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Abstract: In this paper, a new representation of a binary tree is introduced, called the Catalan Cipher Vector, which is a vector 
of  elements with certain properties. It can be ranked using a special form of the Catalan Triangle designed for this purpose. 
It is shown that the vector coincides with the level-order traversal of the binary tree and how it can be used to generate a binary 
tree from it. Streamlined algorithms for directly obtaining the rank from a binary tree and vice versa, using the Catalan Cipher 
Vector during the processes, are given. The algorithms are analyzed for time and space complexity and shown to be linear for 
both.

The Catalan Cipher Vector enables a straightforward determination of the position and linking for every node of the binary 
tree, since it contains information for both every node’s ancestor and the direction of linking from the ancestor to that node. 
Thus, it is especially well suited for binary tree generation. Using another structure, called a canonical state-space tableau, the 
relationship between the Catalan Cipher Vector and the level-order traversal of the binary tree is explained.
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INTRODUCTION

Enumeration of binary trees means that every bi-
nary tree is linked to a unique linear representation, 
usually in a form of a sequence of integers or char-
acters. Since there are Cn diff erent binary trees of n  
nodes, with Cn being the n -th Catalan number, there 
should be Cn diff erent representations to uniquely 
identify the trees. Every representation can be given 
a rank, usually a single integer, which establishes a 
relation of strict order between the binary trees. Th e 
conversion from a representation to a rank is usually 
done by using a Catalan Triangle, in a form that best 
suits the given representation.

Th e research in enumeration of binary trees has 
produced results including enumeration using bit 
strings [4, 8, 13] and integer sequences [5, 10, 11, 

12]. Enumeration using integer sequences has been 
further subdivided into enumeration by Codewords 
[9, 14], weights [7] and distance [6]. More recently, 
enumeration using Catalan combinations [3] has 
been introduced. 

Th e ranking of a binary tree is done by obtaining 
a unique value from the binary tree or its enumera-
tion, which gives it a certain rank (i.e. number in a 
sequence) among other binary trees of a given size. 
Th e generation of a binary tree from its enumera-
tion or rank represents the actual formation of the 
binary tree from its representation, whether it is the 
enumeration or the rank.

Th is paper introduces a new way of enumeration 
of a binary tree, called a Catalan Cipher Vector, and 
a way to transform that enumeration into previous 
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forms and vice versa. In particular, it will be shown 
how this enumeration relates to the level-order tra-
versal of the binary tree. Streamlined algorithms will 
be presented, by which the rank of a binary tree is 
obtained from the generated binary tree and vice 
versa, during which the corresponding Catalan Ci-
pher Vector elements will be obtained and directly 
utilized. Th e algorithms will be analyzed for time and 
space complexity.

INTRODUCING THE CATALAN CIPHER VECTOR

A Catalan Cipher Vector is the vector v = [v0  v1  v2  
...  vn-1] which satisfi es the following properties:

1) v0 = 0; 

2) vi-1 + 1 ≤ vi ≤ 2i, for i = 1,2,3, ... , n - 1 and vi N.

Listing all distinct Catalan Cipher Vectors with 
lengths n shows that there are Cn such vectors. In Ta-
ble 1, all Catalan Cipher Vectors are listed for n = 4, 
alongside the corresponding Codewords and Catalan 
combinations (the index of the fi rst element in every 
representation is 0, and that element’s value is also al-
ways 0). Th e relationships among the representations 
are also given at the bottom of the table. Unlike in 
the Codewords and the Catalan combinations, the el-
ements in the Catalan Cipher Vectors are never equal 
to one another.

THE CANONICAL STATE-SPACE TABLEAU AND ITS 
CONNECTION TO THE CATALAN CIPHER VECTOR

Th e usefulness of the Catalan Cipher Vector can 
be demonstrated by using a special structure, a state-
space tableau. In it, the binary tree is represented by 
using a tableau with dimensions n 3, where the fi rst 

Rank Codeword d Catalan combination  c Catalan Cipher Vector v

0

1

2

3

4

5

6

7

8

9

10

11

12

13

TABLE 1. List of Codewords, Catalan combinations and 
Catalan Cipher Vectors for n = 4
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(left-hand) column contains the symbols represent-
ing the values of the nodes of the tree, the second 
(middle) one contains the symbols rep, resenting 
the values of the nodes that the elements in the fi rst 
column of the corresponding rows have as their left 
sub-nodes, and the third (right-hand) one contains 
the symbols representing the values of the nodes that 
the elements in the fi rst column of the corresponding 
rows have as their right sub-nodes. In other words, 
the fi rst column contains a node of the binary tree, 
the second column of that row contains that node’s 
left sub-node (if the fi eld is non-empty) and the third 
column of that row contains that node’s right sub-
node (if the fi eld is non-empty). Th e root of the tree 
is the node of which the value is not found in the 
second or third column of the tableau (since the root 
does not have an ancestor node). Because a tree has 
at least one leaf, at least one of the rows in the tableau 
will have no values in the second and third column 
(since a leaf does not have any other nodes as sub-
nodes). Th is is because a tree with n nodes has n – 1 
edges: in a tableau of 3n fi elds, n are occupied in 
the fi rst column and n – 1 in the second and third 
column, which leaves n + 1 empty fi elds; of those, at 
least two will be in the same row.

In the state-space tableau, it is irrelevant wheth-
er the rows are shuffl  ed, since the structure of the 
binary tree is uniquely determined by the position 
relative to the columns, especially the second and 
third column, and not the rows. Th e row that has the 
elements in the second and third column as empty 
will be a leaf, and the element that is not found in 
the second and third column, but is present in the 
fi rst one, will be the root. Th is is shown in Figure 
1, where in all tableaux A is the root (it is present in 
the fi rst, column, but not in the second and third 
column), while C and D are leaves (they have blank 
fi elds in the second and third column of their respec-
tive rows). 

Since all state-space tableaux for a given binary 
tree are equivalent, it is necessary to choose one of 
them, to be worked with. Th e best choice is to select 
the tableau where the fi rst row is the one that repre-
sents the root, and all other nodes are ordered in such 
a way that their vertical sequence in the fi rst column 
follows the horizontal sequence in the second and 

third column. Such a state-space tableau is called the 
canonical state-space tableau. For example, Figure 1b 
is the canonical state-space tableau for the binary tree 
in Figure 1a.

a) b) c) d)

FIGURE 1. a) A binary tree; b) Its canonical state-space tableau; 
c), d) Other equivalent state-space tableaux

Table 2 contains all binary trees for n = 4 and 
their corresponding canonical state-space tableaux 
and Catalan Cipher Vectors. For clarity, the elements 
in the canonical state-space tableaux are indexed, 
both with subscript and superscript indices. Th e sub-
scripted indices, in the fi rst column, represent the 
indices of the values stored in the nodes of the tree, 
obtained by following some traversal of the binary 
tree. Th e superscripted indices, in the second and 
third column, are sequential, starting with 1 at the 
top row in the second column and moving to the 
right and down, and enumerating only the elements 
in those two columns. If the fi eld with a given index 
in the second or third column is non-empty, it rep-
resents the value stored in the node, which the node 
in the given row has as a left sub-node (if the fi eld is 
in the second column, i.e. has an odd index) or right 
sub-node (if the fi eld is in the third column, i.e. has 
an even index). An index of 0 denotes the root, and 
v0 = 0 for every Catalan Cipher Vector, since the root 
does not have an ancestor. Th e elements of the Cata-
lan Cipher Vector are also indexed with subscripted 
indices, to demonstrate the connection with the in-
dices of the corresponding elements of the fi rst col-
umn of the canonical state-space tableau.
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Rank Binary tree Canonical state-space tableau Catalan Cipher Vector v 

0

1

2

3

4

5

6

7

8

9

TABLE 2. All binary trees with their corresponding canonical state-space tableaux and Catalan Cipher Vectors for n = 4

December 2013        Journal of Information Technology and Applications        81



JITA 3(2013) 2:78-86 A. Božinovski, B. Stojčevska, V. Pačovski: 

Th e benefi t from the Catalan Cipher Vector is that 
it directly determines the topology of the binary tree, 
i.e. the connections between the nodes. Th e element 
with index 0 (i.e. the root) can have elements con-
nected to it with values, in the Catalan Cipher Vec-
tor, of 1 and 2 only, which corresponds to its left and 
right sub-nodes, respectively, in the corresponding 
canonical state-space tableau. Th e element with in-
dex 1 can have elements connected to it with values, 
in the Catalan Cipher Vector, of 3 and 4 only etc. 
In other words, the element with index i can have 
connections to elements with values, in the Catalan 
Cipher Vector, of 2i + 1 and 2i + 2 only. Th is means 
that the index of the ancestor node for the node with 
index i (for i ≥ 1) is directly obtainable from the cor-
responding value vi of the Catalan Cipher Vector as 

, if vi is odd, or , if vi  is even. Furthermore, 
the direction of linking from the ancestor to the cur-
rent node is also directly obtainable, since, following 
the canonical state-space tableau, the current node 
will be its ancestor’s left sub-node if vi is odd, or right 
sub-node if vi is even.

As an example from Table 2, the tree with rank 12 
has the Catalan Cipher Vector of [0   2   4   5]. Viewing 
the node with index 1 (in this example, with informa-
tion B ), the value of the corresponding element from 
the Catalan Cipher Vector is v1 = 2. Since v1 is even, 
the node is its ancestor’s right sub-node and its ances-
tor is the node with the index  (i.e. the 

root, with information A). On the other hand, the 
value of the Catalan Cipher Vector for the node with 
index 3 (in this example, with information D) is odd 
(v3 = 5), so the node is its ancestor’s left sub-node 
and its ancestor is the node with the index  
(i.e. the node with information C ).

Th e Catalan Triangle

To establish a connection between the representa-
tion of the binary tree and its rank, several researchers 
[7, 11, 13] have utilized various forms of the Catalan 
Triangle. Th e form introduced in this paper is similar 
to the one used by [3], and is a transposed version of 
it. Figure 3 shows the Catalan Triangle that will be 
used in this paper, for n = 4. For clarity, the Catalan 
Triangle will be referred to as CT, and its elements 
will be given by their indices. For example, in Figure 
2, CT2, 1 = 3.

ij 0 1 2 3
0 14
1 9 5
2 4 3 2
3 1 1 1 1

FIGURE 2. A Catalan Triangle CT for n = 4

A closer examination of the Catalan Triangle in 
Figure 2 reveals that its elements can be obtained it-
eratively. Figure 3 presents the relationships among 
the elements of the Catalan Triangle in Figure 2.

10

11

12

13
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ij 0 1 2 3

0 CT1,0 + CT1,1

1 CT2,0 + CT1,1 CT2,1 + CT2,2

2 CT3,0 + CT2,1 CT3,1 + CT2,2 CT3,2 + CT3,3

3 1 1 1 1
FIGURE 3. Relationships among the elements of the Catalan 

Triangle for n = 4

In this Catalan Triangle, and any other for n ≥ 1, 
all elements in the bottom row are 1, every element 
on the diagonal is the sum of the element below it 
and the element below and right to it, and every oth-
er element is a sum of the element below it and the 
element to the right of it. Th erefore, the elements of 
the Catalan Triangle can be obtained as

 

An algorithm which initializes the Catalan Triangle 
using the aforementioned formula, for a given , 
would be optimized for space and time, in a sense 
that the memory occupied would be only as much 
as needed, and that every element would be updated 
only once. Nevertheless, this means that there would 
be  memory units utilized and as many 
time units for updating them, which would make 
such an algorithm  for space and time com-
plexity. However, once the Catalan Triangle would 
be initialized, all other algorithms would utilize the 
information stored in it and their performances 
would be enhanced.

Algorithms for Converting between the Rank 
and the Binary Tree
In this paper, the algorithms will be presented in 

pseudocode that resembles the C++ programming 
language, where the keywords will be displayed in 
italic type. Th e keyword ref means that the value 
is passed by reference, i.e. that it will be modifi ed 
within the algorithm and that its modifi ed version 
will be available after the algorithm ends. Th e key-
word defi ne is used to defi ne auxiliary variables or 
references within the algorithm. Th e keyword new 
means that memory will be assigned to the reference 
it aff ects. Th e keyword array means that the memory 
assigned to the reference will be an array with a speci-
fi ed size. Th e keyword node means that the memory 

assigned to the reference will be of a type of a binary 
tree node. Th e keyword isEmpty is an algorithm that 
returns true if a queue is empty and false otherwise. 
Th e keywords enqueue and dequeue are algorithms 
for enqueuing into or dequeuing from a queue, re-
spectively. Th e keywords leftSubNode and rightSub-
Node refer to a left sub-node and a right sub-node of 
a given node, respectively. Other keywords, as well as 
special characters, retain their corresponding mean-
ings and functions from the C++ language.

An effi  cient algorithm for obtaining a Catalan 
combination from a given rank is given in [3]. It 
can be slightly modifi ed to produce a correspond-
ing Catalan Cipher Vector as a result, because of the 
interchangeability between a Catalan combination 
and a Catalan Cipher Vector (Table 1). Since each 
element of the Catalan Cipher Vector determines the 
predecessor of the corresponding node in the binary 
tree, as well as whether it is its predecessor’s left or 
right sub-node, the binary tree can be generated im-
mediately after obtaining each of its elements. Since 
the root does not have a predecessor, it can be gener-
ated directly, without linking it to any other node.

Algorithm rank2tree (Figure 4a) shows how to ob-
tain the binary tree for a given rank. First the Catalan 
Cipher Vector element is obtained and then a new 
node of the binary tree is generated, for which the 
index of its predecessor and the direction of linking 
from it is calculated, based on the value of the ele-
ment of the vector. If the current node is the root, no 
linking takes place; else, the current node is linked to 
the predecessor node. All nodes are generated in an 
array, and only the fi rst node of the array is returned, 
which is the root of the tree. 

Algorithm val (Figure 4b) is an auxiliary algorithm 
that generates values of the information fi elds for the 
nodes of the trees based on their indices, which in 
this case is set to return the index itself as the infor-
mation fi eld of the node. Arbitrary logic can be used 
if it needs to return diff erent information fi elds based 
on the indices (for example, the trees in Figures 1 
and 2 and Table 1 have the letters of the alphabet 
stored in the information fi elds of the nodes).
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rank2tree(rank, CT, n){
 defi ne i, base, v, tn;
 i = 0; base = 0;
 v = new array(n);
 tn = new array(n);
 tn[0] = new node(val(0));
 while(i < n){
  while((base < n) && (CT[i][base] <= rank)){
   rank = rank - CT[i][base];
   base++;
  }
  v[i] = base+i;
  tn[i] = new node(val(i));
  if(i != 0)
   if(v[i]%2 != 0)
    tn[v[i]/2].leftSubNode = tn[i];
   else
    tn[v[i]/2 - 1].rightSubNode = tn[i];
  i++;
 }
 return tn[0];
}

val(ind){
 return ind;
}

a) b)
FIGURE 4. a) An algorithm for obtaining the binary tree of 
a given rank; b) The auxiliary algorithm for obtaining the 

value of a node of the binary tree, based on its index

Th e time complexity analysis of rank2tree is con-
cerned with the overhead from calculating the value 
of an individual Catalan Cipher Vector element, based 
on the rank, by traversing the Catalan Triangle. In the 
worst case [3] it takes  time units and in the best 
case it takes  time units to obtain an individual 
element of the vector from the given rank. Since each 
of the  nodes of the tree will be generated once (and 
since the algorithm val is ), this means that the 
overall time complexity of rank2tree is . For the 
space complexity, it can be seen that the only memo-
ry elements with variable sizes are the two arrays that 
represent the intermediate Catalan Cipher Vector and 
the nodes of the binary tree respectively. Th erefore, the 
space complexity of this algorithm is also .

To obtain the rank for a given binary tree, fi rst the 
Catalan Cipher Vector would need to be obtained from 
the tree and then the total rank would be calculated by 
the contribution from each element of the vector. Th e 
Catalan Cipher Vector is linked with the canonical state-
space tableau in which the left and right sub-nodes for 
every node are represented. To obtain each element of the 
Catalan Cipher Vector from each node of the tree, the 
tree would need to be traversed in a way so that, for a 
given root, fi rst the left sub-node would be traversed and 
then the right sub-node, but without going into recur-

sion, i.e. the traversal would be by depth. By defi nition 
[2], this is level-order traversal and it is therefore used as 
the traversal of choice for obtaining each element of the 
Catalan Cipher Vector for each node. 

Algorithm tree2rank (Figure 5a) shows how each 
element of the Catalan Cipher Vector is obtained fol-
lowing the level-order traversal of the tree. When it is 
obtained, it is used to update the overall rank by us-
ing algorithm update (Figure 6b). Since tree2rank in-
corporates the level-order traversal of a tree, which is a 

 algorithm, its time complexity analysis requires 
an analysis of algorithm update. update contains a loop 
which runs only if displacement occurs, of the column 
of the Catalan Triangle under consideration. Th is hap-
pens when there is a change in the value of an element 
of the Catalan combination ( ) relative to 
the previous element ( ) and the 
loop will not run if those two elements are identical. 
Th e numbers of displacements from the previous to the 
next element in the Catalan combination (or Catalan 
Cipher Vector) are actually the elements of the corre-
sponding Codeword, and the sum of all elements in the 
Codeword for a given  is at most (examples for 

 are given in Table 1). Th us, when no displace-
ment occurs, there are  movements through the Cata-
lan Triangle, and this is the best case, i.e. the algorithm 
is . Th e worst-case scenario occurs when there are 

 displacements in the Catalan Triangle, which 
means there are  movements, 
i.e. the algorithm is . Th is means that the time 
complexity of update is , so the overall time com-
plexity of tree2rank is also .

For the space complexity analysis, it can be seen 
that tree2rank requires an array v of  integers, which 
represents the resulting Catalan Cipher Vector, and a 
queue q of nodes, which will occupy various amounts 
of memory, depending on the tree being traversed. As-
suming that each node occupies  units of memory, 
and the integers each take a unit of memory, the space 
complexity can be analyzed. In the best case, one of 
a degenerate tree, there will be only one node in the 
queue during the level-order traversal, which means 
that the total memory usage will be  and thus 
the space complexity will be . In the worst case, 
that of a complete binary tree, for every node dequeued 
two more nodes will be enqueued, so there will be at 
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most  nodes in the queue and thus the full memo-
ry usage will be , i.e. the 
space complexity will be . Th erefore, the space 
complexity will also be .

FIGURE 5. a) An algorithm for calculating the rank from a 
given binary tree. b) An auxiliary algorithm for updating the 
rank given the Catalan Cipher Vector and the index of the 

element which contributes to the overall rank

Special Forms of the Binary Trees Obtained 
from Certain Ranks
Th e goal of the enumeration of binary trees is to 

establish a 1-to-1 relation between a binary tree and 
its representation. In this paper, every binary tree has 
a unique Catalan Cipher Vector and a unique rank 
related with it. Th e advantage of the ranking system 
presented in this paper is that certain ranks always 
produce certain forms of the binary trees. It can be 
viewed in Table 2, for example.

Th e rank of 0 is equivalent to the initial Catalan Ci-
pher Vector, where each element of the vector has the 

value of its index, or every vi = i, for 0 ≤ i ≤ n – 1.In the 
canonical state-space tableau, this corresponds with a 
tableau where the second and third column would be 
fi lled up as follows: fi rst the second column of the fi rst 

row, then the third column of the fi rst row, then the 
second column of the second row, then the third col-
umn of the second row and so on. In other words, ev-
ery node will obtain fi rst a left then a right sub-node, 
before the same thing happens for the next node in the 
traversal. Since the traversal is level-order, the levels of 
the tree will be fi lled from left to right and the nodes 
will have both left and right sub-nodes, or only a left 
sub-node (if there is an even number of nodes; there 
will be only one such node), or no sub-nodes (such 
will be the leaves). Th is means that all levels will be 
completely fi lled, except the last level, where all nodes 
will be positioned as far left as possible. Th is is the 
defi nition of a complete binary tree [1]. Th erefore, it 
can be said that algorithm rank2tree on Figure 5 will 
create the complete binary tree of  nodes, if the given 
rank is 0. Equivalently, a tree of rank 0 is a complete 
binary tree for any number of nodes , when using 

tree2rank(t, CT, n){
 defi ne q, v, i, row, rank, p;
 v = new array(n);  
 i = 1; 
 row = 0; 
 rank = 0;
 q.enqueue(t);
 v[0] = 0;
 while(!q.isEmpty()){
  p = q.dequeue();
  if(p.leftSubNode != NULL){
   q.enqueue(p.leftSubNode);
   v[i] = 2*row + 1;
   update(rank, CT, v, i);
   i++;
  }  
  if(p.rightSubNode != NULL) { 
 q.enqueue(p.rightSubNode);
   v[i] = 2*row + 2;
   update(rank, CT, v, i);
   i++;
  }
  row++;
 }
 return rank;
}

update(ref rank, CT, v, i){
 defi ne prev, next, j;
 prev = v[i-1]-(i-1);
 next = v[i]-i;
 for(j = prev; j < next; j++)
  rank = rank + CT[i][j]; 
}

a) b)
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algorithm rank2tree. For 
, the tree with rank 0 is a full binary tree.

Th e rank of  yields a Catalan Cipher Vec-
tor where  In the ca-
nonical state-space tableau, this corresponds with 
a tableau where only the third column is fi lled for 
every row except the last. In the generated tree, this 
means that every node (except the last) will have only 
a right sub-node, which is a feature of a degenerate 
tree. Th erefore, it can be said that algorithm rank-
2tree on Figure 5 will create a degenerate tree of  
nodes, if the given rank is . Equivalently, a 
tree of rank  is a degenerate tree for any num-
ber of nodes , when using algorithm rank2tree.

CONCLUSION

A new way of enumerating binary trees, called the 
Catalan Cipher Vector, is introduced. Another repre-
sentation, the canonical state-space tableau, helps to 
show how the Catalan Cipher Vector determines the 

entire topology of the binary tree. Algorithms are giv-
en which show how to obtain the rank from a given 
binary tree and vice versa, using the Catalan Cipher 
Vector within the algorithms themselves. It is shown 
how, following those algorithms, certain ranks al-
ways produce certain forms of the binary trees. Since 
the algorithms for conversion from a binary tree to 
its respective rank and vice versa are linear in both 
time and space complexity, while utilizing the Cata-
lan Cipher Vector as an intermediate result, it is an 
effi  cient representation. To the best of the knowledge 
of the authors, the Catalan Cipher Vector is the fi rst 
enumeration that utilizes level-order traversal to gen-
erate the binary tree from itself, and it is their belief 
that it is therefore also more intuitive and elegant.
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