

5

6

7

8

9

TABLE 2. All binary trees with their corresponding canonical state-space tableaux and Catalan Cipher Vectors for n = 4

December 2013 Journal of Information Technology and Applications 81

JITA 3(2013) 2:78-86 A. Božinovski, B. Stojčevska, V. Pačovski:

Th e benefi t from the Catalan Cipher Vector is that
it directly determines the topology of the binary tree,
i.e. the connections between the nodes. Th e element
with index 0 (i.e. the root) can have elements con-
nected to it with values, in the Catalan Cipher Vec-
tor, of 1 and 2 only, which corresponds to its left and
right sub-nodes, respectively, in the corresponding
canonical state-space tableau. Th e element with in-
dex 1 can have elements connected to it with values,
in the Catalan Cipher Vector, of 3 and 4 only etc.
In other words, the element with index i can have
connections to elements with values, in the Catalan
Cipher Vector, of 2i + 1 and 2i + 2 only. Th is means
that the index of the ancestor node for the node with
index i (for i ≥ 1) is directly obtainable from the cor-
responding value vi of the Catalan Cipher Vector as

, if vi is odd, or , if vi is even. Furthermore,
the direction of linking from the ancestor to the cur-
rent node is also directly obtainable, since, following
the canonical state-space tableau, the current node
will be its ancestor’s left sub-node if vi is odd, or right
sub-node if vi is even.

As an example from Table 2, the tree with rank 12
has the Catalan Cipher Vector of [0 2 4 5]. Viewing
the node with index 1 (in this example, with informa-
tion B), the value of the corresponding element from
the Catalan Cipher Vector is v1 = 2. Since v1 is even,
the node is its ancestor’s right sub-node and its ances-
tor is the node with the index (i.e. the

root, with information A). On the other hand, the
value of the Catalan Cipher Vector for the node with
index 3 (in this example, with information D) is odd
(v3 = 5), so the node is its ancestor’s left sub-node
and its ancestor is the node with the index
(i.e. the node with information C).

Th e Catalan Triangle

To establish a connection between the representa-
tion of the binary tree and its rank, several researchers
[7, 11, 13] have utilized various forms of the Catalan
Triangle. Th e form introduced in this paper is similar
to the one used by [3], and is a transposed version of
it. Figure 3 shows the Catalan Triangle that will be
used in this paper, for n = 4. For clarity, the Catalan
Triangle will be referred to as CT, and its elements
will be given by their indices. For example, in Figure
2, CT2, 1 = 3.

ij 0 1 2 3
0 14
1 9 5
2 4 3 2
3 1 1 1 1

FIGURE 2. A Catalan Triangle CT for n = 4

A closer examination of the Catalan Triangle in
Figure 2 reveals that its elements can be obtained it-
eratively. Figure 3 presents the relationships among
the elements of the Catalan Triangle in Figure 2.

10

11

12

13

82 Journal of Information Technology and Applications www.jita-au.com

Enumeration, Ranking and Generation of Binary Trees Based
on Level-Order Traversal Using Catalan Cipher Vectors JITA 3(2013) 2:78-86

ij 0 1 2 3

0 CT1,0 + CT1,1

1 CT2,0 + CT1,1 CT2,1 + CT2,2

2 CT3,0 + CT2,1 CT3,1 + CT2,2 CT3,2 + CT3,3

3 1 1 1 1
FIGURE 3. Relationships among the elements of the Catalan

Triangle for n = 4

In this Catalan Triangle, and any other for n ≥ 1,
all elements in the bottom row are 1, every element
on the diagonal is the sum of the element below it
and the element below and right to it, and every oth-
er element is a sum of the element below it and the
element to the right of it. Th erefore, the elements of
the Catalan Triangle can be obtained as

An algorithm which initializes the Catalan Triangle
using the aforementioned formula, for a given ,
would be optimized for space and time, in a sense
that the memory occupied would be only as much
as needed, and that every element would be updated
only once. Nevertheless, this means that there would
be memory units utilized and as many
time units for updating them, which would make
such an algorithm for space and time com-
plexity. However, once the Catalan Triangle would
be initialized, all other algorithms would utilize the
information stored in it and their performances
would be enhanced.

Algorithms for Converting between the Rank
and the Binary Tree
In this paper, the algorithms will be presented in

pseudocode that resembles the C++ programming
language, where the keywords will be displayed in
italic type. Th e keyword ref means that the value
is passed by reference, i.e. that it will be modifi ed
within the algorithm and that its modifi ed version
will be available after the algorithm ends. Th e key-
word defi ne is used to defi ne auxiliary variables or
references within the algorithm. Th e keyword new
means that memory will be assigned to the reference
it aff ects. Th e keyword array means that the memory
assigned to the reference will be an array with a speci-
fi ed size. Th e keyword node means that the memory

assigned to the reference will be of a type of a binary
tree node. Th e keyword isEmpty is an algorithm that
returns true if a queue is empty and false otherwise.
Th e keywords enqueue and dequeue are algorithms
for enqueuing into or dequeuing from a queue, re-
spectively. Th e keywords leftSubNode and rightSub-
Node refer to a left sub-node and a right sub-node of
a given node, respectively. Other keywords, as well as
special characters, retain their corresponding mean-
ings and functions from the C++ language.

An effi cient algorithm for obtaining a Catalan
combination from a given rank is given in [3]. It
can be slightly modifi ed to produce a correspond-
ing Catalan Cipher Vector as a result, because of the
interchangeability between a Catalan combination
and a Catalan Cipher Vector (Table 1). Since each
element of the Catalan Cipher Vector determines the
predecessor of the corresponding node in the binary
tree, as well as whether it is its predecessor’s left or
right sub-node, the binary tree can be generated im-
mediately after obtaining each of its elements. Since
the root does not have a predecessor, it can be gener-
ated directly, without linking it to any other node.

Algorithm rank2tree (Figure 4a) shows how to ob-
tain the binary tree for a given rank. First the Catalan
Cipher Vector element is obtained and then a new
node of the binary tree is generated, for which the
index of its predecessor and the direction of linking
from it is calculated, based on the value of the ele-
ment of the vector. If the current node is the root, no
linking takes place; else, the current node is linked to
the predecessor node. All nodes are generated in an
array, and only the fi rst node of the array is returned,
which is the root of the tree.

Algorithm val (Figure 4b) is an auxiliary algorithm
that generates values of the information fi elds for the
nodes of the trees based on their indices, which in
this case is set to return the index itself as the infor-
mation fi eld of the node. Arbitrary logic can be used
if it needs to return diff erent information fi elds based
on the indices (for example, the trees in Figures 1
and 2 and Table 1 have the letters of the alphabet
stored in the information fi elds of the nodes).

December 2013 Journal of Information Technology and Applications 83

JITA 3(2013) 2:78-86 A. Božinovski, B. Stojčevska, V. Pačovski:

rank2tree(rank, CT, n){
 defi ne i, base, v, tn;
 i = 0; base = 0;
 v = new array(n);
 tn = new array(n);
 tn[0] = new node(val(0));
 while(i < n){
 while((base < n) && (CT[i][base] <= rank)){
 rank = rank - CT[i][base];
 base++;
 }
 v[i] = base+i;
 tn[i] = new node(val(i));
 if(i != 0)
 if(v[i]%2 != 0)
 tn[v[i]/2].leftSubNode = tn[i];
 else
 tn[v[i]/2 - 1].rightSubNode = tn[i];
 i++;
 }
 return tn[0];
}

val(ind){
 return ind;
}

a) b)
FIGURE 4. a) An algorithm for obtaining the binary tree of
a given rank; b) The auxiliary algorithm for obtaining the

value of a node of the binary tree, based on its index

Th e time complexity analysis of rank2tree is con-
cerned with the overhead from calculating the value
of an individual Catalan Cipher Vector element, based
on the rank, by traversing the Catalan Triangle. In the
worst case [3] it takes time units and in the best
case it takes time units to obtain an individual
element of the vector from the given rank. Since each
of the nodes of the tree will be generated once (and
since the algorithm val is), this means that the
overall time complexity of rank2tree is . For the
space complexity, it can be seen that the only memo-
ry elements with variable sizes are the two arrays that
represent the intermediate Catalan Cipher Vector and
the nodes of the binary tree respectively. Th erefore, the
space complexity of this algorithm is also .

To obtain the rank for a given binary tree, fi rst the
Catalan Cipher Vector would need to be obtained from
the tree and then the total rank would be calculated by
the contribution from each element of the vector. Th e
Catalan Cipher Vector is linked with the canonical state-
space tableau in which the left and right sub-nodes for
every node are represented. To obtain each element of the
Catalan Cipher Vector from each node of the tree, the
tree would need to be traversed in a way so that, for a
given root, fi rst the left sub-node would be traversed and
then the right sub-node, but without going into recur-

sion, i.e. the traversal would be by depth. By defi nition
[2], this is level-order traversal and it is therefore used as
the traversal of choice for obtaining each element of the
Catalan Cipher Vector for each node.

Algorithm tree2rank (Figure 5a) shows how each
element of the Catalan Cipher Vector is obtained fol-
lowing the level-order traversal of the tree. When it is
obtained, it is used to update the overall rank by us-
ing algorithm update (Figure 6b). Since tree2rank in-
corporates the level-order traversal of a tree, which is a

 algorithm, its time complexity analysis requires
an analysis of algorithm update. update contains a loop
which runs only if displacement occurs, of the column
of the Catalan Triangle under consideration. Th is hap-
pens when there is a change in the value of an element
of the Catalan combination () relative to
the previous element () and the
loop will not run if those two elements are identical.
Th e numbers of displacements from the previous to the
next element in the Catalan combination (or Catalan
Cipher Vector) are actually the elements of the corre-
sponding Codeword, and the sum of all elements in the
Codeword for a given is at most (examples for

 are given in Table 1). Th us, when no displace-
ment occurs, there are movements through the Cata-
lan Triangle, and this is the best case, i.e. the algorithm
is . Th e worst-case scenario occurs when there are

 displacements in the Catalan Triangle, which
means there are movements,
i.e. the algorithm is . Th is means that the time
complexity of update is , so the overall time com-
plexity of tree2rank is also .

For the space complexity analysis, it can be seen
that tree2rank requires an array v of integers, which
represents the resulting Catalan Cipher Vector, and a
queue q of nodes, which will occupy various amounts
of memory, depending on the tree being traversed. As-
suming that each node occupies units of memory,
and the integers each take a unit of memory, the space
complexity can be analyzed. In the best case, one of
a degenerate tree, there will be only one node in the
queue during the level-order traversal, which means
that the total memory usage will be and thus
the space complexity will be . In the worst case,
that of a complete binary tree, for every node dequeued
two more nodes will be enqueued, so there will be at

84 Journal of Information Technology and Applications www.jita-au.com

Enumeration, Ranking and Generation of Binary Trees Based
on Level-Order Traversal Using Catalan Cipher Vectors JITA 3(2013) 2:78-86

most nodes in the queue and thus the full memo-
ry usage will be , i.e. the
space complexity will be . Th erefore, the space
complexity will also be .

FIGURE 5. a) An algorithm for calculating the rank from a
given binary tree. b) An auxiliary algorithm for updating the
rank given the Catalan Cipher Vector and the index of the

element which contributes to the overall rank

Special Forms of the Binary Trees Obtained
from Certain Ranks
Th e goal of the enumeration of binary trees is to

establish a 1-to-1 relation between a binary tree and
its representation. In this paper, every binary tree has
a unique Catalan Cipher Vector and a unique rank
related with it. Th e advantage of the ranking system
presented in this paper is that certain ranks always
produce certain forms of the binary trees. It can be
viewed in Table 2, for example.

Th e rank of 0 is equivalent to the initial Catalan Ci-
pher Vector, where each element of the vector has the

value of its index, or every vi = i, for 0 ≤ i ≤ n – 1.In the
canonical state-space tableau, this corresponds with a
tableau where the second and third column would be
fi lled up as follows: fi rst the second column of the fi rst

row, then the third column of the fi rst row, then the
second column of the second row, then the third col-
umn of the second row and so on. In other words, ev-
ery node will obtain fi rst a left then a right sub-node,
before the same thing happens for the next node in the
traversal. Since the traversal is level-order, the levels of
the tree will be fi lled from left to right and the nodes
will have both left and right sub-nodes, or only a left
sub-node (if there is an even number of nodes; there
will be only one such node), or no sub-nodes (such
will be the leaves). Th is means that all levels will be
completely fi lled, except the last level, where all nodes
will be positioned as far left as possible. Th is is the
defi nition of a complete binary tree [1]. Th erefore, it
can be said that algorithm rank2tree on Figure 5 will
create the complete binary tree of nodes, if the given
rank is 0. Equivalently, a tree of rank 0 is a complete
binary tree for any number of nodes , when using

tree2rank(t, CT, n){
 defi ne q, v, i, row, rank, p;
 v = new array(n);
 i = 1;
 row = 0;
 rank = 0;
 q.enqueue(t);
 v[0] = 0;
 while(!q.isEmpty()){
 p = q.dequeue();
 if(p.leftSubNode != NULL){
 q.enqueue(p.leftSubNode);
 v[i] = 2*row + 1;
 update(rank, CT, v, i);
 i++;
 }
 if(p.rightSubNode != NULL) {
 q.enqueue(p.rightSubNode);
 v[i] = 2*row + 2;
 update(rank, CT, v, i);
 i++;
 }
 row++;
 }
 return rank;
}

update(ref rank, CT, v, i){
 defi ne prev, next, j;
 prev = v[i-1]-(i-1);
 next = v[i]-i;
 for(j = prev; j < next; j++)
 rank = rank + CT[i][j];
}

a) b)

December 2013 Journal of Information Technology and Applications 85

JITA 3(2013) 2:78-86 A. Božinovski, B. Stojčevska, V. Pačovski:

algorithm rank2tree. For
, the tree with rank 0 is a full binary tree.

Th e rank of yields a Catalan Cipher Vec-
tor where In the ca-
nonical state-space tableau, this corresponds with
a tableau where only the third column is fi lled for
every row except the last. In the generated tree, this
means that every node (except the last) will have only
a right sub-node, which is a feature of a degenerate
tree. Th erefore, it can be said that algorithm rank-
2tree on Figure 5 will create a degenerate tree of
nodes, if the given rank is . Equivalently, a
tree of rank is a degenerate tree for any num-
ber of nodes , when using algorithm rank2tree.

CONCLUSION

A new way of enumerating binary trees, called the
Catalan Cipher Vector, is introduced. Another repre-
sentation, the canonical state-space tableau, helps to
show how the Catalan Cipher Vector determines the

entire topology of the binary tree. Algorithms are giv-
en which show how to obtain the rank from a given
binary tree and vice versa, using the Catalan Cipher
Vector within the algorithms themselves. It is shown
how, following those algorithms, certain ranks al-
ways produce certain forms of the binary trees. Since
the algorithms for conversion from a binary tree to
its respective rank and vice versa are linear in both
time and space complexity, while utilizing the Cata-
lan Cipher Vector as an intermediate result, it is an
effi cient representation. To the best of the knowledge
of the authors, the Catalan Cipher Vector is the fi rst
enumeration that utilizes level-order traversal to gen-
erate the binary tree from itself, and it is their belief
that it is therefore also more intuitive and elegant.

Authorship statement
Author(s) confi rms that the above named article is an original work, did
not previously published or is currently under consideration for any other
publication.

Confl icts of interest
We declare that we have no confl icts of interest.

REFERENCES
[1] Black, P. E. “complete binary tree”, in Dictionary of Algorithms and Data Structures [online], Paul E. Black, ed., U.S. National

Institute of Standards and Technology. 26 May 2011. Available from: http://www.nist.gov/dads/HTML/completeBinaryTree.
html. Accessed on July 4, 2013

[2] Black, P. E. “level-order traversal”, in Dictionary of Algorithms and Data Structures [online], Paul E. Black, ed., U.S. National
Institute of Standards and Technology. 26 May 2011. Available from: http://www.nist.gov/dads/HTML/levelOrderTraversal.
html. Accessed on July 30, 2013

[3] Črepinšek, M. and Mernik, L. (2009). An Effi cient Representation for Solving Catalan Number Related Problems. International
Journal of Pure and Applied Mathematics, Vol. 56, No. 4, 589-604.

[4] M. C. Er. (1985). Enumerating Ordered Trees Lexicograpically. Th e Computer Journal, Vol. 28, No. 5, 538-542.
[5] Knott, G. D. (1977). A Numbering system for binary trees. Communications of the ACM, Vol. 20, No.2, 113-115.
[6] Mäkinen, E. (1987). Left Distance Binary Tree Representations. BIT Numerical Mathematics, Vol. 27, No. 2, 163-169.
[7] Pallo, J. M. (1986). Enumerating, Ranking and Unranking Binary Trees. Th e Computer Journal, Vol. 29, No. 2, 171-175.
[8] Proskurowski, A. (1980). On the generation for binary trees. Journal of the ACM Vol. 27, 1-2.
[9] Roelants van Baronaigen, D. (1991). A loopless algorithm for generating binary tree sequences. Information Processing Letters

39, 189-194.
[10] Rotem, D. and Varol, Y. L. (1978). Generation of binary trees from ballot sequences. Journal of the ACM, Vol. 25, No.3, 396-404.
[11] Ruskey, F. and Hu, T. C. (1977). Generating Binary Trees Lexicographically. SIAM Journal on Computing, Vol. 6, No. 4, 745-758.
[12] Xiang, L., Tang, C. and Ushijima, K. (1997). Grammar-Oriented Enumeration of Binary Trees. Th e Computer Journal, Vol. 40,

No. 5, 278-291.
[13] Zaks, S. (1980). Lexicographic Generation of Binary Trees. Th eoretical Computer Science, Vol. 10, 63-82.
[14] Zerling, D. (1985). Generating binary trees using rotations. Journal of the ACM, Vol. 27, 694-701.

Submitted: July 31, 2013.
Accepted: December 23, 2013.

86 Journal of Information Technology and Applications www.jita-au.com

