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THE UPPER OPEN GEODETIC NUMBER OF A GRAPH

GORNJI OTVORENI GEODETSKI BROJ GRAFA

Summary: For a connected graph G of order
n,  a  set  S  of  vertices  of  G is  a  geodetic  set  of  G if
each vertex  n of G lies on a x-y geodesic for some
elements x and y in S. The minimum cardinality of a
geodetic set of G is defined as the geodetic number
of G, denoted by g(G). A geodetic set of cardinality
g(G) is called a g-set of G. A set S of  vertices of  a
connected graph G is an open geodetic set of G if
for each vertex n in G, either n is an extreme vertex
of G and n Î  S; or n is an internal vertex of an x-y
geodesic for some x,yÎS. An open geodetic set of
minimum cardinality is a minimum open geodetic
set and this cardinality is the open geodetic
number, og(G). An open geodetic set S in a
connected graph G is called a minimal open
geodetic set if no proper subset of S is an open
geodetic set of G. The upper open geodetic number
og+(G)  of  G  is  the  maximum  cardinality  of  a
minimal open geodetic set of G. It is shown that, for
a connected graph G of order n, og(G)=n, if and
only if og+(G)=n, and also that og(G)=3 if any only
if og+(G)=3. It is shown that for positive integers a
and b with 4 ≤ a ≤ b, there exists a connected graph
G with og(G) =a and og+(G)=b. Also, it is shown
that for positive integers a, b, c with 4 ≤ a ≤ b ≤ c
and b ≤  3a, there exists a connected graph G with
g(G)=a, og(G)=b and og+(G)= c.
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Резиме: За повезани граф G реда n, скуп S
чворова од G је геодетски скуп од G ако сваки
чвор  n од G лежи на x-y геодезијској линији за
неке елементе x и y у S. Минимална кардиналност
геодетског скупа од G дефинише се као геодетски
број од G, и означава се са g(G). Геодетски скуп
кардиналности g(G) се назива g-скуп од G. Скуп S
чворова повезаног графа G представља отворени
геодетски скуп у G ако је за сваки чвор n од G, или
n екстремни чвор у G, a nÎS; или је n унутрашњи
чвор геодезијске линије x-y при чему x,yÎS. Отво-
рени геодетски скуп минималне карди-налности је
минимални отворени геодетски скуп, а та
кардиналност представља отворени геодетски
број, og(G). Отворени геодетски скуп S у
повезаном графу G назива се минимални отворени
геодетски скуп ако прави подскуп у S nije
отворени геодетски скуп у G. Горњи отворени
геодетски број og+(G) од G пре-дстваља
максималну кардиналност мини-малног отвореног
геодетског скупа у G. Показано је да за повезани
граф G реда n важи og(G)=n, ако и само ако је
og+(G)=n, и такође да је og(G)=3 ако и само ако је
og+(G)=3. Показано је да за позитивне цијеле
бројеве a i б са особином 4 ≤ a ≤ b, постоји
повезани граф G са особинама og(G) =a, i
og+(G)=b. Такође је пока-зано да за позитивне
цијеле бојеве a, b, c са особинама 4 ≤ a ≤ b ≤ c i b ≤
3a, постоји пове-зани граф G са особинама (G)=a,
og(G)=b, i og+(G)= c.

Кључне ријечи: геодетски, геодетски број,
отворени геодетски број, горњи отворени
геодетски број.
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1. INTRODUCTION

By a  graph G=(V,E), we mean a finite undirected connected graph without loops or
multiple edges. The order and size of G are denoted by n and m respectively. For basic graph
theoretic  terminology  we  refer  to  Harary  [6]  and  we  refer  to  [1]  for  results  on  distance  in
graphs. The distance d(u,n) between two vertices u and v in a connected graph G is the length
of a shortest u-n path in G. An u-n path of length d (u,n) is called an u-v geodesic. It is known
that this distance is a metric on the vertex set of G. The neighborhood of a vertex n is the set
N (n) consisting of all vertices which are adjacent with n. A vertex n is an extreme vertex of G
if the subgraph induced by its neighbors is complete. A vertex is an end- vertex if its degree is
1. For a cut- vertex n in a connected graph G and a component H of G–n, the subgraph H and
the vertex n together with all edges joining n and V(H) is called a branch of G at n.  A
geodetic set of G is a set S of  vertices  of G such  that  every  vertex  of G is  contained  in  a
geodesic joining some pair of vertices in S. The geodetic number g(G) of G is the cardinality
of a minimum geodetic set. The geodetic number of a graph was introduced in [7] and further
studied in [3,4,5,8]. A vertex x is said to lie on a u-n geodesic P if x is a vertex of P and x is
called an internal vertex of P if x ≠ u, n. We denote by I[u, n] the set of all vertices lying on a
u-n geodesic. If x is an internal vertex of an u-n geodesic, we also use the notation x Î I(u,n).
A set S of vertices in a connected graph G is an open geodetic set if for each vertex v in G,
either v is an extreme vertex of G and v Î  S; or v is an internal vertex of an x-y geodesic for
some x,yÎS. An open geodetic set of minimum cardinality is a minimum open geodetic set
and this cardinality is the open geodetic number og(G) of G. The open geodetic number of a
graph was introduced and further studied in [3, 9]. Throughout the following G denotes  a
connected graph with at least two vertices.

The following theorems are used in the sequel.
Theorem 1.1.  [3] Every geodetic set of a connected graph contains its extreme

vertices. Also, if the set S of all extreme vertices of G is a geodetic set, then S is the unique
minimum geodetic set of G.

Theorem 1.2. [8] Let G be a connected graph with a cut-vertex n. Then every
geodetic set of G contains at least one vertex from each component of  G–n.

Theorem 1.3. [9] Every open geodetic set of a graph G contains its extreme vertices.
Also, if the set S of all extreme vertices of G is an open geodetic set, then S is the unique
minimum open geodetic set of G.

Theorem 1.4. [9] For any tree T, the open geodetic number og(T) equals the number
of end vertices of T. In fact, the set of all end vertices of T is the unique minimum open
geodetic set of T.

Theorem 1.5. [9] Let G be a connected graph with a cut-vertex n. Then every open
geodetic set of G contains at least one vertex from each component of G–n.

Theorem 1.6. [3] Let G be a non-trivial connected graph that contains no extreme
vertices. Then og(G) ≥ 4.

Theorem 1.7. [3] For every connected graph G with no extreme vertices,
max{g(G),4} ≤ og(G) £ 3g(G).

2. THE UPPER OPEN GEODETIC NUMBER OF A GRAPH

Definition 2.1. An open geodetic set S in a connected graph G is called a minimal
open geodetic set if no proper subset of S is an open geodetic set of G. The upper open
geodetic number og+(G) of G is the maximum cardinality of a minimal open geodetic set of G.

Example 2.2. For the graph G given in Figure 2.1,  it  is  easily  verified  that  no 3-
element subset of vertices is an open geodetic set. The set S={n1,n3,n5,n7} is an open geodetic
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set of G and so og(G)=4. Also, it is easy to see that S is the unique minimum open geodetic set
of G. The set S ¢ ={n1,n2,n3,n4,n7} is an open geodetic set of G. Since S is not a subset of S ¢
and no 4- element subset other than S is an open geodetic set of G, it follows that S ¢ is  a
minimal open geodetic set of G. It is also easily seen that S ¢ is the unique minimal open
geodetic set of G. Thus og+(G)=5.

Remark 2.3. Every minimum open geodetic set of a graph G is a minimal open
geodetic set of G and the converse is not true. For the graph G given in Figure 2.1, S ¢ = {n-
1,n2,n3,n4,n7} is a minimal open geodetic set but not a minimum open geodetic set of G.

The following proposition is clear.
Proposition 2.4. For the complete graph G = Kn (n ≥ 2), og(G)=og+(G)=n.
Theorem 2.5. If G is a connected graph of order n, then 2 ≤ og(G) ≤ og+(G) ≤ n.
Proof. Any open geodetic set needs at least two vertices and so og(G)=2. Since every

minimal open geodetic set is an open geodetic set, og(G) ≤ og+(G). Also, since V(G) is an
open geodetic set of G, it is clear that og+(G) ≤ n. Thus 2 ≤  og(G) ≤ og+(G) ≤ n.

Remark 2.6. The bounds in Theorem 2.5 are sharp.
For any non-trivial path P, og(P)=2. For any non-trivial tree T,  the  set  of  all  end

vertices of T is the unique minimum open geodetic set of T so that og(T)=og+(T). For the
complete graph Kn, og+(Kn)=n for n ≥ 2. Also, all the inequalities in the Theorem 2.5 are
strict. For the graph G given in Figure 2.1, og(G)=4, og+(G)=5  and n = 7.

Theorem2.7. For a connected graph G of order n, og(G) = n if and only if og+(G)=n.
Proof. Let og+(G) = n. Then S=V(G)  is  the  unique  minimal  open  geodetic  set  of G.

Since no proper subset of S is an open geodetic set, it is clear that S is the unique minimum
open geodetic set of G and so og (G)= n. The converse follows from Theorem 2.5.

Corollary 2.8. If G is a graph of order n such that og(G) = n –1, then og+(G) = n –1.
Problem 2.9. Characterize graphs G of order n  for which og(G) = og+(G) = n –1.
Theorem 2.10. No cut-vertex of a connected graph G belongs to any minimal open

geodetic set of G.
Proof. Let S be any minimal open geodetic set of G. Let vÎ S. We prove that v is not a

cut-vertex of G. Suppose that v is  a  cut-vertex  of G. Let G1,G2,…, Gk ( )2³k   be  the
components of G – v. Then v is adjacent to at least one vertex of each Gi for 1 £ i £ k. Let S ¢ =
S–{v}. We show that S ¢ is an open geodetic set of G. Let x be a vertex of G. If x is an extreme
vertex of G, then x ¹ v and so by Theorem 1.3, x Î S ¢ . If x is not an extreme vertex, then,
since S is an open geodetic set of G, x ÎI(u,w) for some u,wÎS. If v ¹ u,w, then u,w Î S ¢ . If v
= u, then v ¹ w. Assume without loss of generality that wÎG1. By Theorem 1.5, S contains a
vertex w¢ from Gi ( )ki ££2 . Then w¢ ¹ v. Since v is a cut-vertex of G, we have I(w,u) Í
I(w, w¢ ). Hence x ÎI(w, w¢ ), where w, w¢ Î S ¢ . Thus S ¢ is  an  open  geodetic  set  of G. This
contradicts that S is a minimal open geodetic set of G.
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Corollary 2.11. For any tree T with k end- vertices, og(T) = og+(T) = k.
Proof. This follows from Theorems 1.3, 1.4 and 2.10
Lemma 2.12. Let G be a connected graph. If G has a minimal open geodetic set S of

cardinality 3, then all the vertices in S are extreme.
Proof. Let S = {u,v,w} be a minimal open geodetic set of G. Then og(G) £ 3. Suppose

that the vertex w is not extreme. We consider three cases.
Case1. u and v are non-extreme. Then u,v,w are all non-extreme and by Theorem 1.3,

G has no extreme vertices. Hence by Theorem 1.6, we see that og(G) ³ 4, which is a
contradiction.

Case 2. u is extreme and v is not extreme. Since S is an open geodetic set of G, we
have v Î I(u,w) and wÎI(u,v). These in turn, give d(u,w) > d(u,v) and d(u,v) > d(u,w). Hence
d(u,w) >d(u,w), which is a contradiction.

Case 3. u and v are extreme. Since S is an open geodetic set of G, we have w Î I
(u,v). Let d(u,v) = k and let P be a u-v geodesic of length k, d (u,w) = l1 and d(w,v) = l2. Then
l1 + l2 = k. Let P¢  be the u-w subpath of P and P ¢¢  the w-v subpath of P. We prove that S ¢ =
{u,v} is an open geodetic set of G. Let x be any vertex of G such  that x Ï S ¢ . Since S =
{u,v,w} is a minimal open geodetic set of G with w non-extreme, u and v extreme, it follows
that u and v are they only two extreme vertices of G. Hence x is not extreme. Since S is an
open geodetic set of G, we have x ÎI(u,v) or x ÎI(u,w) or xÎI(v,w). If x ÎI(u,v), there is
nothing to prove. If xÎI(u,w), let Q be a u-w geodesic in which x lies internally. Let R be the
u-v walk obtained from Q followed by P ¢¢ . Then the length of R is k and so R is a u-v geodesic
containing x. Thus x ÎI(u,v). Similarly, if xÎI(v,w), we can prove that xÎI(u,v). Hence S ¢ is
an open geodetic set of G, which contradicts that S is a minimal open geodetic set of G. This
completes the proof.

Theorem 2.13. For a connected graph G, og(G) = 3 if an only if og+(G) =3.
Proof. Let og(G) = 3. Let S be a minimum open geodetic set of G. Since every

minimum open geodetic set is also a minimal open geodetic set, by Lemma 2.12, all the three
vertices in S are extreme. Hence it follows from Theorem 1.3 that S is the unique minimal
open geodetic set of G so that og+(G)=3. Conversely, let og+(G)=3. Let S ¢ be a minimal open
geodetic set of G of cardinality 3. By Lemma 2.12, all the vertices in S ¢  are extreme. Hence it
follows form Theorem 1.3 that S ¢ is the unique minimum open geodetic set of G so that og
(G) = 3.

Theorem 2.14. For every two positive integers a and b with 4 ££ a b, there exists a
connected graph G with og(G)=a and og+(G)=b.

Proof. If a = b, let G = K1, a. Then by Corollary 2.11, og(G) = og+(G) = a. Let 4£  a <

b. Let H = 32 +-

-

+ abCK  with V(K2) ={x,y} and V(Cb-a+3) = {v1,v2,…,vb-a+3}. Let G be the graph
in Figure 2.2 obtained from H by adding a–3 new vertices u1,u2,  …, ua-3 and joining each ui
(1 3-££ ai ) with y. It is clear that S ={u1, u2,…, ua-3} is not an open geodetic set of G. Also,
it is easily seen that S È {w,z}, where w,zÏS, is not an open geodetic set of G. Let
S ¢ =S È {x,vi,vj}, where vi and vj are non-adjacent.. Then it is clear that S ¢  is an open geodetic
set of G and so og(G) = a.
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We now prove that og+(G) = b. It is clear that T=S È {v1,v2,…,vb-a+3} is an open
geodetic set of G. We show that T is  a  minimal  open  geodetic  set  of G. On the contrary,
assume that W is a proper subset of T such that W is an open geodetic set  of G. Then there
exists a vertex vÎT such that vÏ W. By Theorem 1.3, it is clear that v = vj for some j(1 £ j £
b–a+3). Then vj+1 does not lie on a geodesic joining any pair of vertices of W and so W is not
an open geodetic set of G, which is a contradiction. Hence T is a minimal open geodetic set of
G so that og+(G) ³ b. Now, since y is  a cut-vertex of G, y does not belongs to any minimal
open geodetic set of G. Suppose that og+(G)=b+1. Let X be a minimal open geodetic set of
cardinality b+1. Then X=V(G) –{y} and S ¢ is a proper subset of X so that X is not a minimal
open geodetic set, which is a contradiction. Hence og+(G)= b.

Lemma 2.15. Let G be a connected graph with v a cut-vertex such that G–v has a
component having no extreme vertices. Then every open geodetic set of G contains at least
three vertices from each such component of G–v.

Proof. Let C be a component of G–v having no extreme vertices. Then C must contain
at least three vertices. Let S be any open geodetic set of G.  By Theorem 1.5,  it  follows that
S Ç V(C) ¹ f .

If }{)( xCVS =Ç ,then xÏ I(u,w) for any u,wÎS. Hence |S Ç V(C)| ³ 2. If S Ç V (C)
={x,y}, then ),( wyIx Î  for some Sw Î and ),( zxIyÎ for some z Î S.  It  follows  that x
ÎI(y,v) and y Î I (x,v). Then

d(x, y) = d (y,v) – d (x, v) (1)
and d(x,y) = d(x,v) – d(y,v) (2)

From (1) and (2), we see that d (x,v) = d (y,v). Hence d (x,y) =0. This gives x=y, which
is a contradiction. Thus  | 3|)( ³Ç CVS .

Next, we show that every three positive integers a,b,c with cba £££4 and ab 3£  is
realizable as the geodetic number, open geodetic number and upper open geodetic number of
some connected graph. For this purpose we introduce the following special graphs Gs, Hl and
H given in Figures 2.3, 2.4 and 2.5 respectively.

For integers i  and s with si ££1 , let each Fi be a copy of K2, 3 with partite sets Vi1 =
{vi1,  vi2} and Vi2 =  {wi1,wi2,wi3}. Let Gs be the graph in Figure 2.3 obtained from the Fi by
identifying the s vertices vi2 )1( si££ . Let x be the common vertex representing the identified
vertices. It is clear that S = {v11,v21,…,vs1} is the unique minimum geodetic set of Gs so that
g(Gs) = s. Since each vertex vi1 )1( si££ lies only on a geodesic joining any two of the three
vertices wi1,wi2,wi3, it follows that S È {wi1, wi2: }1 si££  is a minimum open geodetic set of Gs

and so og(Gs) =3s.
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For l ³ 3, let Hl = Cl+
-

K 2 be the graph given in figure 2.4, where },{)( 2 yxKV =
-

 and
Cl is  the  cycle  with V(Cl) ={z1,z2…,zl}. It is clear that S =  {x,y} is the unique minimum
geodetic set of Hl so that g(Hl) =2. Moreover, },{ ji zzS È , where zi and ),1( ljiz j ££ are non-
adjacent vertices of Cl, is a minimum open geodetic set of Hl so that og(Hl) = 4.

Let H be the graph given in Figure 2.5. It is clear that S = {u1,u3} is a geodetic set of
H  and so g(H)=2. Since  H  is a graph without extreme vertices, by Theorem 1.6, og(H) ³ 4.
It is easily verified that no 4-element subset of V(H) is an open geodetic set of H. Now, S1 =
{u1, u2, u3,w1,w4}is an open geodetic set of H and so og(H) = 5.

The arguments used in determining the geodetic number and open geodetic number of
the graphs Gs, Hl and H will also be used in the proof of the following theorem.

Theorem 2.16. For any three positive integers a,b,c with cba £££4 and ,3ab £ there
exists a connected graph G such that g(G) = a, og(G) = b and og+(G) = c.

Proof. For a=b=c, the star K1,  a has  the  desired  properties.  Let b = a+p, where
1 £ p £ 2a. We consider three cases.

Case 1. a < b <c.
First suppose that p ¹ 2a–1. We consider two subcases.
Subcase 1a. p is even. First, let p = 2. Let G be the graph in Figure 2.6 obtained form

the graph Hc-b+3 by adding a–1 new vertices u1,u2,…,ua-1  and joining the edges ui x
(1 ).1-££ ai  It is clear that S ={ }1,21 ...,, -auuu  is not a geodetic set of G and S1 = SÈ {y} is a
geodetic set of G and so  by Theorem 1.1, g(G)=a.  Now, let S2=S1 È {zi,,zj}, where zi and zj

)3,1( +-££ bcji are non-adjacent vertices on Cc-b+3.  By Theorem 1.3, every open geodetic
set contains S and it is easily verified that S2 is a minimum open geodetic set of G and  so
og(G)=a+2=b. Let S3=S },...,,{ 321 +-È bczzz . Then it is clear that S3 is an open geodetic set of
G.  We  show  that S3 is a minimal open geodetic set of G.  Otherwise,  there  exists  a  proper
subset W of S3 such that W is an open geodetic set of G. Then there exists a vertex say v ÎS3
such that v ÏW. By Theorem 1.3, it is clear that v = zj for some ).31( +-££ bcjj Let zl  be a
vertex on the cycle Cc-b+3 such that it is adjacent to zj. Then zl is  not an internal vertex of a
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geodesic joining any pair of vertices of W and so W is not an open geodetic set of G, which is
a contradiction. Hence S3  is a minimal open geodetic set of G so  that og+(G) ³ c. Now,
suppose that og+(G) ³ c  +1. Let X be a minimal open geodetic set with |X| .1+³c  Then X
=V(G)–{x}. Since S2 is an open geodetic set properly contained in X, we see that X is  not a
minimal open geodetic set of G, which is a contradiction. Hence og+(G) =c.

Now, let p ³ 4. Let G be the graph in Figure 2.7 obtained from
1

2
-

pG and Hc-b+3 by first

identifying at the vertex x and then adding the new vertices
2

21 ,...,, pa
uuu

-
and then joining the

edges )
2

1( paixui -££ .

Let S = {
2

21 ,...,, pa
uuu

-
}. Then it follows form Theorem 1.1 and Theorem 1.2 that S1 =

},...,,{}{
1,1

2
2111

-
ÈÈ pvvvyS is a minimum geodetic set (in fact, S1 is unique) and so g(G)= a.

Let S2=S1 È { 1
2

1:, 21 -££
piww ii } È {zi,,zj}, where zi and zj ( )3,1 +-£< bcji  are non-adjacent

vertices of Cc-b+3. By Theorem 1.3 and Lemma 2.15, S2 is a minimum open geodetic set of G

and so og(G)=a+p=b. Let S3= { }3211,1
2

211121 ,...,,},...,,{}1
2

1:,{ +-
-

ÈÈ-££È bcpii zzzvvvpiwwS .



38 ô    A. P.  Santhakumaran, T. Kumari Latha

Зборник радова Економског факултета, 2012, 6, стр. 31 - 43

We show that S3 is a minimal open geodetic set of G. Otherwise, there exists a proper
subset W of S3 such that W is an open geodetic set of G. Then there exists a vertex say vÎS3

such that .WvÏ  By  Theorem  1.3  and  Lemma  2.15,  it  is  clear  that jzv=  for some
)31( +-££ bcjj . Let zl be the vertex on the cycle Cc-b+3 such that it is adjacent to zj. Then zl

is  not  an  internal  vertex  of  a  geodesic  joining  any  pair  of  vertices  of W and so W is  not  an
open geodetic set of G, which is a contradiction. Hence S3 is a minimal open geodetic set of G
so that og+(G) ³ c. Now, suppose that og+(G) ³  c+1. Let X be a minimal open geodetic set of
cardinality ³ c +1.

First suppose that .XyÎ  By  Lemma  2.15,  it  is  clear  that  any  two  non-adjacent
vertices )3,1(, +-££ bcjizz ji of Cc-b+3 must  belong  to X. Also, by Theorem 1.3,

)
2

1( paiXui -££Î . Since vi1 are the end vertices of any geodesic in which wi1 lies internally,

we have vi1 ).1
2

1( -££Î
piX  Also, it is clear that ).1

2
1(, 21 -££Î

piXww ii  Then it is clear that

S2 is a proper subset of X such that S2 is an open geodetic set of G with |S2|= a+p = b, which
is a contradiction to X a minimal open geodetic set of G.

Now, suppose that .XyÏ Then it is clear that Xzi Î for each ).31( +-££ bcii  Then,

just  as  above )
2

1( paiXui -££Î and w11,v11,w12;  w21,v21,w22;…; .,,
2,

2
1,

2
1,

2

Xwvw papapa
Î

---

Then it is clear that S3 is a proper subset of X such that S3 is an open geodetic set of G with
|S3| = c, which is a contradiction to X a minimal open geodetic set of G. Hence og+(G) =c.

Subcase1b. p is odd. Then 1≤ p ≤ 2a–3. For p=1, let G be the graph in Figure 2.8
obtained from H c–b+3 by adding a–1 new vertices u1,u2,…,ua-1 and joining the edges

).12(,11 -££ aixuzu i

Let { }.,...,, 121 -= auuuS  By Theorem 1.1, { }ySS È=1  is a minimum geodetic set of G
and so g(G)=a. Let zj be a vertex on Cc-b+3 such that z1 and zj are non-adjacent. Then

{ }jzSS È=2  is a minimum open geodetic set of G and so og(G)=a+1=b. Let S3=SÈ (V(Cc-

b+3) –{ }1z ). Then S3 is an open geodetic set of G. we show that S3 is a minimal open geodetic
set of G. Otherwise, there exists a proper subset W of S3 such that W is an open geodetic set of
G. Then there exists a vertex say În S3 such that Ïn W.  By  Theorem  1.3,  it  is  clear  that

kz=n for some k such that 1¹k . Let zl and lz¢  be the vertices adjacent to zk. Suppose that
., 32 +-¹ bck zzz  Then it is clear that both zl and lz¢  do not lie as internal vertices of a geodesic

joining  a  pair  of  vertices  of W. Suppose that .32 +-= bck zorzz  Then  one  of  the  vertices zl

or lz¢ does not lie as an internal vertex of any geodesic joining a pair of vertices of W. Thus W
is not an open geodetic set of G, which is a contradiction. Hence S3 is a minimal open
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geodetic set of G so that og+(G) ³ c. Now, suppose that og+(G) ³  c+1. Let X be a minimal
open geodetic set of cardinality ³ c+1.

First,  Suppose  that  yÎX. By Theorem 1.3, uiÎX  ( 11 -££ ai ). Since X is an open
geodetic set there exists ( )3+-Î bci CVz with ( )3,2,1 +-=¹ bcizz i  such  that  zÎX.  Now,  let

{ }., zyST È=  Then it is clear that T is an open geodetic set contained in X such that
,1 baT =+=  which is contradiction to X a minimal open geodetic set of G. Next, suppose

that yÏX. Then just as above ( ).11 -££Î aiXui  Also, since yÏX, it is clear that, ziÎX for
each ( ).32 +-££ bcii  Then clearly S3 is  a  proper  subset  of X such that S3 is  an  open
geodetic set of G with ,3 cS = which is a contradiction to X a minimal open geodetic set of G.
Thus og+(G)=c.

For p ³ 3, let G be the graph in Figure 2.9 obtained from the graph
1

2
1

-
+pG  by first

adding )
2

1( +
-

pa  new vertices u1,u2,…,
)

2
1( +

-
pa

u and )
2

1( +
-

pa new edges u1w11 and ui x(2 ≤ i ≤

)
2

1( +
-

pa )  and then  identifying this with 3+-bcH at the vertex x.

Let S1 =  {u1,u2,…,
)

2
1( +

-
Pa

u , v11,v21,…,
1,1

2
1

-
+pv ,  y} and S2=  S1 È {w12} È {wi1,wi2:

2 £ i £ -
+ )
2

1( p 1} È {zi, zj}  where zi and zj ( )3,1 +-££ bcji are non-adjacent vertices on

Cc-b+3. Then as earlier, it can be seen that S1 is a minimum geodetic set of G and S2 is
a minimum open geodetic set of G and so g(G) =  a and ( ) .bpaGog =+=  Let

S3={u1,u2,…,
)

2
1( +

-
pa

u ,v11,  v21,…,
1,1

2
1

-
+pv } È {w12} È {wi1,wi2:  2 £ i £ -

+ )
2

1( p 1} È {z1,z2,…,zc-

b+3}. Then as in subcase 1a of case 1, it can be proved that og+(G) ³ c.  Now,  let X be  a
minimal open geodetic set of G such that 1+³ cX .

If Xy Î , then  by  using  arguments  similar  to  the  one  in  Subcase  1a  of  Case  1,  it  is
clear that S2 is a proper subset of X such that S2 is  an  open  geodetic  set  of G with

bpaS =+=2 , which is a contradiction to X a minimal open geodetic set.
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If Xy Ï , then just as above, it can be seen that S3 is a proper subset of X such that S3

is an open geodetic set of G with ,3 cS = which  is  a  contradiction  to X a minimal open
geodetic set. Thus og+(G)=c.

Now, Suppose that .12 -= ap  Let G be the graph in Figure 2.10 obtained from Ga-3,

Hc-b+3 and H by identifying the vertices x and x¢ .

It follows from Theorem 1.2 that { }311,32111 ,,,...,,, uuvvvyS a-=  is a minimum geodetic
set of G so that g(G)=a. Let S1 = {y, zi, zj,;  w11, v11, w12;  w21, v21,  w22; ...,wa-3,1, va-3,1,  wa-3,2;
w1,u1,  u2,  u3,  w4}, where ( )3,1 +-££ bcjizandz ji  are non-adjacent vertices on Cc-b+3. By
Lemma 2.15, it is straight forward to verify that S1 is  a minimum open geodetic set  of G so
that og (G)=a+p=b. Let S2={z1,z2, …,zc-b+3,w11,v11,w12;  w21,v21,w22; ...,wa-3,1,va-3,1,wa-3,2;
w1,u1,u2,u3,w4}.  We show that S2 is a minimal open geodetic set of G. Otherwise, there exists
a proper subset W of S3 such that W is an open geodetic set of G. Then there exists a vertex,
say 3Sv Î  such that Wv Ï . It is easily seen that jzv = for some ( )31 +-££ bcjj . Let zl be
the vertex on the cycle Cc-b+3 such that it is adjacent to zj. Then zl is not an internal vertex of a
geodesic joining any pair of vertices of W, and so W is not an open geodetic set of G, which is
a contradiction. Hence S2 is a minimal open geodetic set of G so that og+(G) ³ c. Now, let X
be a minimal open geodetic set of cardinality 1+³ c .

Suppose that Xy Î . By Lemma 2.15, ( )3,1, +-££Î bcjiXzz ji ,  where  zi and zj

are non-adjacent vertices on Cc-b+3.  Also,  it  is  easy  to  see  that X must contain the vertices
.,,,;,,;...,,,;,, 4321,12,31,31,3222121121111 wuuuwwvwwvwwvw aaa --- Then clearly S1 is a proper subset

of X such that S1 is an open geodetic set of G, which is a contradiction to X a minimal open
geodetic set.

Suppose that yÏX. Then X must contain all  the vertices on Cc-b+3. Also,  it  is  easy to
see that X must contain the vertices ,,;...,,,;,, 1.31.3222121121111 -- aa vwwvwwvw

4321,12.3 ,,,; wuuuwwa- . Then clearly S2 is a proper subset of X such that S2 is an open geodetic

set of G with ,2 cS = which is a contradiction to X a minimal open geodetic set. Thus og+(G)
=c.

Case 2. a < b=c. First suppose that .12 -¹ ap  We consider two subcases.
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Subcase 2a. p is even. Let G be the graph in Figure 2.11 obtained from the graph
2
pG

by adding
2
pa -  new vertices

2
21 ,...,, pa

uuu
-

and the a
2
p

-  new edges )
2

1( paixui -££ .

Let },...,,,,...,,{
1,

2
2111

2
211 ppa

vvvuuuS
-

= and S2 =S1 È {
2

1:, 21
piww ii ££ }.  Then,  as

earlier it can be seen that S1 is a minimum geodetic set of G and S2 is a minimum open
geodetic set of G so that g(G)=a and og(G)=a+p=b.  Now,  it  also  follows  that og+(G) .b³
suppose that og+(G) ³ b+1. Let X be a minimal open geodetic set of cardinality 1+³ b . Then
it can be seen as earlier that S2 is a proper subset of X such that S2 is an open geodetic set of G
with bpaS =+=2 , which is contradiction to X a minimal open geodetic set. Hence
og+(G)=b=c.

Subcase 2b.  p is  odd.  Then .321 -££ ap  Let G be the graph in Figure 2.12

obtained from the graph
2

1+PG  by adding )
2

1( +
-

Pa  new vertices, )
2

1(21 ,..,, +
-

pauuu  and

)
2

1( +
-

pa new edges uix (2 £  i £ )
2

1( +
-

Pa ) and the edge u1 w11.

Let S1 =  { )
2

1(21 ,..,, +
-

pauuu ,v11,v21,…,
1,

2
1+Pv } and S2=S1 È {w12} È {wi1,wi2:  2 £  i

£
2

1+P }. Then, as earlier it can be seen that S1 is a minimum geodetic set of G and S2 is  a
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minimum open geodetic set of G so that g(G)=a and og(G)=a+p=b. Now, it also follows that
og+(G) ³ b. Suppose that og+(G) ³ b+1. Let X be  a  minimal  open  geodetic  set  of  G with  |X|
³ b+1. Then, it can  be seen as earlier that S2 is a proper subset of X such that S2 is an open
geodetic set G with ,2 bpaS =+= which is a contradiction to X a minimal open geodetic set.
Hence og+(G) =b= c.

Now, suppose that .12 -= ap  Let G be the graph in Figure 2.13 obtained from the
graph Ga-2 and H by identifying the vertices x and x¢ .

It follows from Theorem1.2 that S= {v11,v12,…,va-2,1,u1,u3} is a minimum geodetic set
of G so that g(G)=a. Let S1 = {w1,u1,u2,u3,w4; w11,v11,w12; w21,v21,w22;…,wa-2,1,va-2,1,wa-2,2}. It
is  straight  forward  to  verify  that S1 is  a  minimum  open  geodetic  set  of G so that
og(G)=a+p=b. Now, it also follows that og+(G) ³ b. Suppose that og+(G) ³ b+1. Let X be  a
minimal  open  geodetic  set  of G with 1+³ bX . Then it can be seen that S1 is an open

geodetic set contained in X with ,1 bpaS =+= which is a contradiction to X a minimal open
geodetic set of G. Hence og+(G)=b=c.

Case 3. a = b < c.
Let G1 be the graph obtained from Hc-b+3 by adding 3-a  new vertices u1,u2,…, ua-3

and 3-a new edges ui x ( 31 -££ ai ). Let G be the graph in Figure 2.14 obtained from G1 by
adding two new vertices w1 and w2 and joining both w1 and w2 to z1 and z3.
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Let S1 = {u1,u2,…,ua-3, z1,z3,y}. Then it can be seen that S1 is both a minimum geodetic
set and a minimum open geodetic set of G so that g(G)=og(G)=a. Let S2={u1,u2,…,  ua-

3,z1,z2,…,zc-b+3}. Then as earlier, it can be seen that S2 is a minimal open geodetic set of G, so
that og+(G) .2 cS =³ Let X be a minimal open geodetic set with .1+³ cX  Then it is clear
that S1 is  a  proper  subset  of X and  so X is not a minimal open geodetic set, which is a
contradiction. Hence og+(G)=c. Thus the proof of the theorem is complete.
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