Normal Filters in Almost Distributive Lattices


  • Ramesh Sirisetti
  • G. Jogarao


In this paper we introduce normal lters and normlets in an almost
distributive lattice with dense elements and reinforce them in both algebraical and topological aspects.


[1] G. Birkhoff, Lattice theory, Amer. Math. Soc. Collequium Pub, 1967.

[2] G. C. Rao and G. Nanaji Rao, Dense elements in almost distributive lattices, Southeast Asian Bull. Math., 27(6)(2004), 1081-1088.

[3] G. C. Rao and M. Sambasiva Rao, Annihilator ideal in almost distributive lattices, Int. Math. Forum., 4915)(2009), 733-746.

[4] G. C. Rao and M. Sambasiva Rao, Annulets in almost distributive lattices, Eur. J. Pure Appl. Math., 2(1)(2009), 58-72.

[5] G. C. Rao and S. Ravi Kumar, Minimal prime ideal in almost distributive lattices, Int. J. Contemp. Math. Sci., 4(10)(2009), 475-484.

[6] G. C. Rao, G. Nanaji Rao and A. Lakshman, Quasi-complemented almost distributive lattice, Southeast Asian Bull. Math., 39(3)(2015), 311-319.

[7] M. H. Stone, Topological representation of distributive lattices and Brouwerian logics, asopis pro psiovn matematiky a fysiky, 67(1937-38), 1-25.

[8] M. Mandelker, Relative annihilators in lattices, Duke Math. J., 37(2)(1970), 377-386.

[9] M. Sambasiva Rao, Normal filters of distributive lattice, Bull. Sci. Logic, 41(3-4)(2012), 131-143.

[10] R. Munkres James, Topology, Prentice Hall of India Private Limited, 2005.

[11] S. Burris and H.P. Sankappanavar, A course in universal algebra, Springer-Verlag, 1980.

[12] S. Ramesh and G. Jogarao, Weak relatively complemented almost distributive lattices, (To appear).

[13] S. Ramesh, On almost distributive lattices, Doctoral thesis, Andhra University, 2009.

[14] T.P.Speed, Some remarks on a class of distributive lattices, J. Australian Math. Soc., 9(3-4)(1969), 289-296.

[15] T. S. Blyth, Ideals and filters of pseudo-complemented semi-lattices, Proc. Edn. Math. Soc., 23(3)(1980), 301-316.

[16] U.M Swamy and G.C Rao, Almost distributive lattices, J. Austral. Math. Soc., 31(1981), 77-91.

[17] W. H. Cornish, Normal lattices, J. Australian Math. Soc., 14(1972), 200-215.

[18] W. H. Cornish, Quasi complemented lattices, Comm. Math. Univer. Carolinae, 15(3)(1974), 501-511.

[19] Y. S. Pawar and I. A. Shaikh, On prime, minimal prime and annihilator ideal in an almost distributive lattices, European. J. Pure and Applied Maths., 6(1)(2013), 107-118.

[20] Y. S. Pawar, The space of maximal ideals in an almost distributive lattice, Int. Math. Forum., 6(28)(2011), 1387-1396.