A. P. Santhakumaran

Department of M athematics;
St. Xavier's College (Autonomous), Palayamkottai, India
apskumar1953@yahoo.co.in

T. Kumari Latha

Department of M athematics;
Sri K.G.S. Arts College, Srivaikuntam,
India
rajapaul1962@gmail.com

THE UPPER OPEN GEODETIC NUMBER OF A GRAPH

GORNJI OTVORENI GEODETSKI BROJ GRAFA

Summary: For a connected graph G of order n, a set S of vertices of G is a geodetic set of G if each vertex v of G lies on a $x-y$ geodesic for some elements x and y in S. The minimum cardinality of a geodetic set of G is defined as the geodetic number of G, denoted by $g(G)$. A geodetic set of cardinality $g(G)$ is called a g-set of G. A set S of vertices of a connected graph G is an open geodetic set of G if for each vertex v in G, either v is an extreme vertex of G and $v \in S$; or v is an internal vertex of an $x-y$ geodesic for some $x, y \in S$. An open geodetic set of minimum cardinality is a minimum open geodetic set and this cardinality is the open geodetic number, $\operatorname{og}(G)$. An open geodetic set S in a connected graph G is called a minimal open geodetic set if no proper subset of S is an open geodetic set of G. The upper open geodetic number $o g^{+}(G)$ of G is the maximum cardinality of a minimal open geodetic set of G. It is shown that, for a connected graph G of order $n, \operatorname{og}(G)=n$, if and only if $\mathrm{og}^{+}(G)=n$, and also that $\mathrm{og}(G)=3$ if any only if $\mathrm{og}^{+}(G)=3$. It is shown that for positive integers a and b with $4 \leq a \leq b$, there exists a connected graph G with $o g(G)=a$ and $o g^{+}(G)=b$. Also, it is shown that for positive integers a, b, c with $4 \leq a \leq b \leq c$ and $b \leq 3 a$, there exists a connected graph G with $g(G)=a, o g(G)=b$ and $\operatorname{og}^{+}(G)=c$.

Key words. geodesic, geodetic number, open geodetic number, upper open geodetic number.

JEL Classification: C00, CO2
MSC Classification: 05C12

Резиме: За повезани граф G реда n, скуп S чворова од G је геодетски скуп од G ако сваки чвор v од G лежи на x-у геодезијској линији за неке елементе х и у у S. Минимална кардиналност геодетског скупа од G дефинише се као геодетски број од G, и означава се са $g(G)$. Геодетски скуп кардиналности $g(G)$ се назива g-скуп од G. Скуп S чворова повезаног графа G представљьа отворени геодетски скуп у G ако је за сваки чвор v од G, или v екстремни чвор у G, $a v \in S$; или је v унутрашњи чвор геодезијске линије $x-y$ при чему $x, y \in S$. Отворени геодетски скуп минималне карди-налности је минимални отворени геодетски скуп, а та кардиналност представљьа отворени геодетски број, og(G). Отворени геодетски скуп S у повезаном графу G назива се минимални отворени геодетски скуп ако прави подскуп у S nije отворени геодетски скуп у G. Горњи отворени геодетски број $о g^{+}(G)$ од G пре-дствала максималну кардиналност мини-малног отвореног геодетског скупа у G. Показано је да за повезани граф G реда n важи $\operatorname{og}(G)=n$, ако и само ако је og $^{+}(G)=n$, и такође да је og $(G)=3$ ако и само ако је $o^{+}(G)=3$. Показано је да за позитивне иијеле бројеве а і б са особином $4 \leq a \leq b$, постоји повезани граф G са особинама $\operatorname{og}(G)=a, i$ $o g^{+}(G)=b$. Такође је пока-зано да за позитивне цијеле бојеве a, b, с са особинама $4 \leq a \leq b \leq c$ і $b \leq$ $3 a$, постоји пове-зани граф G са особинама $(G)=a$, $o g(G)=b, i \operatorname{og}^{+}(G)=c$.

Кључне ријечи: геодетски, геодетски број, отворени геодетски број, горъи отворени геодетски број.

ЈЕЛ класификација: $\mathrm{C} 00, \mathrm{CO} 2$
MSC класификација: 05C12

1. INTRODUCTION

By a graph $G=(V, E)$, we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by n and m respectively. For basic graph theoretic terminology we refer to Harary [6] and we refer to [1] for results on distance in graphs. The distance $d(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $u-v$ path in G. An $u-v$ path of length $d(u, v)$ is called an $u-v$ geodesic. It is known that this distance is a metric on the vertex set of G. The neighborhood of a vertex v is the set $N(v)$ consisting of all vertices which are adjacent with v. A vertex v is an extreme vertex of G if the subgraph induced by its neighbors is complete. A vertex is an end-vertex if its degree is 1. For a cut-vertex v in a connected graph G and a component H of $G-v$, the subgraph H and the vertex v together with all edges joining v and $V(H)$ is called a branch of G at v. A geodetic set of G is a set S of vertices of G such that every vertex of G is contained in a geodesic joining some pair of vertices in S. The geodetic number $g(G)$ of G is the cardinality of a minimum geodetic set. The geodetic number of a graph was introduced in [7] and further studied in $[3,4,5,8]$. A vertex x is said to lie on a $u-v$ geodesic P if x is a vertex of P and x is called an internal vertex of P if $x \neq u, v$. We denote by $I[u, v]$ the set of all vertices lying on a $u-v$ geodesic. If x is an internal vertex of an $u-v$ geodesic, we also use the notation $x \in I(u, v)$. A set S of vertices in a connected graph G is an open geodetic set if for each vertex v in G, either v is an extreme vertex of G and $v \in S$; or v is an internal vertex of an $x-y$ geodesic for some $x, y \in S$. An open geodetic set of minimum cardinality is a minimum open geodetic set and this cardinality is the open geodetic number $\operatorname{og}(G)$ of G. The open geodetic number of a graph was introduced and further studied in [3, 9]. Throughout the following G denotes a connected graph with at least two vertices.

The following theorems are used in the sequel.
Theorem 1.1. [3] Every geodetic set of a connected graph contains its extreme vertices. Also, if the set S of all extreme vertices of G is a geodetic set, then S is the unique minimum geodetic set of G.

Theorem 1.2. [8] Let G be a connected graph with a cut-vertex v. Then every geodetic set of G contains at least one vertex from each component of $G-v$.

Theorem 1.3. [9] Every open geodetic set of a graph G contains its extreme vertices. Also, if the set S of all extreme vertices of G is an open geodetic set, then S is the unique minimum open geodetic set of G.

Theorem 1.4. [9] For any tree T, the open geodetic number og(T) equals the number of end vertices of T. In fact, the set of all end vertices of T is the unique minimum open geodetic set of T.

Theorem 1.5. [9] Let G be a connected graph with a cut-vertex v. Then every open geodetic set of G contains at least one vertex from each component of $G-v$.

Theorem 1.6. [3] Let G be a non-trivial connected graph that contains no extreme vertices. Then $\operatorname{og}(G) \geq 4$.

Theorem 1.7. [3] For every connected graph G with no extreme vertices, $\max \{g(G), 4\} \leq o g(G) \leq 3 g(G)$.

2. THE UPPER OPEN GEODETIC NUMBER OF A GRAPH

Definition 2.1. An open geodetic set S in a connected graph G is called a minimal open geodetic set if no proper subset of S is an open geodetic set of G. The upper open geodetic number $\mathrm{og}^{+}(G)$ of G is the maximum cardinality of a minimal open geodetic set of G.

Example 2.2. For the graph G given in Figure 2.1, it is easily verified that no 3element subset of vertices is an open geodetic set. The set $S=\left\{v_{1}, v_{3}, v_{5}, v_{7}\right\}$ is an open geodetic
set of G and so $o g(G)=4$. Also, it is easy to see that S is the unique minimum open geodetic set of G. The set $S^{\prime}=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{7}\right\}$ is an open geodetic set of G. Since S is not a subset of S^{\prime} and no 4- element subset other than S is an open geodetic set of G, it follows that S^{\prime} is a minimal open geodetic set of G. It is also easily seen that S^{\prime} is the unique minimal open geodetic set of G. Thus $\mathrm{og}^{+}(G)=5$.

G
Figure 2.1
Remark 2.3. every munumum open geoaetuc seı of a grapn \mathcal{G} is a minimal open geodetic set of G and the converse is not true. For the graph G given in Figure 2.1, $S^{\prime}=\{v$ $\left.{ }_{1}, v_{2}, v_{3}, v_{4}, v_{7}\right\}$ is a minimal open geodetic set but not a minimum open geodetic set of G.

The following proposition is clear.
Proposition 2.4. For the complete graph $G=K_{n}(n \geq 2)$, $o g(G)=o g^{+}(G)=n$.
Theorem 2.5. If G is a connected graph of order n, then $2 \leq o g(G) \leq o g^{+}(G) \leq n$.
Proof. Any open geodetic set needs at least two vertices and so $o g(G)=2$. Since every minimal open geodetic set is an open geodetic set, $o g(G) \leq o g^{+}(G)$. Also, since $V(G)$ is an open geodetic set of G, it is clear that $\sigma g^{+}(G) \leq n$. Thus $2 \leq o g(G) \leq o g^{+}(G) \leq n$.

Remark 2.6. The bounds in Theorem 2.5 are sharp.
For any non-trivial path $P, o g(P)=2$. For any non-trivial tree T, the set of all end vertices of T is the unique minimum open geodetic set of T so that $g g(T)=o g^{+}(T)$. For the complete graph $K_{n}, \mathrm{og}^{+}\left(K_{n}\right)=n$ for $n \geq 2$. Also, all the inequalities in the Theorem 2.5 are strict. For the graph G given in Figure 2.1, $o g(G)=4, ~ o g^{+}(G)=5$ and $n=7$.

Theorem2.7. For a connected graph G of order $n, \operatorname{og}(G)=n$ if and only if $\operatorname{og}^{+}(G)=n$.
Proof. Let $\mathrm{og}^{+}(G)=n$. Then $S=V(G)$ is the unique minimal open geodetic set of G. Since no proper subset of S is an open geodetic set, it is clear that S is the unique minimum open geodetic set of G and so $o g(G)=n$. The converse follows from Theorem 2.5.

Corollary 2.8. If G is a graph of order n such that $\operatorname{og}(G)=n-1$, then $\operatorname{og}^{+}(G)=n-1$.
Problem 2.9. Characterize graphs G of order n for which $o g(G)=o g^{+}(G)=n-1$.
Theorem 2.10. No cut-vertex of a connected graph G belongs to any minimal open geodetic set of G.

Proof. Let S be any minimal open geodetic set of G. Let $v \in S$. We prove that v is not a cut-vertex of G. Suppose that v is a cut-vertex of G. Let $G_{1}, G_{2}, \ldots, G_{k}(k \geq 2)$ be the components of $G-v$. Then v is adjacent to at least one vertex of each G_{i} for $1 \leq i \leq k$. Let $S^{\prime}=$ $S-\{v\}$. We show that S^{\prime} is an open geodetic set of G. Let x be a vertex of G. If x is an extreme vertex of G, then $x \neq v$ and so by Theorem 1.3, $x \in S^{\prime}$. If x is not an extreme vertex, then, since S is an open geodetic set of $G, x \in I(u, w)$ for some $u, w \in \mathrm{~S}$. If $v \neq u, w$, then $u, w \in S^{\prime}$. If v $=u$, then $v \neq w$. Assume without loss of generality that $w \in G_{1}$. By Theorem $1.5, S$ contains a vertex w^{\prime} from $G_{i}(2 \leq i \leq k)$. Then $w^{\prime} \neq v$. Since v is a cut-vertex of G, we have $I(w, u) \subseteq$ $I\left(w, w^{\prime}\right)$. Hence $x \in I\left(w, w^{\prime}\right)$, where $w, w^{\prime} \in S^{\prime}$. Thus S^{\prime} is an open geodetic set of G. This contradicts that S is a minimal open geodetic set of G.

Corollary 2.11. For any tree T with k end- vertices, $o g(T)=o g^{+}(T)=k$.
Proof. This follows from Theorems 1.3, 1.4 and 2.10
Lemma 2.12. Let G be a connected graph. If G has a minimal open geodetic set S of cardinality 3, then all the vertices in S are extreme.

Proof. Let $S=\{u, v, w\}$ be a minimal open geodetic set of G. Then $o g(G) \leq 3$. Suppose that the vertex w is not extreme. We consider three cases.

Case1. u and v are non-extreme. Then u, v, w are all non-extreme and by Theorem 1.3, G has no extreme vertices. Hence by Theorem 1.6, we see that $o g(G) \geq 4$, which is a contradiction.

Case 2. u is extreme and v is not extreme. Since S is an open geodetic set of G, we have $v \in I(u, w)$ and $w \in I(u, v)$. These in turn, give $d(u, w)>d(u, v)$ and $d(u, v)>d(u, w)$. Hence $d(u, w)>d(u, w)$, which is a contradiction.

Case 3. u and v are extreme. Since S is an open geodetic set of G, we have $w \in I$ (u, v). Let $d(u, v)=k$ and let P be a $u-v$ geodesic of length $k, d(u, w)=l_{1}$ and $d(w, v)=l_{2}$. Then $l_{1}+l_{2}=k$. Let P^{\prime} be the $u-w$ subpath of P and $P^{\prime \prime}$ the $w-v$ subpath of P. We prove that $S^{\prime}=$ $\{u, v\}$ is an open geodetic set of G. Let x be any vertex of G such that $x \notin S^{\prime}$. Since $S=$ $\{u, v, w\}$ is a minimal open geodetic set of G with w non-extreme, u and v extreme, it follows that u and v are they only two extreme vertices of G. Hence x is not extreme. Since S is an open geodetic set of G , we have $x \in I(u, v)$ or $x \in I(u, w)$ or $x \in I(v, w)$. If $x \in I(u, v)$, there is nothing to prove. If $x \in I(u, w)$, let Q be a $u-w$ geodesic in which x lies internally. Let R be the $u-v$ walk obtained from Q followed by $P^{\prime \prime}$. Then the length of R is k and so R is a $u-v$ geodesic containing x. Thus $x \in I(u, v)$. Similarly, if $x \in I(v, w)$, we can prove that $x \in I(u, v)$. Hence S^{\prime} is an open geodetic set of G, which contradicts that S is a minimal open geodetic set of G. This completes the proof.

Theorem 2.13. For a connected graph $G, o g(G)=3$ if an only if $\operatorname{og}^{+}(G)=3$.
Proof. Let $o g(G)=3$. Let S be a minimum open geodetic set of G. Since every minimum open geodetic set is also a minimal open geodetic set, by Lemma 2.12, all the three vertices in S are extreme. Hence it follows from Theorem 1.3 that S is the unique minimal open geodetic set of G so that $o g^{+}(G)=3$. Conversely, let $o g^{+}(G)=3$. Let S^{\prime} be a minimal open geodetic set of G of cardinality 3. By Lemma 2.12, all the vertices in S^{\prime} are extreme. Hence it follows form Theorem 1.3 that S^{\prime} is the unique minimum open geodetic set of G so that $o g$ $(G)=3$.

Theorem 2.14. For every two positive integers a and b with $4 \leq a \leq b$, there exists a connected graph G with $o g(G)=a$ and $\operatorname{og}^{+}(G)=b$.

Proof. If $a=b$, let $G=K_{l, a}$. Then by Corollary 2.11, $o g(G)=o g^{+}(G)=a$. Let $4 \leq a<$ b. Let $H=K_{2}+C_{b-a+3}$ with $V\left(K_{2}\right)=\{x, y\}$ and $V\left(C_{b-a+3}\right)=\left\{v_{1}, v_{2}, \ldots, v_{b-a+3}\right\}$. Let G be the graph in Figure 2.2 obtained from H by adding $a-3$ new vertices $u_{1,}, u_{2}, \ldots, u_{a-3}$ and joining each u_{i} ($1 \leq i \leq a-3$) with y. It is clear that $S=\left\{u_{1}, u_{2}, \ldots, u_{a-3}\right\}$ is not an open geodetic set of G. Also, it is easily seen that $S \cup\{w, z\}$, where $w, z \notin S$, is not an open geodetic set of G. Let $S^{\prime}=S \cup\left\{x, v_{i}, v_{j}\right\}$, where v_{i} and v_{j} are non-adjacent.. Then it is clear that S^{\prime} is an open geodetic set of G and so $o g(G)=a$.

Figure 2.2

We now prove that $o g^{+}(G)=b$. It is clear that $T=S \cup\left\{v_{1}, v_{2}, \ldots, v_{b-a+3}\right\}$ is an open geodetic set of G. We show that T is a minimal open geodetic set of G. On the contrary, assume that W is a proper subset of T such that W is an open geodetic set of G. Then there exists a vertex $v \in T$ such that $v \notin W$. By Theorem 1.3, it is clear that $v=v_{j}$ for some $j(1 \leq j \leq$ $b-a+3$). Then v_{j+1} does not lie on a geodesic joining any pair of vertices of W and so W is not an open geodetic set of G, which is a contradiction. Hence T is a minimal open geodetic set of G so that $g^{+}(G) \geq b$. Now, since y is a cut-vertex of G, y does not belongs to any minimal open geodetic set of G. Suppose that $o g^{+}(G)=b+1$. Let X be a minimal open geodetic set of cardinality $b+1$. Then $X=V(G)-\{y\}$ and S^{\prime} is a proper subset of X so that X is not a minimal open geodetic set, which is a contradiction. Hence $o g^{+}(G)=b$.

Lemma 2.15. Let G be a connected graph with v a cut-vertex such that $G-v$ has a component having no extreme vertices. Then every open geodetic set of G contains at least three vertices from each such component of $G-v$.

Proof. Let C be a component of $G-v$ having no extreme vertices. Then C must contain at least three vertices. Let S be any open geodetic set of G. By Theorem 1.5, it follows that $S \cap V(C) \neq \phi$.

If $S \cap V(C)=\{x\}$, then $x \notin I(u, w)$ for any $u, w \in S$. Hence $|S \cap V(C)| \geq 2$. If $S \cap V(C)$ $=\{x, y\}$, then $x \in I(y, w)$ for some $w \in S$ and $y \in I(x, z)$ for some $z \in S$. It follows that x $\in I(y, v)$ and $y \in I(x, v)$. Then

$$
\begin{align*}
& d(x, y)=d(y, v)-d(x, v) \tag{1}\\
& \text { and } d(x, y)=d(x, v)-d(y, v) \tag{2}
\end{align*}
$$

From (1) and (2), we see that $d(x, v)=d(y, v)$. Hence $d(x, y)=0$. This gives $x=y$, which is a contradiction. Thus $|S \cap V(C)| \geq 3$.

Next, we show that every three positive integers a, b, c with $4 \leq a \leq b \leq c$ and $b \leq 3 a$ is realizable as the geodetic number, open geodetic number and upper open geodetic number of some connected graph. For this purpose we introduce the following special graphs G_{s}, H_{l} and H given in Figures 2.3, 2.4 and 2.5 respectively.

For integers i and s with $1 \leq i \leq s$, let each F_{i} be a copy of $K_{2,3}$ with partite sets $V_{i 1}=$ $\left\{v_{i 1}, v_{i 2}\right\}$ and $V_{i 2}=\left\{w_{i 1}, w_{i 2}, w_{i 3}\right\}$. Let G_{s} be the graph in Figure 2.3 obtained from the F_{i} by identifying the s vertices $v_{\mathrm{i} 2}(1 \leq i \leq s)$. Let x be the common vertex representing the identified vertices. It is clear that $S=\left\{v_{11}, v_{21}, \ldots, v_{s 1}\right\}$ is the unique minimum geodetic set of G_{s} so that $g\left(G_{s}\right)=s$. Since each vertex $\mathrm{v}_{\mathrm{i} 1}(1 \leq i \leq s)$ lies only on a geodesic joining any two of the three vertices $w_{i 1}, w_{i 2}, w_{i 3}$, it follows that $\mathrm{S} \cup\left\{w_{i 1}, w_{i 2}: 1 \leq i \leq s\right\}$ is a minimum open geodetic set of G_{s} and so $o g\left(G_{s}\right)=3 s$.

Figure 2.3

For $l \geq 3$, let $H_{l}=C_{l+} \bar{K}_{2}$ be the graph given in figure 2.4, where $V\left(\bar{K}_{2}\right)=\{x, y\}$ and C_{l} is the cycle with $V\left(\mathrm{C}_{l}\right)=\left\{z_{1}, z_{2} \ldots, z_{l}\right\}$. It is clear that $S=\{x, y\}$ is the unique minimum geodetic set of H_{l} so that $g\left(H_{l}\right)=2$. Moreover, $S \cup\left\{z_{i}, z_{j}\right\}$, where z_{i} and $z_{j}(1 \leq i, j \leq l)$ are nonadjacent vertices of C_{l}, is a minimum open geodetic set of H_{l} so that $o g\left(H_{l}\right)=4$.

Figure 2.4
Let H be the graph given in Figure 2.5. It is clear that $S=\left\{u_{1}, u_{3}\right\}$ is a geodetic set of H and so $g(H)=2$. Since H is a graph without extreme vertices, by Theorem $1.6, \operatorname{og}(H) \geq 4$. It is easily verified that no 4-element subset of $V(H)$ is an open geodetic set of H. Now, $S_{1}=$ $\left\{u_{1}, u_{2}, u_{3}, w_{1}, w_{4}\right\}$ is an open geodetic set of H and so $o g(H)=5$.

Figure 2.5

The arguments used in determining the geodetic number and open geodetic number of the graphs G_{s}, H_{l} and H will also be used in the proof of the following theorem.

Theorem 2.16. For any three positive integers a, b, c with $4 \leq a \leq b \leq c$ and $b \leq 3 a$, there exists a connected graph G such that $g(G)=a, o g(G)=b$ and $o g^{+}(G)=c$.

Proof. For $a=b=c$, the star $K_{1 \text {, a }}$ has the desired properties. Let $b=a+p$, where $1 \leq p \leq 2 a$. We consider three cases.

Case 1. $a<b<c$.
First suppose that $p \neq 2 a-1$. We consider two subcases.
Subcase 1a. p is even. First, let $p=2$. Let G be the graph in Figure 2.6 obtained form the graph H_{c-b+3} by adding $a-1$ new vertices $u_{1}, u_{2}, \ldots, u_{a-1}$ and joining the edges $u_{i} x$ $(1 \leq i \leq a-1)$. It is clear that $S=\left\{u_{1}, u_{2}, \ldots, u_{a-1}\right\}$ is not a geodetic set of G and $S_{1}=S \cup\{y\}$ is a geodetic set of G and so by Theorem 1.1, $g(G)=a$. Now, let $S_{2}=S_{1} \cup\left\{z_{i,}, z_{j}\right\}$, where z_{i} and z_{j} $(1 \leq i, j \leq c-b+3)$ are non-adjacent vertices on C_{c-b+3}. By Theorem 1.3, every open geodetic set contains S and it is easily verified that S_{2} is a minimum open geodetic set of G and so $o g(G)=a+2=b$. Let $S_{3}=S \cup\left\{z_{1}, z_{2}, \ldots, z_{c-b+3}\right\}$. Then it is clear that S_{3} is an open geodetic set of G. We show that S_{3} is a minimal open geodetic set of G. Otherwise, there exists a proper subset W of S_{3} such that W is an open geodetic set of G. Then there exists a vertex say $v \in S_{3}$ such that $v \notin W$. By Theorem 1.3, it is clear that $v=z_{j}$ for some $j(1 \leq j \leq c-b+3)$. Let z_{l} be a vertex on the cycle $\mathrm{C}_{\mathrm{c}-\mathrm{b}+3}$ such that it is adjacent to z_{j}. Then z_{l} is not an internal vertex of a
geodesic joining any pair of vertices of W and so W is not an open geodetic set of G, which is a contradiction. Hence S_{3} is a minimal open geodetic set of G so that $o g^{+}(G) \geq c$. Now, suppose that $\operatorname{og}^{+}(G) \geq c+1$. Let X be a minimal open geodetic set with $|X| \geq c+1$. Then X $=V(G)-\{x\}$. Since S_{2} is an open geodetic set properly contained in X, we see that X is not a minimal open geodetic set of G, which is a contradiction. Hence $o g^{+}(G)=c$.

G
Figure 2.6
Now, let $p \geq 4$. Let G be the graph in Figure 2.7 obtained from $G_{\frac{p}{2}-1}$ and H_{c-b+3} by first identifying at the vertex x and then adding the new vertices $u_{1}, u_{2}, \ldots, u_{a-\frac{p}{2}}$ and then joining the edges $u_{i} x\left(1 \leq i \leq a-\frac{p}{2}\right)$.

Figure 2.7
Let $S=\left\{u_{1}, u_{2}, \ldots, u_{a-\frac{p}{2}}\right\}$. Then it follows form Theorem 1.1 and Theorem 1.2 that $\mathrm{S}_{1}=$ $S \cup\{y\} \cup\left\{v_{11}, v_{21}, \ldots, v_{\frac{p}{2}-1,1}\right\}$ is a minimum geodetic set (in fact, S_{1} is unique) and so $g(G)=a$. Let $S_{2}=S_{1} \cup\left\{w_{i 1}, w_{i 2}: 1 \leq i \leq \frac{p}{2}-1 孔\left\{z_{i,}, z_{j}\right\}\right.$, where z_{i} and $z_{j}(1<i, j \leq c-b+3)$ are non-adjacent vertices of C_{c-b+3}. By Theorem 1.3 and Lemma 2.15, S_{2} is a minimum open geodetic set of G and so $\operatorname{og}(G)=a+p=b$. Let $S_{3=} S \cup\left\{w_{i 1}, w_{i 2}: 1 \leq i \leq \frac{p}{2}-1\right\} \cup\left\{v_{11}, v_{21}, \ldots, v_{\frac{p}{2}-1,1}\right\} \cup\left\{z_{1}, z_{2}, \ldots, z_{c-b+3}\right\}$.

We show that S_{3} is a minimal open geodetic set of G. Otherwise, there exists a proper subset W of S_{3} such that W is an open geodetic set of G. Then there exists a vertex say $v \in S_{3}$ such that $v \notin W$. By Theorem 1.3 and Lemma 2.15, it is clear that $v=z_{j}$ for some $j(1 \leq j \leq c-b+3)$. Let z_{l} be the vertex on the cycle C_{c-b+3} such that it is adjacent to $z_{j .}$. Then z_{l} is not an internal vertex of a geodesic joining any pair of vertices of W and so W is not an open geodetic set of G, which is a contradiction. Hence S_{3} is a minimal open geodetic set of G so that $\sigma g^{+}(G) \geq c$. Now, suppose that $o g^{+}(G) \geq c+1$. Let X be a minimal open geodetic set of cardinality $\geq c+1$.

First suppose that $y \in X$. By Lemma 2.15, it is clear that any two non-adjacent vertices $z_{i}, z_{j}(1 \leq i, j \leq c-b+3)$ of C_{c-b+3} must belong to X. Also, by Theorem 1.3, $u_{i} \in X\left(1 \leq i \leq a-\frac{p}{2}\right)$. Since $v_{i 1}$ are the end vertices of any geodesic in which $w_{i 1}$ lies internally, we have $v_{i 1} \in X\left(1 \leq i \leq \frac{p}{2}-1\right)$. Also, it is clear that $w_{i 1}, w_{i 2} \in X\left(1 \leq i \leq \frac{p}{2}-1\right)$. Then it is clear that S_{2} is a proper subset of X such that S_{2} is an open geodetic set of G with $\left|S_{2}\right|=a+p=b$, which is a contradiction to X a minimal open geodetic set of G.

Now, suppose that $y \notin X$. Then it is clear that $z_{i} \in X$ for each $i(1 \leq i \leq c-b+3)$. Then, just as above $u_{i} \in X\left(1 \leq i \leq a-\frac{p}{2}\right)$ and $w_{11}, v_{11}, w_{12} ; w_{21}, v_{21}, w_{22} ; \ldots ; w_{a-\frac{p}{2}, 1}, v_{a-\frac{p}{2}, 1}, w_{a-\frac{p}{2}, 2} \in X$. Then it is clear that S_{3} is a proper subset of X such that S_{3} is an open geodetic set of G with $\left|S_{3}\right|=c$, which is a contradiction to X a minimal open geodetic set of G. Hence $g^{+}(G)=c$.

Subcase1b. p is odd. Then $1 \leq p \leq 2 a-3$. For $p=1$, let G be the graph in Figure 2.8 obtained from H_{c-b+3} by adding $a-1$ new vertices $u_{1}, u_{2}, \ldots, u_{a-1}$ and joining the edges $u_{1} z_{1}, u_{i} x(2 \leq i \leq a-1)$.

G
Figure 2.8
Let $S=\left\{u_{1}, u_{2}, \ldots, u_{a-1}\right\}$. By Theorem 1.1, $S_{1}=S \cup\{y\}$ is a minimum geodetic set of G and so $g(G)=a$. Let z_{j} be a vertex on C_{c-b+3} such that z_{1} and z_{j} are non-adjacent. Then $S_{2}=S \cup\left\{z_{j}\right\}$ is a minimum open geodetic set of G and so $o g(G)=a+1=b$. Let $S_{3}=S \cup\left(V\left(C_{c-}\right.\right.$ $\left.{ }_{b+3}\right)-\left\{z_{1}\right\}$). Then S_{3} is an open geodetic set of G. we show that S_{3} is a minimal open geodetic set of G. Otherwise, there exists a proper subset W of S_{3} such that W is an open geodetic set of G. Then there exists a vertex say $v \in S_{3}$ such that $v \notin W$. By Theorem 1.3, it is clear that $v=z_{k}$ for some k such that $k \neq 1$. Let z_{l} and z_{l}^{\prime} be the vertices adjacent to z_{k}. Suppose that $z_{k} \neq z_{2}, z_{c-b+3}$. Then it is clear that both z_{l} and z_{l}^{\prime} do not lie as internal vertices of a geodesic joining a pair of vertices of W. Suppose that $z_{k}=z_{2}$ or z_{c-b+3}. Then one of the vertices z_{l} or z_{l}^{\prime} does not lie as an internal vertex of any geodesic joining a pair of vertices of W. Thus W is not an open geodetic set of G, which is a contradiction. Hence S_{3} is a minimal open
geodetic set of G so that $\operatorname{og}^{+}(G) \geq c$. Now, suppose that $\operatorname{og}^{+}(G) \geq c+1$. Let X be a minimal open geodetic set of cardinality $\geq c+1$.

First, Suppose that $\mathrm{y} \in X$. By Theorem 1.3, $u_{i} \in \mathrm{X}(1 \leq i \leq a-1)$. Since X is an open geodetic set there exists $z_{i} \in V\left(C_{c-b+3}\right)$ with $z \neq z_{i}(i=1,2, c-b+3)$ such that $z \in X$. Now, let $T=S \cup\{y, z\}$. Then it is clear that T is an open geodetic set contained in X such that $|T|=a+1=b$, which is contradiction to X a minimal open geodetic set of G. Next, suppose that $y \notin X$. Then just as above $u_{i} \in X(1 \leq i \leq a-1)$. Also, since $y \notin X$, it is clear that, $\mathrm{z}_{\mathrm{i}} \in X$ for each $i(2 \leq i \leq c-b+3)$. Then clearly S_{3} is a proper subset of X such that S_{3} is an open geodetic set of G with $\left|S_{3}\right|=c$, which is a contradiction to X a minimal open geodetic set of G. Thus $g^{+}(G)=c$.

For $p \geq 3$, let G be the graph in Figure 2.9 obtained from the graph $G_{\frac{p+1}{2}-1}$ by first adding ${ }_{a-\left(\frac{p+1}{2}\right)}$ new vertices $u_{1}, u_{2}, \ldots, u_{a-\left(\frac{p+1}{2}\right)}$ and ${ }_{a-\left(\frac{p+1}{2}\right)}$ new edges $u_{1} w_{11}$ and $u_{i} x(2 \leq i \leq$ $a-\left(\frac{p+1}{2}\right)$) and then identifying this with H_{c-b+3} at the vertex x.

Figure 2.9
Let $S_{1}=\left\{u_{1}, u_{2}, \ldots, u_{a-\left(\frac{p+1}{2}\right)}, v_{11}, v_{21}, \ldots, v_{\frac{p+1}{2}-1,1}, y\right\}$ and $د_{2}=د_{1} \cup\left\{w_{12}\right\} \cup\left\{w_{i 1}, w_{i 2}\right.$: $\left.2 \leq i \leq\left(\frac{p+1}{2}\right)-1\right\} \cup\left\{z_{i}, z_{j}\right\}$ where z_{i} and $z_{j}(1 \leq i, j \leq c-b+3)$ are non-adjacent vertices on
C_{c-b+3}. Then as earlier, it can be seen that S_{1} is a minimum geodetic set of G and S_{2} is a minimum open geodetic set of G and so $g(G)=a$ and $o g(G)=a+p=b$. Let $S_{3}=\left\{u_{1}, u_{2}, \ldots, u_{a-\left(\frac{p+1}{2}\right)}, v_{11}, v_{21}, \ldots, v_{\frac{p+1}{2}-1,1}\right\} \cup\left\{w_{12}\right\} \cup\left\{w_{i 1}, w_{i 2}: 2 \leq i \leq\left(\frac{p+1}{2}\right)-1\right\} \cup\left\{z_{1}, z_{2}, \ldots, z_{c-}\right.$ $\left.{ }_{b+3}\right\}$. Then as in subcase 1 a of case 1 , it can be proved that $o g^{+}(G) \geq c$. Now, let X be a minimal open geodetic set of G such that $|X| \geq c+1$.

If $y \in X$, then by using arguments similar to the one in Subcase 1a of Case 1, it is clear that S_{2} is a proper subset of X such that S_{2} is an open geodetic set of G with $\left|S_{2}\right|=a+p=b$, which is a contradiction to X a minimal open geodetic set.

If $y \notin X$, then just as above, it can be seen that S_{3} is a proper subset of X such that S_{3} is an open geodetic set of G with $\left|S_{3}\right|=c$, which is a contradiction to X a minimal open geodetic set. Thus $o g^{+}(G)=c$.

Now, Suppose that $p=2 a-1$. Let G be the graph in Figure 2.10 obtained from G_{a-3}, H_{c-b+3} and H by identifying the vertices x and x^{\prime}.

It follows from Theorem 1.2 that $S=\left\{y, v_{11}, v_{21}, \ldots, v_{a-3,1}, u_{1}, u_{3}\right\}$ is a minimum geodetic set of G so that $g(G)=a$. Let $S_{1}=\left\{y, z_{i}, z_{j} ; w_{11}, v_{11}, w_{12} ; w_{21}, v_{21}, w_{22} ; \ldots, w_{a-3,1}, v_{a-3,1}, w_{a-3,2}\right.$; $\left.w_{1}, u_{1}, u_{2}, u_{3}, w_{4}\right\}$, where z_{i} and $z_{j}(1 \leq i, j \leq c-b+3)$ are non-adjacent vertices on C_{c-b+3}. By Lemma 2.15, it is straight forward to verify that S_{1} is a minimum open geodetic set of G so that og $(G)=a+p=b$. Let $S_{2}=\left\{z_{1}, z_{2}, \ldots, z_{c-b+3}, w_{11}, v_{11}, w_{12} ; w_{21}, v_{21}, w_{22} ; \ldots, w_{a-3,1}, v_{a-3,1}, w_{a-3,2}\right.$; $\left.w_{1}, u_{1}, u_{2}, u_{3}, w_{4}\right\}$. We show that S_{2} is a minimal open geodetic set of G. Otherwise, there exists a proper subset W of S_{3} such that W is an open geodetic set of G. Then there exists a vertex, say $v \in S_{3}$ such that $v \notin W$. It is easily seen that $v=z_{j}$ for some $j(1 \leq j \leq c-b+3)$. Let \mathbf{z}_{l} be the vertex on the cycle C_{c-b+3} such that it is adjacent to z_{j}. Then z_{l} is not an internal vertex of a geodesic joining any pair of vertices of W, and so W is not an open geodetic set of G, which is a contradiction. Hence S_{2} is a minimal open geodetic set of G so that $g^{+}(G) \geq c$. Now, let X be a minimal open geodetic set of cardinality $\geq c+1$.

Suppose that $y \in X$. By Lemma 2.15, $z_{i}, z_{j} \in X(1 \leq i, j \leq c-b+3)$, where z_{i} and z_{j} are non-adjacent vertices on C_{c-b+3}. Also, it is easy to see that X must contain the vertices $w_{11}, v_{11}, w_{12} ; w_{21}, v_{21}, w_{22} ; \ldots, w_{a-3,1}, v_{a-3,1}, w_{a-3,2} ; w_{1}, u_{1}, u_{2}, u_{3}, w_{4}$. Then clearly S_{1} is a proper subset of X such that S_{1} is an open geodetic set of G, which is a contradiction to X a minimal open geodetic set.

Suppose that $y \notin X$. Then X must contain all the vertices on C_{c-b+3}. Also, it is easy to see that X must contain the vertices $w_{11}, v_{11}, w_{12} ; w_{21}, v_{21}, w_{22} ; \ldots, w_{a-3.1}, v_{a-3.1}$, $w_{a-3.2} ; w_{1}, u_{1}, u_{2}, u_{3}, w_{4}$. Then clearly S_{2} is a proper subset of X such that S_{2} is an open geodetic set of G with $\left|S_{2}\right|=c$, which is a contradiction to X a minimal open geodetic set. Thus $\operatorname{og}^{+}(G)$ $=c$.

Case 2. $a<b=c$. First suppose that $p \neq 2 a-1$. We consider two subcases.

Subcase 2a. p is even. Let G be the graph in Figure 2.11 obtained from the graph $G_{\frac{p}{2}}$ by adding $a-\frac{p}{2}$ new vertices $u_{1}, u_{2}, \ldots, u_{a-\frac{p}{2}}$ and the $a-\frac{p}{2}$ new edges $u_{i} x\left(1 \leq i \leq a-\frac{p}{2}\right)$.

Let $S_{1}=\left\{u_{1}, u_{2}, \ldots, u_{a-\frac{p}{2}}, v_{11}, v_{21}, \ldots, v_{\frac{p}{2}, 1}\right\}$ and $S_{2}=S_{1} \cup\left\{w_{i 1}, w_{i 2}: 1 \leq i \leq \frac{p}{2}\right\}$. Then, as earlier it can be seen that S_{1} is a minimum geodetic set of G and S_{2} is a minimum open geodetic set of G so that $g(G)=a$ and $o g(G)=a+p=b$. Now, it also follows that $\sigma g^{+}(G) \geq b$. suppose that $o g^{+}(G) \geq b+1$. Let X be a minimal open geodetic set of cardinality $\geq b+1$. Then it can be seen as earlier that S_{2} is a proper subset of X such that S_{2} is an open geodetic set of G with $\left|S_{2}\right|=a+p=b$, which is contradiction to X a minimal open geodetic set. Hence $o g^{+}(G)=b=c$.

Subcase 2b. $\quad p$ is odd. Then $1 \leq p \leq 2 a-3$. Let G be the graph in Figure 2.12 obtained from the graph $G_{\frac{P+1}{2}}$ by adding $a-\left(\frac{P+1}{2}\right)$ new vertices, $u_{1}, u_{2}, . ., u_{a-\left(\frac{p+1}{2}\right)}$ and $a-\left(\frac{p+1}{2}\right)$ new edges $u_{i} x\left(2 \leq \mathrm{i} \leq a-\left(\frac{P+1}{2}\right)\right)$ and the edge $u_{1} w_{11}$.

Let $S_{1}=\left\{u_{1}, u_{2}, . ., u_{a-\left(\frac{p+1}{2}\right)}, v_{11}, v_{21}, \ldots, v_{\frac{P+1}{2}, 1}\right\}$ and $S_{2}=S_{1} \cup\left\{w_{12}\right\} \cup\left\{w_{i 1}, w_{i 2}: 2 \leq \mathrm{i}\right.$ $\left.\leq \frac{P+1}{2}\right\}$. Then, as earlier it can be seen that S_{1} is a minimum geodetic set of G and S_{2} is a
minimum open geodetic set of G so that $g(G)=a$ and $o g(G)=a+p=b$. Now, it also follows that $o g^{+}(G) \geq b$. Suppose that $g^{+}(G) \geq b+1$. Let X be a minimal open geodetic set of G with $|X|$ $\geq \mathrm{b}+1$. Then, it can be seen as earlier that S_{2} is a proper subset of X such that S_{2} is an open geodetic set G with $\left|S_{2}\right|=a+p=b$, which is a contradiction to X a minimal open geodetic set. Hence $\sigma^{+}(G)=b=c$.

Now, suppose that $p=2 a-1$. Let G be the graph in Figure 2.13 obtained from the graph $\quad G_{a-2}$ and H by identifying the vertices x and x^{\prime}.

It follows from Theorem1.2 that $S=\left\{v_{11}, v_{12}, \ldots, v_{a-2,1}, u_{1}, u_{3}\right\}$ is a minimum geodetic set of G so that $g(G)=a$. Let $S_{1}=\left\{w_{1}, u_{1}, u_{2}, u_{3}, w_{4} ; w_{11}, v_{11}, w_{12} ; w_{21}, v_{21}, w_{22} ; \ldots, w_{a-2,1}, v_{a-2,1}, w_{a-2,2}\right\}$. It is straight forward to verify that S_{1} is a minimum open geodetic set of G so that $o g(G)=a+p=b$. Now, it also follows that $o g^{+}(G) \geq b$. Suppose that $o g^{+}(G) \geq b+1$. Let X be a minimal open geodetic set of G with $|X| \geq b+1$. Then it can be seen that S_{1} is an open geodetic set contained in X with $\left|S_{1}\right|=a+p=b$, which is a contradiction to X a minimal open geodetic set of G. Hence $o g^{+}(G)=b=c$.

Case 3. $a=b<c$.
Let G_{1} be the graph obtained from H_{c-b+3} by adding $a-3$ new vertices $u_{1}, u_{2}, \ldots, u_{\mathrm{a}-3}$ and $a-3$ new edges $u_{i} x(1 \leq i \leq a-3)$. Let G be the graph in Figure 2.14 obtained from G_{1} by adding two new vertices w_{1} and w_{2} and joining both w_{1} and w_{2} to z_{1} and z_{3}.

G
Figure 2.14

Let $S_{1}=\left\{u_{1}, u_{2}, \ldots, u_{a-3}, z_{1}, z_{3}, y\right\}$. Then it can be seen that S_{1} is both a minimum geodetic set and a minimum open geodetic set of G so that $g(G)=o g(G)=a$. Let $S_{2}=\left\{u_{1}, u_{2}, \ldots, u_{a-}\right.$ $\left.{ }_{3}, z_{1}, z_{2}, \ldots, z_{c-b+3}\right\}$. Then as earlier, it can be seen that S_{2} is a minimal open geodetic set of G, so that $o g^{+}(G) \geq\left|S_{2}\right|=c$. Let X be a minimal open geodetic set with $|X| \geq c+1$. Then it is clear that S_{1} is a proper subset of X and so X is not a minimal open geodetic set, which is a contradiction. Hence $o g^{+}(G)=c$. Thus the proof of the theorem is complete.

REFERENCES

Buckley F. and Harary F. 1990. Distance in Graphs, Addison-wesley, Redwood city, CA,
Buckley F.,Harary F.and Quintas, L.V. 1988. Extremal results on the geodetic number of a graph, Scientia, A2, 17-26.
Chartrand, G. Harary, F. Swart H.C. and Zhang, P. 2001. Geodomination in Graphs, Bulletin of the ICA, 31 51-59.
Chartrand, G. Harary F. and Zhang, P. 2002. On the geodetic number of a graph, Networks, 1-6.
Chartrand, G. Palmer E.M. and Zhang, P. 2002. The geodetic number of a graph: A survey, Congr. Numer., 156 37-58.

Harary, F. 1969. Graph Theory, Addison- wesley,.
Harary, F. Loukakis E. and Tsouros, T. 1993.The geodetic number of a graph Mathl. Comput. Modeling 17 (11), 89-95.
Muntean R. and Zhang, P. 2000. On geodomination in graphs, Congr. Numer., 143, 161-174.
Santhakumaran A.P. and Kumari Latha, T. 2010. On the open geodetic number of a graph, SCIENTIA , Series A: Mathematical sciences, 19 ,131-142.

