On Banhatti and Zagreb Indices

I. Gutman, V. R. Kulli, B. Chaluvaraju, H. S. Boregowda


Let G = (V;E) be a connected graph. The Zagreb indices were in-
troduced as early as in 1972. They are dened as M1(G) =
Σ uv2E(G)[dG(u)+ dG(v)] and M2(G) = Σ uv2E(G) dG(u)dG(v), where dG(u) denotes the degree of a vertex u. The K Banhatti indices were introduced by Kulli in  2016. They are dened as B1(G) = Σ ue[dG(u) + dG(e)] and B2(G) = Σ ue dG(u)dG(e),
where ue means that the vertex u and edge e are incident and dG(e) denotes the degree of the edge e in G. These two typ es of indices are closely related. In this paper, we obtain some relations between them. We also provide lower and upper bounds for B1(G) and B2(G) of a connected graph in terms of Zagreb indices.

Пуни текст:



M. Biernacki, H. Pidek and C. Ryll{Nardzewski. Sur une inegalite entre des integrales denies, Ann. Univ. Mariae Curie{Sklodowska, A 4 (1950), 1-4.

B. Borovicanin, K. C. Das, B. Furtula and I. Gutman. Zagreb indices: Bounds and extremal graphs, in: I. Gutman, B. Furtula, K. C. Das, E. Milovanovic and I. Milovanovic (eds.), Bounds in Chemical Graph Theory { Basics (pp. 67-153), Univ. Kragujevac, Kragujevac, 2017.

S. S. Dragomir, C. E. M. Pearce and J. Sunde. Abel{type inequalities for complex numbers and Gauss{Polya type integral inequalities, Math. Commun., 3(1998), 99-101.

F. Falahati Nezhad and M. Azari. Bounds on the hyper{Zagreb index, J. Appl. Math. Inform., 34(2016), 319-330.

B. Furtula and I. Gutman. A forgotten topological index, J. Math. Chem., 53 (2015), 1184-1190.

I. Gutman. Degree{based topological indices, Croat. Chem. Acta, 86(2013), 351-361.

I. Gutman and K. C. Das. The First Zagreb indices 30 years after, MATCH Commun. Math. Comput. Chem., 50(2004), 83-92.

I. Gutman, B. Furtula, Z. Kovijanic Vukicevic and G. Popivoda. Zagreb indices and coindices, MATCH Commun. Math. Comput. Chem., 74(2015), 5-16.

I. Gutman and O. E. Polansky. Mathematical Concepts in Organic Chemistry, Springer, Berlin, 1986.

I. Gutman and N. Trinajstic. Graph Theory and molecular orbitals. Total pi-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17(1972), 535-538.

V. R. Kulli. College Graph Theory, Vishwa Int. Publ., Gulbarga, 2012.

V. R. Kulli. On K Banhatti indices of graphs, J. Comput. Math. Sci., 7(2016), 213-218.

V. R. Kulli. On K hyper-Banhatti indices and coindices of graphs, Int. Res. J. Pure Algebra, 6(2016), 300-304.

A. Milicevic, S. Nikolic and N. Trinajstic. On reformulated Zagreb indices, Mol. Divers., 8(2004), 393-399.

S. Nikolic, G. Kovacevic, A. Milicevic and N. Trinajstic. The Zagreb indices 30 years after, Croat Chem Acta, 76(2003), 113-124.

G. H. Shirdel, H. Rezapour and A. M. Sayadi. The hyper - Zagreb index of graph operations, Iran. J. Math. Chem., 4(2)(2013), 213-220.

R. Todeschini and V. Consonni. Molecular Descriptors for Chemoinformatics, Wiley-VCH, Weinheim, 2009.

G. S. Watson, G. Alpargu and G.P. H. Styan. Some comments on six inequalities associated with the inefficiency of ordinary least squares with one regressor, Linear Algebra Appl.,

(1997), 13-53.

B. Zhou and N. Trinajstic. Some properties of the reformulated Zagreb indices, J. Math. Chem., 48 (2010), 714-719.


  • Тренутно не постоје рефбекови.