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Summary: In this paper, based on derived differential equation for the heat transfer and a suitable boundary condi-
tion (equation of heat exchange), the appropriate model of cooling of meat stakes in the form of a fl at plate is set up. By 
using theory of similarity, Fourier and Biot criterion is defi ned, which allowed setting criterial equation of temperature 
fi eld which included an unnamed temperature and geometric criterion. For solving the obtained criterial equation, existing 
diagrams of temperature functions were utilized, which were specifi ed by analytical method for the core, the surface and 
the interior of the observed model. The proposed model is used for analytical solving of a number of practical problems 
in the cooling process of meat steaks in a gaseous environment. Particular focus has been on the temperature of the sur-
face and core of steak as well as ambient temperature and cooling time. Also, it was shown that proposed model can be 
used to defi ne temperatures or temperature fi eld along the thickness of steak, depending on the distance from the central 
plane. Special possibility of applying the model is for the case of preve nting freezing steaks, when their temperature is 
maintained within specifi ed limits.

Key words: Furier’s equation, partial differential equations, unsteady heat distribution, Fourier and Biot criterion, 
temperature function, cooling of meat steaks

Introduction 
The theoretical basis of heating and cooling belongs to the fi eld of thermodynamics. The observa-

tion of these processes is of great practical interest in many fi elds of technology, especially in the fi eld of 
heat treatment technology metals [1, 2]. In this general case, the temperature changes with time, while the 
observed body is occasionally heated or cooled [2 - 4].

The determination of temperatures on the surface and the core of the observed body, as well as 
describing the temperature fi eld depending on the coordinates is of particular importance [1, 4]. Time of 
heating and cooling is also important parameter. All these tasks are solved for the case of simple geometric 
bodies, based on the application of Fourier differential equation for the transfer of heat, whereby the solu-
tion comes through analytical procedure, with the use of appropriate diagrams which are constructed for 
this purpose [4 - 6].

Taking into account the above, the idea of work was set up in the sense to apply the Fourier differ-
ential equation of heat transfer for analytical solving of particular problems encountered in meat processing 
and cooling of steaks of certain geometric shapes. It should be noted that the approach presented in this 
paper is not common in the literature.

Derivation of the heat transfer differential equation
For controlling the temperature during heating and cooling, technical requirements for monitoring 

of developments in the core of the observed body are usually diffi cult [7, 8]. It is therefore an important 
theoretical and empirical function for the case of heating and cooling, in the form of:

t=f (x, y, z, τ) (1)
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Here x, y, z are coordinates of arbitrary point which is cooled, and τ is time. During heating and 
cooling, the temperature at any point changes with time, so this process is non-stationary.

Thermodynamic theory of heating and cooling in terms of pure heat transfer where there is no trans-
mission of mass [8-11] is observed here. In this, the homogeneous and isotropic body is observed where the 
heat conductivity, specifi c density and specifi c heat capacity are independent of temperature and pressure. 
Also, it is assumed that during the cooling process there is no phase change of the material [2, 9, 10].

In the observed body, the geometric position of all points that have the same temperature at the same 
point of time forms an isothermal surface [7, 11]. Measure of rate at which temperature changes in one fi eld 
during movement at any observed direction l is:

l
t




 (2)
Rate   of temperature change will be:

n
t




 (3)
Where n is the normal line to the surface.
The temperature gradient is represented by special vector:

l
tlimtgrad n 


  0  = n

t



 (4)
which has a special signifi cance in the temperature fi eld theory [2, 5, 11].
Projections of this vector to Descartes system are:
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Flow of heat will occur only if the temperature gradient is different from zero [1, 6, 7]
Vector of heat fl ow is proportional to temperature gradient

tgradq    (6)
which represents Fourier’s law [5, 12].
Here λ is the coeffi cient of thermal conductivity.
Components of the vector of heat fl ow, due to (6  ) are: [13 - 17]

x
tqx 

 

y
tqy 

   (7)

z
tqz 
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Complete heat fl ow taken per unit area dF and unit of time dτ will be, Figure 1:

 (8)

Figure 1. Scheme for derivation of the heat transfer differential equation

At the direction dx heat fl ow will be changed for

      (9)
Due to values   of qx, qy, qz, according to (8) it shall be:

 (10)

where dV is the volume of observed parallelepiped.
The overall increment of heat fl ow through the elementary parallelepiped is:
dQ = dQx + dQy + dQz (11) 
that is, according to (10):

 (12)
Heat dQ in its entirety performs only changes in the temperature of the body, that is, heating or cool-

ing of the body, so considering that, it will be:

 (13)
where:
ρ– density of the material of body
c – specifi c heat capacity of the body
By equating relations (12) and (13), the Fourier’s differential equation is obtained
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where the coeffi cient of thermal conductivity is:






c

a
 (15)

and is considered to be constant.
The left side of equation (14) defi nes the rate of change of temperature with time, and the right side 

spatial distribution of temperatures.
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As seen, Fourier’s differential equation is derived on the basis of a very small number of assump-
tions. Beside this equation, knowledge of supplementary conditions which uniquely defi ne the phenomenon 
is required. These conditions can be time and space, which must satisfy the differential equation (14) [4, 9, 
18]. Particularly signifi cant and simple initial time condition is when for τ = o, t = t0 = const.
Equation (14) is possible to write and simplify through the operator  [17, 18]:

tat 2


   (16)

Differential equation of heat exchange
The amount of heat that is brought or taken from the surface of the body is:

ptq   (17)
which is a boundary condition, of special importance. Here is:
α – coeffi cient of heat transfer (convection)
tp – surface temperature
The amount of heat that is brought to the surface boundary of the body is equal to the amount of 

heat which is taken

pp t
n
t





  )(  (18)

In this, tp must be distinguished from ambient temperature and from zero. The index p refers to the 
surface of the body. This boundary condition represents a differential equation of heat exchange, [2, 4, 7].

The task is defi ned closer with the geometry of the body. Analytical solutions exist only for simple 
bodies: an infi nite plate of fi nite thickness, a cylinder of infi nite length and a ball, [12, 15, 17, 18].

When the Fourier’s equation can not be solved, the problems are solved by the theory of similarity. 
The same is true for complicated geometrical cases [3, 8, 11].

The task is more closely defi ned also with the geometric shape of the body.
In the cooling process, in practice, temperature distribution at any time over the whole cross sec-

tion of the body is almost never requested, but a knowledge of the temperature on the surface of the core of 
piece (in the middle of the wall of piece) and the time required for cooling is most often necessary [5, 18].

Solving the problem of cooling starts from the Fourier differential equation and differential equa-
tion of heat exchange (boundary condition of the third-order), (14) and (18):

)( 2

2

2

2

2

2

z
t

y
t

x
tat

















pp t
n
t





  )(  (19)

Application of similarity theory in problem solving
Fourier’s equation can be written as
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  (20)
where x1=x x2=y x3=z
If in these equations, according to the origin of the theory of similarity, indexes and symbols of dif-

ferentiation and summarizing are omitted, the equation will be obtained [4, 17]:
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Here n is an arbitrary dimension of the body, so the size of the fi rst equation X can be taken instead 
of n.

If each equation, according to the theory of dimensional analysis, is divided by suitable number, so 
that on one side of the equation remains 1, we get defi nitions of criteria

21
X
a 

  (22)

X

1

Right sides of equations (22) are unnamed numbers. The fi rst of criteria is derived from Fourier’s 
equation and is called the Fourier criterion

20 X
aF 

  (23)
The second equation defi nes the Biot criterion

XBi 



 (24)
In this, coeffi cient of the heat transfer from the plate surface into the surrounding medium is con-

stant.
In addition to these criteria, the fi nal function should also introduce a criterion 

X
x which is also 

unnamed number and indicates the place, because x is the distance of the observed point from the central 
plane, while X is a characteristically known length.

Unnamed temperature criterion, that represents the relationship between the required temperature at 
a given point of time in a given point and a known temperature that is given by the requirement of the task

0
 , also has to be introduced [4, 16].

Meat steak in the form of a plate as a geometric model
In the analysis that follows, let us observe the steak meat Figure 2, wherein the average diameter is 

substantially greater than its thickness, dsr>>δ, which represents a thin fl at plate from the geometric point 
of view. Also, we will assume that this geometric body is homogeneous and isotropic with its character-
istics, whereby the heat conductivity, specifi c density and specifi c heat capacity are independent from the 
temperature. As a type of meat, the steak would fi t the most to it.

Figure 2. Meat steak observed as a thin fl at plate

Observed fl at plate, with thickness of δ = 2X has some temperature t higher than the ambient temperature 
t0 that represents the temperature of the cooling chamber, i.e. cold storage where the steak cools (Figure 3).

The temperature on the surface of the steak is tz, while the temperature in the central transverse 
plane is tm (core). The temperature in an arbitrary plane at a distance x is tx. 

Obviously, the criterion
X
x will have a value of 0 in the core of piece (x=0) and 1 for the surface of 

piece (x=X), since x is measured from the central plane (y axis), Figure 3.
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Here, X represents the half of thickness of the plate (Figure 3). Obviously, cooling and thus the 
temperature on both sides of beef are symmetrical.

Figure 3. Model of meat steak as a fl at plate at non-stationary heat conduction

Criterial equation of temperature fi eld and its analytical solution
On the basis of equation (14) and for
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Due to the symmetry of cooling both sides of the plate and θ=t-t0, will be
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By integrating the differential equation (26) in the form of endless row of transcendental functions:
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where εn are the roots of the characteristic equation

Bi
n

n
 log  (28)

it is obtained temperature difference θ between the fl at plate and the environment after the time of 
cooling τ at a distance x from the middle of cross-sectional plane of the plate: 

);;( 2 X
X
x

X
a

c 
 

  (29)

Here,  represents mentioned transcendental function in the form of infi nite order (unnamed heat 
transfer function). The values   of εn, which are multiple, can be found in the relevant tables [2, 8, 13, 14].
Relation (29) can be written as:
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X
xBiFo

c
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or 
);;( 2 X

xX
X
a

c 
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which represents a criterial equation of the temperature fi eld of the observed problem.
Here is θc = tc - t0 (32)
If we mark the temperature in the middle cross section of plane with tm, and with tz surface tempera-

ture of the plate tz, it will be analogous to above:
θm = tm-t0 (33)
θz = tz-t0 (34)
In this, it should be noted that the initial temperature of the steak and the ambient temperature are 

constant.
The temperature criterion, according to the previous one, in the general case is:
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ie for the median plane and the surface:
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For tm it will be x=0 and for tz it will be x=X, so according to (31) it is:
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Thus, the criteria that determine the unnamed temperature in the core and on the surface are

c

m
m 
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z
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 (39)

For scheduling the temperature of the body in the form of plates for the core and the surface of the 
body, for a certain time τ = const, values   of elementary functions F with Figure 4 and Figure 5., can be used 
[1, 15, 16, 18].

Fig 4. The temperature function
c

m




 for the middle plane of an unlimited plate (tm – temperature in the middle plane)

Obviously, for temperature function for the nucleus (Figure 4) is valid:

),( FoBifm
c

m 



 (40)
where: 
tm – the temperature in the middle plane (core)
t0 – ambient temperature
tc – initial temperature
The diagram is constructed for a wider interval, F0= 0.1 ÷500.

Figure 5. Temperature function
c

z




 for the surface of unlimited plate (tz – temperature of the surface)

For the surface of the plate is valid (Figure 5):

 (41)
where is also
tz – temperature on the surface
t0 – ambient temperature
tc – initial temperature
The diagram is constructed for a wider interval, F0= 0.00025 ÷500.
For determination of the line of temperature distribution inside the board, a diagram can be used 

according to Figure 6. Here is the obvious:  
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Figure 6. Temperature function 
m

x




 
for the inside of the plate

Here is
tx– the temperature at an arbitrary place (for x coordinate)
t0 – temperature in the middle (core)
tc – ambient temperature

Possibilities of application of derived relations

Determination of the temperature on the surface and in the middle of sectional plane 
of meat steak
Given:
δ=3 cm = 0.03 m  ρ=1200 kg/m3

cp=4.1 kJ/kg°C  λ=0.45 W/m°C  α=20 W/m2°C
• initial temperature of the steak tc= 25°C
• ambient temperature (cold storage) t0= -5°C
• duration time of cooling τ=60 min
The temperature at the surface and in the core of the steak is requested.

Solution:

a) Temperature of the surface tz

b) Temperature in the middle of crossing plane tm (core)

F0=1.44  Bi=0.67
Figure 7. Determination of the temperature on the surface and in the middle of plane of meat steak

Determination of cooling time
Given:
δ=25 mm=0.025 m   ρ=1200 kg/m3

cp=4100 J/kg°C   λ=0.45 W/m°C  α=15 W/m2°C
• initial temperature of the steak: tc = 20 °C
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• ambient temperature (cold storage) t0 = -10 °C
• requested temperature of the surface of the steak tz = 1 °C
Cooling time for given conditions and temperature in the core, in this case is requested
Solution:






c

a =9·10-8m2/s  
2


X =0.0125 m

a) Cooling time
b) The temperature in the middle sectional plane tm

Bi=0.42

F0=1.5
Figure 8. Determination of cooling time of meat steak

Time required for the surface to cool down to ambient temperature
Given:
X=20mm = 0.02 m  α=15 W/m2°C  λ = 0.45 W/m°C 
cp= 4100 J/kg°C    ρ =1200 kg/m3

• ambient temperature (cold storage)  t0 = 0°C
• initial temperature tc= 25°C
a) Determine the time required for the surface of steak to cool down to ambient temperature t0

b) What time is required in previous case for the core to also get cooled down to ambient tempera-
ture?
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Solution:
a) tz =t0

Figure 9. Determination of time required for the surface and core of meat steak to cool down to ambient temperature

Determination of temperature tx at arbitrary distance from the central plane (x)
Given:
δ=3 cm = 0.03 m  ρ=1200 kg/m3

cp=4100 J/kg°C  λ=0.45 W/m°C α=20 W/m2°C  
• ambient temperature (cool storage)  t0= -5 °C

• temperature of the core tm = 11.5°C
Determine the temperature at a distance

4


x  from the central axis.
The solution:
Using different distances x {0, δ/2}, it is possible by the above procedure to determine the func-

tion of the temperature distribution along the thickness of steak, depending on the distance x. 
Figure 10. Determination of temperature of meat steak at a distance 

4


x  from the central plane

Determination of the ambient temperature (cool storage)
Given: 
δ=2.5 cm    ρ=1200 kg/m3   cp= 4100 J/kg°C 
λ=0.45 W/m°C α=25 W/m2°C 
• Time of cooling τ=1.5h = 5400 s 
• temperature of the surface tz= 1 °C
• initial temperature of the steak tc=20 °C
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a) Determine the ambient temperature (cool storage)
b) What is the temperature of the core for the previous conditions?
Solution:

Figure 11. Determination of ambient temperature (cool storage) in cooling of meat cuts

Determination of heat transfer coeffi cient in cooling meat cuts in order to avoid 
frosting
Given:
δ=3 cm = 0.03 m  ρ=1200 kg/m3

cp=4100 J/kg°C  λ=0.45 W/m°C a = 9.03·10-8 m2/s  
• ambient temperature (cool storage)  t0= -15 °C
• temperature in middle plane (coor) tm= +4 °C

• temperature at the surface of steak: tz= -1 °C
We will determine the heat transfer coeffi cient α (which can be regulated by the speed of rotation of 

the fan in the cooler), so that the temperature of steak is held within the given limits (-1°C ÷ 4°C).
Solution:
This represents the required heat transfer coeffi cient, which can be adjusted by changing the speed 

of rotation of the fan in the cool storage. In this way it will avoid frosting of meat steaks, due to their tem-
perature that will be maintained within the given limits (-1 °C ÷ +4°C).
Previous relations are valid at [17, 18]:

 20 X
aF >0.2 (43)

From here it is:

τ > 0.2· a
X 2

  → τ > 0.2· 
cX 2

 (44)
that is:
τ > 492 s
τ > 8.2 min

Figure 12. Determination of heat transfer coeffi cients in cooling of meat cuts in order to avoid frosting

Conclusion
Fourier partial differential equation of heat fl ow is derived from a very small number of assump-

tions, which, as shown, allows the possibility of its wide application in technique and technology. It has 
been shown that it may be effi ciently used in the process of cooling of meat steaks with a thickness substan-
tially smaller than the average diameter.

A complex system of partial differential equations in the present model is solved effi ciently using 
the similarity theory, by introducing appropriate dimensionless criteria. In the direct problem solving, there 
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would be some mathematical diffi culties, that is, complications of the solution.
Considering that the cooling problems are solved analytically using existing diagrams that defi ne 

appropriate temperature functions, special attention must be given to approximation of curve diagrams to 
get the most accurate results.

Also, the accuracy of the results depends on the coeffi cient of thermal conductivity, which takes into 
account the physical characteristics of the body, i.e. the steak in this case.

Heat is exchanged with the environment depending on the time of cooling, also may be determined 
on the basis of this model, as in this case, in the literature there are corresponding diagrams.

The model presented in the paper can be used for verifi cation of the analytical results in practical 
examples of cooling process of meat steaks. 

At the same time, it would be particularly interesting to experimentally determine the temperature 
fi eld, depending on the cooling time of the observed body and compare the results with the analytical solu-
tion.

In the case of more complex shapes than observed, a solution can be reached by using appropriate 
numerical methods.
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Fig. 2. Meat steak observed as thin fl at plate

Fig. 1. Scheme for derivation of the heat transfer differential 
equation

ambient

area

mean cross area

Fig. 3. Model of meat steak as fl at plate at non-stationary heat conduction

Fig. 4. The temperature function
c

m




 for the middle plane of an unlimited plate
(tm – temperature in the middle plane)

 Φm

Fig. 5. Temperature function
c

z




 for the surface of unlimited plate (tz – temperature of the surface)

Φz



66 www.qol-au.com

B. PEJOVIĆ, ET AL.: POSSIBILITY OF USING FOURIER’S DIFFERENTIAL 
EQUATION IN COOLING PROCESS OF MEAT STEAKS QUALITY OF LIFE (2014) 5(1-2):53-67

Figure 7. Determination of the temperature on the surface and in the middle of plane of meat steak

Figure 8. Determination of cooling time of meat steak

Φm

Fig. 6. Temperature function
m

x




for the inside of the plate
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Figure 9. Determination of time required for the surface and Figure 11. Determination of ambient temperature
core of meat steak to cool to ambient temperature (cool storage) in cooling of meat cuts

Figure 10. Determination of temperature of meat steak at a distance 
4


x  from the central plane

Fig. 12. Determination of heat transfer coeffi cients in cooling of meat cuts for the case of avoiding frosting


