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Summary: Heteroscedasticity are one of the 

several violations of the assumptions of OLS. If 

no remedy applied, residuals with non-constant 

variance can lead to inaccurate and biased 

results. Academia has suggested a wide range of 

remedies to tackle with heteroscedastic 

residuals. In this study, we suggest another 

approach, bootstrapping of dataset to construct 

our confidence intervals. In order to compare 

the outcome, we look at Huber-White method 

and look at its performance against bootstrap 

intervals. Results indicate that bootstrap 

intervals perform equally well as Huber-White 

based confidence intervals. This indicates that 

bootstrap method, similar to Huber-White 

approach, can be a good remedy for 

heteroscedasticity. 

Keywords: heteroscedasticity, homosce-
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Резиме: Хетероскедастичност предтавља једну од 

нарушених претпоставки ОЛС-а. Ако се не примјени 

одговарајуће рјешење, резидуали са не-константном 

варијансом могу довести до нетачних и пристрасних 

оцјена параметара.  Академска заједница је 

предложила низ решења за решавање овог проблема. 

У овој студији предлажемо другачији приступ,  

поновљено узорковање података (бутстрап) како 

бисмо конструисали интервале повјерења. 

Посматрамо Хубер-Wајтове методу и њену примјену 

у поређењу са боотстрап интервалима како бисмо 

упоредили резултате. Резултати показују да 

боотстрап интервали дају једнако добре резултате 

као интервали повјерења засновани на Хубер-

Wајтовој методи. То имплицира да боотстрап 

метода, слично Хубер-Wхите приступу, може бити 

добро решење за хетероскедастичност. 

Кључне ријечи: хетероскедастичност, хомоске-

дастичност, линеарни модел, интервал поверења, 

бутстрап, Хубер-Вхите, резидуали, тачност 

ЈЕЛ касификација: C15, C87, E22 

 

 

 

INTRODUCTION 

 

Linear models often derived using the Ordinary Least Squares (OLS) method, is one of the 

most popular methods of deriving impact of one variable on another and predicting future outcomes. 

OLS approach is currently used in wide range of sciences such as economics, finance, psychology, 

sociology to name just a few. The popularity of OLS approach comes from its simplicity, good 

efficiency and ease of interpretation, although it is almost an approximation to real life relationships. 

Yet, linear models require a set of theoretical assumptions to be satisfied in order to have accurate 

unbiased efficient point and intervals estimates. The core assumptions are homoscedasticity, no 

autocorrelation, and normality of residuals and violation of any of them might lead to inefficient or 

even biased confidence interval estimates. As a result of such violations, researchers and practitioners 

might do wrong conclusions when evaluating impact of one variable on another, affecting decisions in 

fields of medicine, economics and engineering. To cite an example, in studies of income and its 

determinants, which is very common subject of research in economics and finance, income dataset 
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very often violate homoscedasticity assumptions. When no remedy is applied, OLS estimations of 

coefficients or their confidence intervals are usually inefficient and often biased. 

Situations when homoscedasticity is not satisfied is also known as heteroscedasticity. This 

implies that variances of the error term are not constant across observations. Presence of 

heteroscedasticity can distort standard errors and make confidence intervals less accurate. In practice, 

it means that studies that have heteroscedastic dataset can draw incorrect conclusions about variable 

significance or effect sizes when no remedy is applied to mitigate heteroscedasticity. One of the 

techniques widely used in practice is the Huber-White standard error correction. Huber-White is a 

mathematical transformation, which makes OLS estimations more robust to heteroscedasticity without 

altering the functional form of the model. Another method of handling heteroscedasticity is suggested 

in this study known as bootstrapping. Bootstrap confidence intervals have no distributional 

assumptions, which makes this approach less sensitive to non-constant variances. 

This paper looks into the practical implications of heteroscedasticity on OLS estimates and 

investigates how both the Huber-White robust intervals and bootstrap methods can serve as ways to 

handle heteroscedasticity. By comparing these approaches with heteroscedastic data, we want to shed 

some light into how practitioners can select the best method for their specific case, balancing statistical 

robustness with computational efficiency. 
 

 

1. LITERATURE REVIEW 

 

Bootstrap method is a resampling method of a given dataset to build a sampling distribution of 

a specific statistic. Bootstrapping has become popular because it has proven to provide reliable 

inferences in many cases even when underlying assumptions are not satisfied. This also applied to 

cases of heteroscedastic residuals which is first discussed in papers of Efron (1979). Since then, 

theoretical foundations have been concentrated on justifying validity and efficiency of bootstrap 

confidence intervals with non-constant variance of errors (Davison and Hinkley 1997).  

In the context of linear models, there have been primarily two types of bootstrapping used for 

estimating point and interval estimates, bootstrapping residuals and bootstrapping pairs (Chernick and 

LaBudde 2011).  

Bootstrapping residuals: This method of bootstrapping was first introduced by Efron (1982). 

Imagine we have the following model  

,    for    i=1,2,….,n 

where  is a function with a known form. To estimate , we minimize distance between 

our true dependent variable   and estimated function . These distances are expressed in terms 

of residuals   =   . The idea behind Wild bootstrap is to take the distribution of residuals 

each having probability of 1/n  for  i=1,2,….,n and sample n times from this distribution to get 

bootstrap sample of residuals which can be denoted as . Afterwards, bootstrap 

dependent variable can be generated using . Now, as we have our bootstrap 

dataset, we use simple OLS method to estimate  We repeat the above procedure B times to get a 

distribution of  estimates for j=1,2,….,B. One can get standard deviation of  to build bootstrap 

confidence intervals.  

Bootstrapping pairs:  bootstrapping pairs is a rather simple but powerful approach proposed 

first by Freedman (1981). Under this approach, we resample independent and dependent variables 

from the original sample which results in a bootstrap sample. We then use usual OLS method to 

estimate  from the bootstrap sample. This procedure is repeated B times in order to get distribution 

of coefficients  estimates for j=1,2,….,B. This distribution in turn can give bootstrap standard 

deviation. 

Efron and Tibshirani (1986) conclude that two approaches are equivalent when the model is 

correctly specified, but they can perform differently when the sample is small. Flachaire (2003) 

compared bootstrapping residuals and bootstrapping pairs when the model is correctly specified and 

when heteroscedasticity is present in the linear models. Flachaire (2003) concludes that when a proper 

transformation to the residual term is applied (wild bootstrap), residuals bootstrap performs better than 

bootstrapping pairs. Chernick and LaBudde (2011) conclude however that bootstrapping vectors are 
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less sensitive to violations of model assumptions and can still perform well if those assumptions are 

not met. This can be explained by the fact that the vector method does not depend on model structure 

while bootstrapping residuals do. 

Other approaches are stationary bootstrap (Politis and Roman 1994), and the percentile-t 

bootstrap (Diciccio and Efron 1992) each used under different scenarios of non-constant variance of 

the residuals.  

On comparing Huber-White robust confidence intervals and bootstrap confidence interval, 

there has been numerous studies carried out and concluded that each approaches has advantages in 

specific scenarios. Long and Ervin (2000) claid that Huber-White standard errors are rather quick to 

estimate and perform well when data is sufficiently large and heteroscedastic behavior is not severe. 

Yet, Huber-White robust estimates can depict inconsistent results when sample is small or 

heteroscedasticity is arousing from model complexity and varies a lot (MacKinnon and White 1985). 

In contrast, Efron and Tibshirani (1994) claim that in extreme cases of heteroscedasticity or 

small samples, bootstrap can be more suitable. Cameron and Trivedi (2005) in their paper also 

conclude that bootstrap confidence intervals resulted in more accurate intervals than robust standard 

errors in above conditions, arguing that bootstrap is better at capturing the true sampling distribution in 

the presence of heteroscedasticity and other non-normal errors.  

Yet, many studies (e.g. Davidson and MacKinnon, 2004) conclude that bootstapping comes at 

a computational cost especially when sample is large and resampling will take time and computing 

power. In contrast, transformational remedies such as Huber-White standard errors do not suffer from 

this shortcoming, as it is computationally easy to implement Huber-White approach. 
 

 

2. LINEAR REGRESSION MODELS 

 

First of all, let’s look into how linear models are built and how coefficients as well as their 

intervals are estimated. As mentioned earlier, the linear model evaluates the impact of one or more 

variables (explanatory variables) to another variable (explained or dependent variable). This is done by 

estimating coefficients of estimates of each explanatory variable. For instance, imagine that we want 

to evaluate whether your year of education affects your income and by how much. If we build our 

simple OLS model where income is dependent “Y” variable, and year of education is “X_1” 

explanatory variable, then coefficient of “years of educations” ( shows the size and direction 

(positive or negative) of the impact. 

 
Where  

dependent variable,  

 – intercept,   

 coefficient of first explanatory variable 

explanatory or independent variable 

error or residual term 

 

The above model is the simplest one variable example of linear regression and usually most 

studies take into account more explanatory variables that will improve the model (there are metrics to 

evaluate whether a model is improving or not, e.g. adj. R squared, AIC, MSE).  

Estimation of coefficients in the above model is done with the method of least squares 

commonly known as OLS (ordinary least squares). Least squares estimate of  is given by:  

 
where 

 number of observations 

 value of the independent variable for the i-th observation 

 value of the dependent variable for the i-th observation 

 mean of the independent variable  

 mean of the independent variable  
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3. TRADITIONAL CONFIDENCE INTERVALS 

 

Researchers are often interested not only in point estimates of coefficient, but also interval 

estimations. This is because point estimates of coefficients are always an approximation to true 

population value. In contrast, interval estimations, commonly known as confidence intervals, have a 

set of advantages. Firstly, it gives a range of values where true population value can be located. 

Secondly, confidence intervals will indicate whether the true population parameter might be equal to 

0. In other words, whether the effect of that specific explanatory/independent variable to dependent 

variable is insignificant. Currently, all statistical softwares provide both point and interval estimates by 

default. Below, we will look at the theoretical side of building confidence intervals of coefficients of 

linear models. 

  

Central Limit Theorem 

 

Central Limit theorem (CLM) is the core concept of statistics that is employed also in building 

confidence intervals. The theory says that irrespectful of the true population dataset, if one derives 

many sample averages from many samples generated from the same population, then the distribution 

of sample averages is approximately normal (also referred as Gaussian, see graph below)  (Lind et al, 

1967). The midpoint of resulting distribution of sample averages will be equal to the true population 

mean (see Figure 1). This is a very strong finding that can also be applied in confidence interval 

construction.  

Figure 1: Central Limit Theorem 

 

Source: generated by the author 

 

In practice, we often cannot take many samples from the same population and very often left 

to work with only one sample. Nevertheless, one can still make some estimation regarding the 

population value (e.g. mean, coefficient) using the central limit theorem even when the distribution of 

the population dataset is not known. 

 

Confidence interval based on CLT 

 

Consider we have only one sample from the population data. Firstly, we can estimate the 

sample coefficient using the method of ordinary least squares (discussed in previous chapter). 

Afterwards, we can estimate standard error of the estimated coefficient using the following formula 

also arising from the method of least squares.  

 
where 

 standard deviation of the residuals (residual standard error) 

 number of observations 
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 value of the independent variable for the i-th observation 

 mean of the independent variable  

 

As distribution of  coefficient is approximately normal distribution based on central limit 

theorem, we employ properties of standard normal distribution (z-distribution) and build 90%, 95% or 

99% confidence intervals.  

 
where  

- is sample coefficient estimate 

  – is a value from the standard normal distribution the give an area of   

 - sample variance of the coefficient 

 

The above interval estimation is interpreted in the following way. 97% interval indicates that 

if we construct 100 confidence intervals from 100 random samples generated from the true population, 

then 97 of those confidence intervals will contain true population coefficient . Also, employing 

this confidence interval you can verify whether population coefficient is insignificant. If estimated 

confidence interval contains zero, then one can suspect that the true population parameter can be equal 

to zero (Gujarati, 2004) 

However, one can see that estimation of the standard error of the same coefficient depends on 

the normality of the residual term. In the presence of heteroscedasticity, standard deviation of the error 

term can be inflated which will result in inaccuracies in confidence interval constructions using the 

CLT approach (Gujarati, 2004).  

Heteroscedasticity can arise from various sources, such as: 

1. Omitted variables 

2. Measurement error 

3. Non-linearity of the relationship of dependent and independent variable 

4. Outliers 

5. Residual variance that deviates with time 

6. Endogeneity 

7. Model misspecification 

 

If no remedy is applied to heteroscedasticity in residuals, it will make the standard error of the 

residuals biased and can lead to wrong conclusions in hypothesis testing. Academia suggested a set of 

way on how heteroscedasticity, such transforming variables, weighted least squares, including 

important variables and many others (Greene 2021) 

Below, we suggest another way, bootstrap, of handling heteroscedasticity in residuals for 

construction of our confidence intervals for coefficients.  

 

 

4. BOOTSTRAP CONFIDENCE INTERVAL ESTIMATION 

 

In the first place, it is necessary to explain the concept of bootstrapping. Bootstrap is a 

relatively easy resampling technique that can offer alternative ways of building confidence intervals. 

Bootstrap implies selecting one sample and generating many other different samples from this single 

original sample and estimating your parameter of interest in each newly created sample. Under the 

bootstrap approach, the original sample is considered as a population and we generate many other 

samples (known as bootstrap samples) out of it. When a large number of bootstrap samples are 

created, we estimate sample parameters (e.g. coefficient) from every bootstrap sample. Consequently, 

we will have a distribution of bootstrap sample estimates.  

This distribution of bootstrap sample estimates can be used to construct our confidence 

intervals. For example, if we want to construct a 95 percent interval, we take 2.5th and 97.5th 

percentiles from bootstrap distribution. Figure 2 explains visually the method of bootstrapping. 
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Figure 2: Bootstrap distribution generated from original sample 

 
 

Source: generated by the author 

 

Bootstrap in case of heteroscedasticity 

 

Consider a sample that indicates presence of heteroscedasticity as a result of measurement of 

error in some data points. Earlier, we discussed that heteroscedasticity can lead to a bias if we employ 

traditional OLS based methods of building confidence intervals. This is because standard errors of 

residuals will be affected by heteroscedastic residuals. This in turn influences standard errors of 

estimated coefficients which is used for building traditional confidence intervals. There are a set of 

advantages to this approach over traditional methods. Firstly, if sample size is smaller than 30 if we 

remove outliers from the original dataset, bootstrap interval estimation can still be derived. In contrast, 

traditional methods required sample size to be larger than 30 for estimates to be reliable enough. 

Secondly, by removing samples that contain potential outliers, our distribution of estimates should not 

be influenced by extreme outliers. Lastly, bootstrap distributions of estimates do not have any 

assumptions of true distribution of population dataset.  

In contrast, bootstrap confidence intervals do not rely on standard deviation of residuals. It 

generally has no assumptions on the distribution of the coefficient which serves as its biggest 

advantage over the traditional approach.  

 

 

5. HUBER-WHITE ROBUST STANDARD ERRORS 

 

The Huber-White approach has turned into one of the commonly used methods to derive 

robust standard errors in regression models where residual do not have constant variance. As 

mentioned earlier, one of the assumptions of traditional OLS model is that the error term have a 

constant variance, also known as homoscedasticity, across all levels of the independent variables. 

When homoscedasticity is not satisfied, confidence intervals and hypothesis tests might be inaccurate 

or even biased. Huber (1967) and White (1980) suggested so called Huber-White method, which has 

proven to be a good remedy to cases of heteroscedasticity and give robust standard errors to build 

confidence intervals. 

 

Theoretical Foundation of the Huber-White Method 

 

In linear models, the mathematical estimation of  coefficients assumes that error terms  

have constant variance across observations. Mathematically speaking: 

 

Yet, if homoscedasticity is not satisfied, the derived variance of  may be inaccurate and 

biased. The Huber-White approach resolved this problem by deriving the variance-covariance matrix 

to adjust for unequal error variances. 
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Formula of the variance of in OLS models is: 

 

where  is the variance-covariance matrix of the residuals, often assumed as  (a constant 

times an identity matrix). When residuals are heteroscedastic,  changes across different X values. 

The Huber-White approached instead calculates  as: 

 

where  is the squared error terms for each observation. As the result, Huber-White methods 

estimates variance of the coefficient using the following formula: 

 

Here, is the vector of independent variables for each observation, weighted by their 

residual variances. 

This method has proven to be appropriate in handling OLS models with heteroscedasticity and 

resulting variances are unbiased and more accurate, especially in cross sectional or panel datasets. 

 

 

6. SIMULATION 

 

In order to evaluate performance of bootstrap confidence intervals when heteroscedasticity is 

present, it is necessary to carry out a simulation of a linear model. Simulation is necessary for two 

reasons. First, we need to know the true population coefficient  and in practice we rarely know the 

true population parameter. Secondly, we need to evaluate performance of estimated confidence 

intervals in presence of heteroscedasticity. Although real data can have heteroscedasticity of residuals, 

we do not know the true form of residuals distribution. For these two reasons we need to model our 

linear model with heteroscedastic residuals. We select the simplest form of linear model with one 

explanatory variable that is correlated with the error term.  

 

Y = β0+ β1 * +   

where 

4) 

) 

 

where intercept (   ) and  are defined by us. Independent variables (X1) come from 

normal distribution with mean of 5 and standard deviation of 4. Error term ( ) is simulated following 

the approach suggested by Flachaire (2003) yet the form of heteroscedasticity is slightly different. 

Under this scenario, error term is correlated with explanatory variable and its variance grow as the 

value of  grows.  

We check the performance of bootstrap confidence intervals in different sample sizes. Thus, 

we have a first sample size of 30 and then we increase it by 10 observations up to 200 observations. 

All of the simulations are carried out in R software. 

We take the following steps for simulation of linear model with heteroscedasticity with 

different sample sizes 

Step 1: set intercept β0 = 4 and coefficient β1=5 

Step 2: Set sample size to n=30 

Step 3: generate  X1 ~ N(5, 4) starting with sample size n 

Step 4: generate Y with   Y = β0+ β1 * + , where  ~ N(0, ) 
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Step 5: estimate confidence intervals using traditional method without remedy, Huber-White 

robust intervals and bootstrap methods in repeated simulations (1000 times). Here we construction 95 

percent confidence intervals 

Step 6: evaluate how many times (out of 1000), true parameters were within estimated OLS 

intervals with and without remedy and bootstrap confidence intervals 

Step 7: repeat step 2 to step 8 by adding 10 observations to sample size (n=n+10). Finish when 

sample size reaches 200 observations  

Traditional and bootstrap confidence intervals estimations are discussed in above sections. For 

traditional intervals, we use the following formula which is estimated in any statistical package when 

we construct our linear model. 

 
 

Bootstrap confidence intervals are built taking values in certain percentiles of parameter 

distributions that were generated as a result of bootstrapping.  

 

 

7. RESULTS 

 

We will look into two results of the simulation in this part. First is with homoscedastic 

residuals and second is with the presence of heteroscedasticity. In present of heteroscedasticity, we 

compare traditional confidence intervals without remedy and bootstrap intervals. Afterwards, we build 

confidence intervals using Huber-White standard errors and check how they perform against 

bootstrap. In all these comparison, we also look at how estimated intervals change as we change our 

sample size. 

Correctly specified model  

 

First of all, we want to see how traditional CLT based and bootstrap confidence intervals 

perform when no violations of OLS assumptions are present. We expect that both approaches will do 

relatively good work in building interval estimates. In other words, for 95 percent confidence 

intervals, we expect true parameters to fall within estimated intervals at least 95 per cent of cases.    

The first graph below shows often true coefficients fall within estimated confidence intervals 

built using traditional and bootstrap methods. One can see that both methods are doing relatively well, 

that is constructed intervals are containing true coefficient at least The chart clearly shows that both 

traditional and bootstrap confidence intervals contain true parameter in 90-100 percent of the cases 

which is expected outcomes (see Figure 3). 

 

Figure 3: Accuracy of confidence intervals when model is correctly specified: traditional confidence 

intervals vs bootstrap confidence intervals 

 

 

 

 

 

 

 

 

 

Source: generated by the author 

Bootstrap confidence intervals contain true coefficients more often compared to traditional 

OLS intervals. This is explained in the second graph which shows that bootstrap intervals are larger in 

width compared to OLS intervals across all sample sizes (see Figures 4). 
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Figure 4: Size or width of confidence intervals when model is correctly specified: traditional 

confidence intervals vs bootstrap confidence intervals 

 

 

 

 

 

 

 

 

 

Source: generated by the author 

Misspecified model: case of heteroscedastic residuals 

 

As explained in previous chapter, we introduce heteroscedasticity by making our variance of 

residuals equal to /2 This will make variance of error term be dependent of values of  and thus 

make the error term heteroscedastic. In other words, the larger the explanatory variable, the larger the 

variance of the error term becomes. Here, we again plot the two graphs to check accuracy and width of 

traditional OLS confidence intervals compared to bootstrap ones. 

Figure 5: Accuracy of confidence intervals when residuals of the model are heteroscedastic and not 

remedy is applied: traditional confidence interval without remedy vs bootstrap confidence interval 

 

 

 

 

 

 

 

 

Source: generated by the author 

One can clearly see from the Figure 5 in Appendix that neither of the approaches are reaching 

expected 95 per cent coverage of confidence intervals. Yet, accuracy of bootstrap confidence intervals 

are much higher than that of traditional intervals. To put in other words, approximately 90 per cent or 

more bootstrap confidence intervals contain true population coefficient across different sample sizes. 

In contrast, traditional confidence intervals’ accuracy are below 80 per cent which clearly indicates 

that confidence intervals are highly influenced by non-constant variance of residuals which distorts 

standard deviation of estimated coefficient. Higher coverage of bootstrap intervals are explained by 

the fact that the width of bootstrap intervals are wider compared to traditional ones (see Figure 6). 
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Figure 6: Size or width of confidence intervals in presence of heteroscedasticity: traditional confidence 

interval without remedy vs bootstrap confidence interval 

 

 

 

 

 

 

 

 

 

Source: generated by the author 

As pointed out in the literature review part, Chernick and LaBudde (2011) claim that bootstrap 

intervals constructed using bootstrapping pairs are less sensitive to violations of model assumptions, 

which is also justified in the current simulation.  

Now we will have a look at how bootstrap confidence intervals contrast with traditional 

intervals when we apply Huber-White method. In our specific form of variance of the error term 

(X1/2), Huber-White robust intervals perform almost the same as bootstrap confidence intervals in 

term of accuracy (see Figure 7). Size of confidence intervals of both methods are also almost the same, 

although bootstrap intervals are slightly narrower compared to Huber-White intervals.  

 
Figure 7: Accuracy of confidence intervals when residuals of the model are heteroscedastic and remedy is 

applied: traditional confidence interval with Huber-White robust standard errors vs bootstrap confidence 
interval 

 

 

 

 

 

 

 

 

Source: generated by the author 

Figure 8: Size or width of confidence intervals in presence of heteroscedasticity: traditional confidence 

interval with Huber-White robust standard errors vs bootstrap confidence interval 

 

 

 

 

 

 

 

Source: generated by the author 
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To sum up all the above-mentioned simulation results, traditional confidence intervals can 

result in misleading inferences when residuals have non-constant variance and no remedy is applied. 

In such cases, researcher apply different transformation, such as Huber-White method, in order to 

make our coefficient estimates robust to heteroscedasticity. Here, we suggested and tested bootstrap 

confidence intervals as another approach of handling heteroscedasticity arguing that bootstrapping 

does not have any distributional assumptions. Simulations discussed above indicate that bootstrap 

confidence intervals can work very well to build our intervals estimations and make inferences. 

Bootstrapping has accuracy at expected 95 per cent and performed as good as Huber-White robust 

intervals, while bootstrap interval had narrower intervals.  
 

 

8. LIMITATIONS OF THE STUDY 

 

Although our paper sheds some light in new ways of handling heteroscedasticity in OLS 

models using bootstrap confidence intervals, there are some limitations in this method. Firstly, aligned 

with many papers in bootstrapping, this method is computer intensive and resampling of large dataset 

can be costly. In our simulation study, we also required some computing power and time to get results 

of the bootstrap confidence intervals while Huber-White methods was delivering faster and less 

computer intensive outcomes. Thus, readers are recommended to apply Huber-White method in cases 

when it helps produce more accurate and reliable estimates or when sample data is relatively large. 

Secondly, in this simulation study, we considered only one type of heteroscedasticity when variance of 

the error term is equal to . Researchers are highly encouraged to consider other forms of 

heteroscedasticity and compare bootstrap confidence intervals with widely known remedies such as 

Huber-White robust method. Lastly, we selected Huber-White method for comparison and it has 

resulted in similar outcomes as bootstrap method. Areas for further research could be to compare 

bootstrap intervals with other methods of handling heteroscedastic residuals in linear models. 
 

 

CONCLUSION 

 

In this paper, we carried out a simulation study of building bootstrap confidence intervals in 

linear models when variance of residuals is not constant. We first looked at existing literature on this 

topic and then looked at the theoretical side of linear models with heteroscedasticity. We explained 

that traditional confidence intervals might be biased when heteroscedasticity is present in data and 

therefore suggested using bootstrapping pairs for building confidence intervals, which do not have any 

assumptions of residual distribution. Afterwards, we compared performance bootstrap intervals with 

one the widely used techniques to handle heteroscedasticity, Huber-White method.  

When model is correctly specified and residuals are homoscedastic, both traditional 

confidence intervals and bootstrap intervals have intervals with good accuracy and almost the same 

size which is aligned with the theory. Given that bootstrap is computer intensive, traditional 

confidence intervals are more preferable when all assumptions of OLS are met. Yet, when 

heteroscedasticity is introduced and not remedy is applied, bootstrap confidence intervals are showing 

superb performance with accuracy around 95 per cent which traditional intervals are highly inaccurate. 

Lastly, we compared bootstrap confidence intervals with one of the widely known techniques to get 

heteroscedasticity robust intervals known as Huber-White approach. Results indicate that the both 

approaches are promising and very similar in accuracy and size or width of the intervals. This bring us 

to conclude that bootstrap approach performs equally well as widely known Huber-White methods and 

researchers can use both approaches interchangeably.  

Yet, it is important to be note the limitations of this study. First, one should be aware that 

bootstrap could be computer intensive, especially when dataset is large. Secondly, we investigated 

only one type of heteroscedasticity while many other forms of non-constant variance of residuals are 

present in practice. Lastly, we picked Huber-White approach for comparison and did not consider 

other remedies that researchers are encouraged to look in future studies. 
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