
JITA 13(2023) 1:20-28 pero rAnIloVIć, eT Al.

Comparative Analysis of Relational and Non-Relational
Databases

Pero Ranilović, Dražen Marinković, Nedeljko Šikanjić
Pan-European University “Apeiron”. Banja Luka, RS, BiH

{pero.ranilovic, drazen.m.marinkovic, nedeljko.s.sikanjic}@apeiron-edu.eu

Contribution to the State of the Art
https://doi.org/10.7251/JIT2301020R UDC: 681.322.06:004.652.4

Abstract: This paper presents the results of research into the use of relational and non-relational databases, as well as their
comparative analysis. A theoretical overview of the comparative analysis by different segments of relational and non-relational
databases is presented. Comparative analysis through the practical application of databases is shown through the use of applications
for measuring system performance.

Keywords: relational databases; non-relational databases; comparative analysis; MSSQL; MongoDB

Introduction
As the IT market develops rapidly, there is a need

to check available database solutions, but also to
adapt them to different conditions. The current situ-
ation in the IT world, as well as the great popularity
of NoSQL databases, encourages more detailed re-
search and analysis of why non-relational databases
are being used more and more today, in addition to
standard good relational databases. Relational and
non-relational database models, as well as their
comparative analysis, are presented in this paper.

COMPARATIVE ANALYSIS - THEORETICAL REVIEW
Many traditional relational databases have been

used in a very large number of applications so far.
New technologies have been developed with the aim
of dealing with increasing amounts of complex data.
Choosing the most suitable database can sometimes
be tricky, and such comparisons make it easier for
the user to choose the appropriate database that
can meet all the needs of the application. The user
uses SQL or another structured query language to
manipulate and define the data, and then applies a
predefined scheme to analyze the data. SQL is great
for complex queries, however even the smallest

change in the database can affect the functionality of
the entire system. With NoSQL databases, dynamic
schemes are used to manage data that does not have
to be stored in tables, but can be displayed in docu-
ments, graphs, columns, and so on. For decades, the
predominant data model used for application devel-
opment was the relational data model used by rela-
tional databases such as Oracle, SQL Server, MySQL,
PostgreSQL, and others. It was not until the mid-
2000s that other data models began to be signifi-
cantly adopted and used. The term NoSQL is used to
distinguish and categorize these new classes of da-
tabases and data models. When choosing a modern
database, one of the biggest decisions is whether to
choose a relational (SQL) or non-relational (NoSQL)
data structure. Although both relational and non-re-
lational are viable options, there are key differences
between these two types of databases that users
must keep in mind when making a decision.

A. Database architecture and scheme
At the most basic architectural level, the biggest

difference between the two technologies is that SQL
databases are relational, while NoSQL databases
are non-relational. SQL databases use a structured

20 Journal of Information Technology and Applications www.jita-au.com

coMparative aNalysis of relatioNal aNd NoN-relatioNal dataBases JITA 13(2023) 1:20-28

query language and have a predefined scheme for
handling data. SQL is one of the most versatile and
widely used query languages, which makes it a
common choice for many use cases. It is perfect for
complex queries. However, SQL can be too restric-
tive. Predefined schemes must be used to determine
the structure of the data in order to work with it.
All data must have the same structure. This process
requires significant preparation in advance. If there
were ever a desire to change the data structure, it
would be difficult and would disrupt the entire sys-
tem. On the other hand, NoSQL databases have dy-
namic schemes, and data is stored in many ways.
Column-oriented storage, documents, graphs, and
similar can be used to store data. This flexibility
means that documents can be created without first
defining their structure, that each document can
have a unique structure, that the syntax can differ
from database to database, and that fields can be
added at an indefinite time interval.

B. Database scaling
SQL databases are vertically scalable in most sit-

uations. It is possible to increase the load on a single
server by adding more CPU, RAM or SSD capacity.
NoSQL databases are horizontally scalable. More
data can be managed which adds more servers to
the NoSQL database. Horizontal scaling has greater
overall capacity than vertical scaling, making NoSQL
databases the preferred choice for large, frequently
changing data sets.

C. Data structure
SQL databases are table-based, while NoSQL

databases are document stores. SQL databases are
better for multi-row transactions, while NoSQL is
better for unstructured data such as documents or
JSON. SQL databases are also often used for legacy
systems that are built around a relational structure.

D. Optimal workload
Relational databases are designed for transac-

tional and highly consistent online transaction pro-
cessing (OLTP) applications and are good for online
analytical processing (OLAP). On the other hand,
non-relational databases are designed for many
data access patterns involving low-latency applica-
tions as well as semi-structured data analytics.

Choosing or recommending a database is a key
responsibility for most database professionals, and
“SQL vs NoSQL” is a useful rubric for informed deci-
sion-making. When considering any database, it is
also important to consider critical data needs and
acceptable trade-offs to meet performance and up-
time goals. Choosing the right database is not easy.
An optimal but unknown database can negatively
impact the entire project, while a suboptimal but
known tool can be sufficient to get the job done.

Once a user has decided whether to use a SQL or
NoSQL database, he must move his data into it. Data
migration is a complex process that can present se-
rious challenges. If there is a problem with that op-
eration, Xplenty’s Extract, Transform, Load (ETL)
helps with automated functionality and a code-free
visual interface to facilitate data transfer. Extensive
support is available for all SQL databases from their
vendors. There are also many independent consul-
tants who can help with SQL database for very large
applications, whereas some NoSQL databases still
need to rely on community support. Only some ex-
ternal experts are available for NoSQL functionality.

SQL is usually a good choice and is fairly univer-
sal for most projects. However, for more special-
ized work, a NoSQL database can provide a much
more efficient result. When you need to find a fast
and scalable database, if you don’t mind sacrificing
some robustness, MongoDB might be just what you
need. The use of both SQL and NoSQL databases has
its place in modern software development. Each of
them has its advantages and disadvantages. NoSQL
databases can include SQL elements, while SQL da-
tabases can offer some of the advantages of NoSQL
through new functions.

Comparative analysis – practical work

A. Installation
For the purposes of using databases, it is neces-

sary to install servers and a tool for working with
databases. MSSQL Express Server and MSSQL Server
Management Studio 2018 were used in the project
work to create relational databases. To create non-
relational databases, we used MongoDB server v5.0
and MongoDB Compass. The procedure for install-
ing and setting up both databases is very simple, but
installing the MongoDB database requires addition-

June 2023 Journal of Information Technology and Applications 21

JITA 13(2023) 1:20-28 pero rAnIloVIć, eT Al.

al steps, such as setting folder permissions, adding
system variables, and the like.

B. Syntax
The SQL language is used by relational databases.

SQL is used to define data and to manipulate data. It
represents a reliable and safe language for working
with complex databases, as well as database que-
ries. It has certain rules that must be followed when
using it, and for that reason it is limited. An example
of an SQL query is as follows:

INSERT INTO Izdavac (Naziv)
VALUES (‘Rezim Beograd’);

Non-relational databases, unlike relational data-
bases, do not use the SQL language to define data,
but store all data in JSON format. JSON (JavaScript
Object Notation) is one of the standards for storing
text designed for readable data exchange. In addi-
tion to the JSON format, BSON (Binary JSON) is also
very often used, which enables the recording of ad-
ditional data such as binary data and the like. An ex-
ample of a NoSQL query is shown below:

db.izdavac.insert({“Naziv”:”Rezim Beograd”});

Table I. Display of Different Queries Over Databases

MSSQL MongoDB

SELECT * FROM Film db.Film.find();

CREATE TABLE
[dbo].[Zanr](
 [ZanrId] [int]
IDENTITY(1,1) NOT NULL,
 [Naziv]
[nvarchar](20) NULL,
CONSTRAINT [PK_ZANR]
PRIMARY KEY

db.createCollection(“Film”);

INSERT INTO Osoba
 VALUES
 (‘Marko’, ‘Markovic’, ‘1985-
12-17’, ‘Vidovdanska bb’)

db.Osoba.insert({“Ime”:”Marko”,
“Prezime”:”Markovic”,
“DatumRodjenja”:’1985-12-17’,
“Adresa”:”Vidovdanska bb”};

UPDATE Osoba
 SET Adresa = ‘Banjalucka
bb’

db.Osoba.updateMany({},
{$set:{“Adresa”:”Banjalucka bb”}});

DELETE FROM Osoba
 WHERE Ime= ‘Marko’

db.Osoba.deleteOne({“Ime”:”Marko”});

DELETE FROM Osoba db.Osoba.deleteMany ({});

SELECT F.Naziv,
F.VrijemeTrajanja, Z.Naziv
FROM Film as F
JOIN FilmZanr as FZ
ON FZ.FilmId = F.FilmId
JOIN Zanr AS Z
ON FZ.ZanrId = Z.ZanrId
WHERE F.Naziv = ‘Novi 2
film’

db.Film.find({Naziv:”Novi 2 film”});

SELECT COUNT(*) as
Kolicina
FROM Film

db.Film.count();

By using SQL and NoSQL databases, differences
in the syntax of these databases can be observed.
This paper will use the MSSQL database, which is a
representative of SQL or relational databases, and
the MongoDB database, which is a representative
of NoSQL or non-relational databases. Given that
the access and content of these databases is differ-
ent and the syntax is significantly different. In order
for one to better see the differences between the
syntaxes, the table with basic queries in MSSQL and
MongoDB is shown below.

C. Structure
Data within the database is logically organized

according to the database model. The database
model itself determines what the logical structure
of the database may look like. The relational model
is based on relations, and data is displayed in tables.
Relational databases are based on tables. A table
consists of columns and rows, and each column is
defined as an attribute of the table. Rows within
a table are defined as an “n-tuple” of the table. As
mentioned earlier, MSSQL is limited and it is nec-
essary to define precisely for each attribute which
data type will be placed.

Figure 1. View of the table Person with exactly defined attribute
types

Non-relational databases are dynamic, and the
user determines which attributes and data to place
within the collection. There is a great difference be-

22 Journal of Information Technology and Applications www.jita-au.com

coMparative aNalysis of relatioNal aNd NoN-relatioNal dataBases JITA 13(2023) 1:20-28

tween relational databases that use tables and non-
relational databases that use documents. Within the
collection, data can be placed according to the user’s
wishes, and these data can also differ in each subse-
quent entry according to the number of parameters
that will be passed. Using non-relational database
models, there is a certain freedom and it is much
simpler to add new types and new data. A view of
one data set within the Person collection is shown
in the image below. It can be concluded that dur-
ing each data entry, the name of the attribute that
is placed is also entered, and for this very reason,
the possibility of entering a smaller number of at-
tributes opens up.

Figure 2. View of the table Person with exactly defined attribute
types

TIME COMPARISON OF EXECUTION OF QUERIES
USING MSSQL AND MONGODB DATABASES
In this part of the paper, the results obtained by

executing different queries using different tools will
be presented. After the obtained results, compari-
sons of the time needed to execute queries on the
databases will be made. Client Statistics within MS-
SQL Management Studio was used to measure the
time required to execute queries against the MSSQL
database.

When executing a query against MongoDB, using
the console, a function was used to display the nec-
essary information after the query was executed:

db.Film.find().explain(“executionStats”);
After the function is successfully executed, an

object containing the data “executionTimeMillisEs-
timate” is obtained, which returns the time required
to execute the query. Using MongoDB Compass, the
time required to execute a query can be found using
the “Explain Plan” tab where you can get the exact
performance and data about the executed query. All

queries and performance tests were run on a spec
laptop:

 - Intel Core i7-7500U
 - 16GB RAM DDR4
 - Maxtor Z1 SSD 480GB, 6Gb/s
 - Windows 10 Pro

Table II. Display of Executed Queries

MSSQL MongoDB

SELECT * FROM Film db.Film.find();

SELECT F.Naziv,
F.VrijemeTrajanja, Z.Naziv
FROM Film as F
JOIN FilmZanr as FZ
ON FZ.FilmId = F.FilmId
JOIN Zanr AS Z
ON FZ.ZanrId = Z.ZanrId

db.Film.find();

SELECT F.Naziv,
F.VrijemeTrajanja, Z.Naziv
FROM Film as F
JOIN FilmZanr as FZ
ON FZ.FilmId = F.FilmId
JOIN Zanr AS Z
ON FZ.ZanrId = Z.ZanrId
WHERE F.Naziv = ‘Novi 2 film’

db.Film.find({Naziv:”Novi 2 film”});

SELECT COUNT(*) as
Kolicina
FROM Film

db.Film.count();

Table 3 shows the results of query execution times
of different complexity on the MSSQL database and
the MongoDB database. The data within both data-
bases were identical. The number of records created
in the movie table was 100,000. It should be empha-
sized that very often the results of executing a query
on both databases are much slower the first time,
when the query is executed again the execution is
much faster. The results shown in the table are taken
as the mean value of five consecutive measurements
over the same number of records.

Table III. Display of the Obtained Performance Times

Execution time -
MSSQL

Execution time -
MongoDB

Successfully
retrieved
records

489 ms 55 ms 100 000

587 ms 54 ms 100 000

13 ms 19 ms 1

11 ms 16 ms 1

June 2023 Journal of Information Technology and Applications 23

JITA 13(2023) 1:20-28 pero rAnIloVIć, eT Al.

0

200

400

600

800

100 000 - prost upit 100 000 - složeniji
upit

Pronađi određeni
zapis

Ukupan broj zapisa

Izvršavanje upita nad MSSQL i MongoDB
bazama podataka

MS SQL Mongo DB

Graph 1. Query execution times over MSSQL and MongoDB

TIME COMPARISON OF EXECUTION OF QUERIES
USING MSSQL AND MONGODB INSIDE THE
APPLICATION

In order to be able to measure and then compare
the execution time of basic CRUD operations on MS-
SQL databases and MongoDB databases, a project
was created in which connections were made to one
and the other database. The application was devel-
oped in the programming language C#. Database ac-
cess is enabled using the NuGet packages MongoDB.
Driver and MongoDB.BSON. Given that two data-
bases were used, in order to enable fast and simple
database changes, the connection strings containing
the paths to the databases were stored inside the
web.config file. Within the code itself, there are no
major differences between the ways of using both
databases. The steps in creating the project were
creating a connection, creating methods for adding
data within databases, reading, modifying and delet-
ing (so-called CRUD operations). Created multiple
methods that generated datasets depending on the
passed noElements parameter. A test data set was
created for testing purposes. CRUD operations on
the data were performed on samples of 1, 10, 100,
1000, 10,000, 100,000 records, in order to observe
the time dependence with increasing number of re-
cords. The test data set was created with the help
of the createList method, which receives the vari-
able noElements as a parameter. The method code
is shown in the image below.

Figure 3. CreateList method code

A. Data addition operation
The operations of adding records to the MSSQL

database do not require much effort to implement,
because both MSSQL and Visual Studio are created
by Microsoft, which leads to more efficient collabo-
ration and interaction between the two platforms.
The process of adding records to a MongoDB data-
base requires almost the same amount of effort as
implementing it with an MSSQL database. The only
difference is that more pre-installation and prepa-
ration is required at the very beginning. Figure 3
shows the code for adding records to the MongoDB
database. To add records to the database, the Insert-
ManyAsync method is used, which is taken from the
MongoDB.Driver package.

Figure 4. The InsertFilm method used to add records to a
MongoDB database

Table IV. Display of the Obtained Times Required for Performing
the Addition Operation

Execution time -
MSSQL

Execution time -
MongoDB

Successfully
created records

33.19 ms 7.65 ms 1

18.65 ms 19.95 ms 10

56.33 ms 11.82 ms 100

353.98 ms 51.75 ms 1000

1845.08 ms 338.91 ms 10000

2695.66 ms 1955.36 ms 100000

24 Journal of Information Technology and Applications www.jita-au.com

coMparative aNalysis of relatioNal aNd NoN-relatioNal dataBases JITA 13(2023) 1:20-28

0

3000

1 10 100 1000 10 000 100 000

Dodavanje novih zapisa

MS SQL Mongo DB

Graph 2. Adding new records in MSSQL and MongoDB

B. Data reading operation
Database reading operation depends on many

factors. The very structure of the data and the meth-
od of saving it in the database is an important factor.
Due to its unstructured nature, the MongoDB way
of reading data can be quite complex when finding
and searching for information in the database. Read
operations mostly depend on the complexity of the
data structure and how it is stored. The data used
when executing the query and measuring the execu-
tion time does not have complex complexity, which
results that for reading certain simple records the
performance of the MongoDB database is better
compared to MSSQL. By executing queries on the da-
tabase and reading the data, results were obtained
that show that temporal MongoDB queries are exe-
cuted faster, especially in the case of a large number
of simple records. The results are based on the aver-
age time it takes to perform a read operation over a
different number of records.

Table V. Display of the Obtained Times Required for Performing
the Reading Operation

Execution time -
MSSQL

Execution time -
MongoDB

Successfully
created records

17.15 ms 8.06 ms 1

14.69 ms 31.34 ms 10

12.40 ms 3.45 ms 100

24.96 ms 5.28 ms 1000

40.36 ms 6.06 ms 10000

192.76 ms 5.90 ms 100000

0

50

100

150

200

250

1 10 100 1000 10 000 100 000

Čitanje zapisa

MS SQL Mongo DB

Graph 3. Reading records in MSSQL and MongoDB

C. Data change operation
Changes to database data can be made using dif-

ferent criteria. When executing the query in the ap-
plication, the update of all records and the modifica-
tion of two attributes within the record were used.
Execution performance depends on the criteria used
when finding a particular record. MongoDB achieves
better results, while in situations with complex cri-
teria, MSSQL wins. For example, changing all records
that contain data of the string type “Banja Luka” in
a populated place. Record change operations and
their time comparison are shown in Table 6.

Table VI. Display of the Obtained Times Required for Performing
the Change Operation

Execution time -
MSSQL

Execution time -
MongoDB

Successfully
created records

17.27 ms 25.05 ms 1

15.61 ms 10.48 ms 10

15.52 ms 6.52 ms 100

118.85 ms 64.41 ms 1000

850.57 ms 618.78 ms 10000

7487.32 ms 5511.06 ms 100000

June 2023 Journal of Information Technology and Applications 25

JITA 13(2023) 1:20-28 pero rAnIloVIć, eT Al.

0
2000
4000
6000
8000

1 10 100 1000 10 000 100
000

Izmjena zapisa

MS SQL Mongo DB

Graph 4. Change of records in MSSQL and MongoDB

D. Data deletion operation
The performance of deletion operations on both

databases gives similar execution times. When de-
leting 10,000 records, a better average time is ob-
tained for the MSSQL server, while in other cases the
execution times are approx.

Table VII. Display of the Obtained Times Required for
Performing the Deletion Operation

Execution time -
MSSQL

Execution time -
MongoDB

Successfully
created records

19.35 ms 9.42 ms 1

16.62 ms 8.58 ms 10

12.92 ms 5.23 ms 100

22.09 ms 46.38 ms 1000

157.64 ms 429.36 ms 10000

1508.67 ms 1495.60 ms 100000

0

500

1000

1500

2000

1 10 100 1000 10 000 100 000

Brisanje zapisa

MS SQL Mongo DB

Graph 5. Deletion of records in MSSQL and MongoDB

E. Description of the database
management systems used
The databases that were used during the devel-

opment of the application for comparative perfor-
mance analysis are among the 10 most famous data-
bases in the world. According to data from database
ranking site DB-Engines, the MSSQL database is in
third place in terms of usage, while the MongoDB
database is in fifth place. Microsoft SQL Database
Management System is Microsoft’s database storage
tool. The first version of this tool appeared in 1989
in cooperation between Microsoft and Sybase. After
breaking up with Sybase, Microsoft made significant
progress in the development of its DBMS. In 1998,
there were the first possibilities of using relational
databases with personal computers. Its base lan-
guage is Transact-SQL, which is an implementation
of the ANSI/ISO SQL standard. Microsoft SQL Server
Express v15.0 was used during the creation of the
project, which is otherwise a free version for small-
er applications and learning.

MongoDB is a representative of non-relational
databases, it is a database management system that
uses a document-oriented database model. It is one
of the numerous representatives of NoSQL databas-
es. It was created by Dwight Merriman and Elliott
Horwitz. It uses a document-based data model be-
cause it claims to be a better and more natural way
to display data. It stores data as JSON or BSON. Mon-
goDB v5.0 was used in the project development.

Graph 6. Top 10 databases used in 2021 according to DB-
Engines results

I.

26 Journal of Information Technology and Applications www.jita-au.com

coMparative aNalysis of relatioNal aNd NoN-relatioNal dataBases JITA 13(2023) 1:20-28

CONCLUSION
Research in the field of databases carried out dur-

ing the preparation of the paper, and the analysis of
all obtained results shows that MongoDB generates
better performance on a larger umber of records
and on larger amounts of data. Up to 1000 records,
the execution times have approximate values, while
above 1000 records, much better times are observed
when using the MondoDB database. By reviewing in-
dividual cases where the results are better with MS-
SQL databases, it can be concluded that by directly
applying MSSQL Management Studio over the data-
base, better execution times are obtained. Therefore,
it can be said that MSSQL databases are suitable for
small and medium applications. They are suitable
when performance is not a priority. Relational data-
bases are widely used in most applications and they
perform well when manipulating a limited amount
of data. One should be careful when choosing a da-
tabase. Major factors such as data volume, flexibility,
scheme, budget, server type, amount of transactions
to be executed, and frequency should be considered.
Of course, these are not the only criteria for choos-
ing a database, as it also depends on the company,
as well as the purpose for which the application is
being developed.

References
[1] Neeraj Sharma, “Database Fundamentals”, IBM Corpora-

tion, 2010.
[2] S. Marić, D. Brđanin, „Relacione baze podataka“, Banja

Luka, 2012.
[3] Aya Al-Sakran, Musbah Jumah Aqel, “A Comparative study

of NoSQL Databases”, 2017.
[4] G. Pavlović-Lažetić, “Osnove relacionih baza podataka”,

Matematički fakultet, 1999.

[5] S. Alagić, “Relacione baze podataka”, Svjetlost, Sarajevo,
1984.

[6] Xiaochuan He, “NoSQL analysis and case study of Mon-
goDB”, 2017.

[7] Nela Tomić , “NoSQL tehnologije i primjene”,2016.
[8] “MongoDB Manual”, (03.09.2021.), https://docs.mon-

godb.com/manual/
[9] “Differece between MSSQL server and MongoDB”,

(08.09.2021.), https://www.geeksforgeeks.org/differ-
ence-between-ms-sql-server-and-mongodb/

[10] M. Kamaruzzaman, “Top 10 databases to use in 2021”,
(22.09.2021.), https://towardsdatascience.com/top-
10-databases-to-use-in-2021-d7e6a85402ba

[11] J. Rasanayagam, “NoSQL”, (22.09.2021.), https://medium.
com/@R.Sumangala/nosql-ab44a979a831

[12] Oracle, “What is a relation database”, (15.09.2021.),
https://www.oracle.com/database/what-is-a-relational-
database/

[13] IBM, “NoSQL Databases” , (12.09.2021.), https://www.
ibm.com/cloud/learn/nosql-databases

[14] S. Knight, “MongoDB vs SQL” , (12.09.2021.), https://
www.knowi.com/blog/mongodb-vs-sql/

[15] Nedeljko Šikanjić, Zoran Ž. Avramović, Esad F. Jakupović,
Implementation of the Neural Network Algorithm in Ad-
vanced Databases, JITA – Journal of Information Technol-
ogy and Applications, PanEuropien University APEIRON,
Banja Luka, Republika Srpska, Bosna i Hercegovina, JITA
8(2018) 2:54-63, (UDC: 004.738.5:551.588:551.506),
(DOI: 10.7251/JIT1802054S), Volume 8, Number 2,
Banja Luka, december 2018 (45-96), ISSN 2232-9625
(print), ISSN 2233-0194 (online), UDC 004

[16] Adrijan Božinovski, George Tanev, Biljana Stojčevska,
Veno Pačovski, Nevena Ackovska,Time Complexity Analy-
sis of the Binary Tree Roll Algorithm, JITA – Journal of
Information Technology and Applications, PanEuropien
University APEIRON, Banja Luka, Republika Srpska,
Bosna i Hercegovina, JITA 6(2016) 2:53-62, (UDC:
519.857:004.021), (DOI: 10.7251/JIT1602053B), Volume
6, Number 2, Banja Luka, december 2016, ISSN 2232-
9625 (Print), ISSN 2233-0194 (Online), UDC 004

Reacived: March 27, 2023
Accepted: May 15, 2023

About the authors
Pero Ranilović, born in the city of Prijedor (Republic of Srpska, BiH). was born on March 11, 1995. Graduated
from high school in Novi Grad. Bachelor’s degree in Programming and Software Engineering earned at the Faculty
of Information Technology at Pan-European University “APEIRON” in Banja Luka. Currently studiyng for a master’s
degree under the mentorship of Assistant professor Dražen Marinković, PhD. Employed as a software developer
since 2018. In addition, hired as a teaching assistant at Pan-European University “APEIRON”.

Dražen Marinković was born on 1978 in Banjaluka. He finished elementary school and high school in electrical
engineering. The Faculty of Business Informatics at the Pan-European University APEIRON Banjaluka enrolled in
the academic year 2009/2010. years and graduated with an average grade of 9.81, defending a master’s thesis
entitled: “NoSQL databases in theory and practice” with a grade of 10. Academic 2015/2016 enrolls in doctoral
academic studies of the third cycle at the Pan-European University APEIRON in Banjaluka, at the Faculty of Infor-
mation Technology, and in the doctoral program “Information Systems in Communications and Logistics” where
he passed all exams with excellent grades - excellent, 10. During his doctoral academic studies, as an author and
co-author, he published 15 scientific and professional papers, two of which were published in international peer-
reviewed journals.

June 2023 Journal of Information Technology and Applications 27

JITA 13(2023) 1:20-28 pero rAnIloVIć, eT Al.

For citation
Pero Ranilović, Dražen Marinković, Nedeljko Šikanjić, Comparative Analysis of Relational and Non-Relational Databases, JITA –
Journal of Information Technology and Applications, Banja Luka, Pan-Europien University APEIRON, Banja Luka, Republika Srpska,
Bosna i Hercegovina, JITA 13(2023) 1:20-28, (UDC: 681.322.06:004.652.4), (DOI: 10.7251/JIT2301020R, Volume 13, Number 1,
Banja Luka, June (1-56), ISSN 2232-9625 (print), ISSN 2233-0194 (online), UDC 004

Nedeljko Šikanjić obtained the degree of Doctor of Science in Informatics and Computer Science and has worked
for more than 17 years as a Software and Database Architect/Engineer. His main fields of studies are in the area
of advanced Databases and Software Architectures. He has been a holder of an active Microsoft Certified Trainer
Certificate since 2012 and has been teaching courses on various topics in Information Technologies. Doctoral
studies of the third degree enrolled in the academic 2017/2018.

28 Journal of Information Technology and Applications www.jita-au.com

